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Abstract: In this paper analytical results are presented for higher order corrections to

coefficient functions of the operator product expansion (OPE) for the correlator of two

pseudoscalar gluonium operators Õ1 = GµνG̃µν . The Wilson coefficient in front of the

scalar gluon condensate operator O1 = −1
4G
µνGµν is given at three-loop accuracy. The

leading coefficient C0 in front of the unity operator O0 = 1 has been calculated up to

three-loop order some time ago [1] but has been checked independently in this work. It is

interesting to see that the coefficient C1 in the pseudoscalar case is finite, whereas contact

terms appear in C0 in this case and in both coefficients C0 and C1 in the cases of the scalar

gluonium correlator and the energy momentum tensor correlator [2]. For the corresponding

Renormalization Group invariant Wilson coefficients which are also constructed the results

are partially extended to four-loop accuracy. All results are given in the MS-scheme at

zero temperature.
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1 Motivation

Euclidian correlators of local operators are important objects in quantum field theory.

Firstly, they have many important applications, e.g. in sum rules, where they are connected

to physical quantities like spectral densities through dispersion relations. Secondly, they

often have interesting properties in themselves, like their non-trivial renormalization, which

are important for the understanding of quantum field theories. Such correlators are defined

in momentum space as

i

∫

d4x eiqxT{ [O](x)[O](0)} (1.1)

with a large Euclidian momentum q. Here and in the following the squared brackets indicate

that the renormalized form of some operator O is used. Usually, we are interested in the

vacuum expectation value (VEV) of the correlator

Π(Q2) = i

∫

d4x eiqx 〈0|T{ [O](x)[O](0)]}|0〉 (Q2 = −q2) (1.2)

which can be calculated in perturbation theory. But if we take |0〉 to be the physical vacuum

state we also have to consider non-perturbative effects. Starting from the perturbative

region of momentum space this is done by means of an operator product expansion (OPE).

The idea is to expand the bilocal operator product (1.1) in a series of local operators with

– 1 –



Wilson coefficients depending on the large Euclidean momentum q [3]: 1

i

∫

d4x eiqxT{ [O](x)[O](0)} =
∑

i

CBi (q)(Q2)
2 dim(O)−dim(Oi)−4

2 OBi (1.3)

=
∑

i

Ci(q)(Q
2)

2 dim(O)−dim(Oi)−4

2 [Oi]. (1.4)

where the index B marks bare quantities and the factor (Q2)
2 dim(O)−dim(Oi)−4

2 constructed

from the mass dimensions of the operators involved makes the Wilson coefficients Ci(q)

dimensionless.

In a sum rule approach to glueballs three operators are usually investigated as insertions

on the lhs of (1.3) (see e.g. [5]):

O1(x) = −
1

4
GµνGµν(x) (scalar) (1.5)

Õ1(x) = GµνG̃µν(x) (pseudoscalar) (1.6)

OµνT (x) = T µν(x) (tensor) (1.7)

where Gµν is the gluon field strength tensor,

G̃µν = εµνρσG
ρσ (1.8)

the dual gluon field strength tensor and T µν the energy-momentum tensor of QCD. Having

discussed the correlators of O1 and OµνT in [2] the results for the correlator of (1.6)

Xt(q) := i

∫

d4x eiqxT{ [Õ1](x)[Õ1](0)}, (1.9)

whose VEV χt(q) := 〈0|Xt(q)|0〉 is also known as the topological susceptibility of QCD2,

are presented here. This correlator has been connected to the mass of the η
′

-meson through

the Witten-Veneziano formula [8–11]:

α2
s

32iπ2
χt(q)

∣
∣
∣
∣
∣
q→0,

nf
Nc
→0

=
m2
η
′F 2
π

nf
(leading order) (1.10)

where Fπ ≈ 94 MeV is the pion decay constant. An explicit sum rule calculation with an

OPE at one-loop level using a Borel transformation has been done in [12]. In this work the

value mη′ ≈ 1 GeV is correctly estimated.

The correlator defined in (1.1) with renormalized operators is finite, i.e. all its matrix ele-

ments are finite, except for possible contact terms. These arise from the point where x ≡ 0

1Effectively this expansion separates the high energy physics, which is contained in the Wilson coef-

ficients, from the low energy physics which is taken into account by the VEVs of the local operators, the

so-called condensates [4]. These cannot be calculated in perturbation theory, but need to be derived from

low energy theorems or be calculated on the lattice.
2For a discussion of topological effects in QCD and the significance of the operator Õ1 and the correlator

(1.9) in that respect see e.g. [6, 7].
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and manifest themselves as divergences ∝ δ(x) and derivatives of δ(x) or in momentum

space terms polynomial in q. These local terms do not contribute to sum rules and can

and should be subtracted with proper counterterms.

The leading term on the rhs of (1.3) is the coefficient in front of the unit operator 1 which

is just the perturbative VEV of the correlator (1.1):

(Q2)2C0(q) = 〈0|Xt(q)|0〉|pert. (1.11)

The coefficient C0 is known for the scalar case (1.5) at four-loop level [13] and for the

pseudoscalar case (1.6) [1] and the energy-momentum tensor correlator [2] at three-loop

level. The next important contribution in the OPE is the coefficient of the dimension

four operator [O1] (1.5).3 The coefficient C1 has been calculated at two-loop level for the

scalar4 and tensor cases [2]. Here we present the coefficent C1 for the pseudoscalar case at

three-loop level which so far has only been known to one-loop accuracy [16, 17].

All physical matrix elements of [O1] = ZGO
B
1 are finite and so is the renormalized coefficient

C1:5

C1 =
1

ZG
CB1 . (1.12)

The renormalization constant

ZG = 1 + αs
∂

∂αs
lnZαs =

(

1−
β(αs)

ε

)−1

(1.13)

has been derived in a simple way in [18] (see also an earlier work [19]). Here Zαs is the

renormalization constant6 for αs and the β-function is defined as

β(αs) = µ2 d

dµ2
lnαs = −

∑

i≥0

βi

(
αs
π

)i+1

. (1.14)

The outline of this paper is as follows. In the next section the renormalization properties

of Õ1 will be discussed. In section 3 the details of the calculation will be described (section

3.1) and the results for the OPE of (1.9) will be presented (section 3.2). After that Renor-

malization Group invariant (RGI) operators and Wilson coefficients will be constructed

(section 3.3) followed by a numerical evaluation of the main results (section 3.4). Finally,

some conclusions and acknowledgements will be given.

3In the case of massive fermion flavours f we would also have contributions proportional to the dimension

two operator Of = m2
f 1 and the dimension four operator Of2 = mf ψ̄fψf . In the case of temperature T 6= 0

Lorentz variant operators like T 0
0 ∼ e+p with the energy density e and the pressure p have to be considered

as well. At T = 0, however, only Lorentz and gauge invariant scalar operators contribute to the the VEV

in (1.2) which is the quantity that we are ultimately interested in. For a discussion of the correlator Xt(q)

at finite temperature up to O(αs) see [14].
4The one-loop result for the scalar case was first derived in [15].
5In the massless case O1 only mixes with unphysical operators whose matrix elements with physical

external states vanish. The renormalization of O1 including these unphysical contributions as well as the

mixing with O
f
2 in the massive case can be found in [18].

6Often in the literature Zαs is used instead of ZG and αsG
µνGµν instead of O1. This renormalization

is only valid up to first order in αs as the renormalization constants ZG and Zαs coincide to this accuracy.

In higher orders, however, ZG and Zαs differ.
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2 Renormalization of Õ1 and its correlator

The operator Õ1 forms a closed set under renormalization with the pseudoscalar fermionic

operator

∂µJ
µ
5 := εµµ1µ1µ3∂µ

∑

f

Ψ̄fγµ1γµ2γµ3Ψ. (2.1)

which can be written as

∂µJ
µ
5 = ∂µ

∑

f

Ψ̄fγ
µγ5Ψ (2.2)

in the Larin scheme for γ5 [20].

The ε-tensors appearing in (1.6) and (2.1) are then drawn out of the R-operation per-

formed in dimensional regularization. In the correlators which have to be calculated there

are always two ε-tensors involved which can be contracted and expressed through metric

tensors:

εµ1µ2µ3µ4εν1ν2ν3ν4 = −g[µ1
ν1
gµ2
ν2
gµ3
ν3
gµ4]
ν4

(2.3)

where [. . .] means complete antisymmetrization. These operators are renormalized like [20]

[∂µJ
µ
5 ] = Zs5Z

s
MS∂µJ

B µ
5 = ZsJ∂µJ

B µ
5 , (2.4)

[Õ1] = ZGG̃Õ
B
1 + ZGJ∂µJ

B µ
5 (2.5)

where ZsMS is an MS renormalization constant, Zs5 a finite renormalization constant fixed

by the requirement that the one-loop character of the axial anomaly relation

[∂µJ
µ
5 ] =

αs
4π
nfTF [Õ1] + CT (2.6)

is valid in dimensional regularization.7 CT stands for contact terms of ∂µJ
µ
5 with fermion

fields. In the gluon sector these can be neglected. ZGG̃ is an MS renormalization constant

again and ZGJ starts at O(αs). In [20] ZsMS and Zs5 are given up to O(α3
s ) and O(α2

s ) re-

spectively. Furthermore it is shown that ZGG̃ = Za (Za being the renormalization constant

for αs). The constant ZGJ is only given at one-loop level in the literature [1, 20] but for the

Wilson coefficient C1 at three-loop level it is needed to two-loop accuracy. In section 3.3

we will also need the corresponding three-loop anomalous dimension. The simplest way to

determine ZGJ is by constructing the matrix elements of Õ1 and ∂µJ
B µ
5 with two external

fermions (see Fig. 1) using a projector

P (q) := qµ1γµ2γµ3γµ4εµ1µ2µ3µ4 (2.7)

on the external fermion line. From this we get

7In Pauli-Villars regularization for example this relation is automatically fulfilled. In d 6= 4 dimensions,

however, the operators ∂µJ
µ
5 and Õ1 become linearly independent.
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Za








ÕB1 q

q
+

ÕB1 q

q
+ . . .








+ZGJ








∂νJ
B ν
5

q

q
+

∂νJ
B ν
5

q

q








= finite

Figure 1. Diagrams for the calculation of ZGJ

ZGJ =
αs

4πε
12CF +

α2
s

(4π)2ε

{
142CACF

3
− 42C2

F −
8

3
CFnfTF

}

+
α2
s

(4π)2ε2
{16CFnfTF − 44CACF}

+
α3
s

(4π)3ε3

{
484

3
C2
ACF −

352

3
nfCATFCF +

64

3
n2
fT

2
FCF

}

+
α3
s

(4π)3ε2

{
550

3
CAC

2
F −

2378

9
C2
ACF −

32

3
nfTFC

2
F

+
1136

9
nfCATFCF −

32

9
n2
fT

2
FCF

}

+
α3
s

(4π)3ε

{

178C3
F −

2947

9
CAC

2
F +

1607

9
C2
ACF −

1096

9
nfTFC

2
F

+
328

9
nfCATFCF −

208

9
n2
fT

2
FCF + 192ζ3nfTFC

2
F − 192ζ3nfCATFCF

}

.

(2.8)

An interesting additional application of this result is to check the connection between the

anomalous dimensions of the operator set {Õ1, ∂νJ
ν
5 }. In [20] the following relations have

been motivated:

γGG̃ = −
β(αs)

αs
(2.9)

γGJ =

(
αs
4π
nfTF

)−1

γsJ (2.10)

with

γij =

(

µ2 d

dµ2
Zik

)(

Z−1
)

kj
, Z =

(

ZGG̃ ZGJ
0 ZsJ

)

(2.11)

The first relation (2.9) has been explicitly checked to three-loop level in [20] the second one

(2.10) only to one-loop accuracy. Now we can check this equation with γGJ at two-loop

level and γsJ at three-loop level and it turns out to hold there as well. Using (2.8) and

the renormalization constants ZsJ and Za [20, 21] the following anomalous dimension is
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derived:8

γGJ = −12CF

(
αs
4π

)

+

(
αs
4π

)2 {

−
284

3
CACF + 36C2

F +
16

3
CFnfTF

}

+

(
αs
4π

)3 {

−
1607

3
C2
ACF + 461CAC

2
F + 576CACFnfTF ζ3 −

328

3
CACFnfTF

−126C3
F − 576C2

FnfTF ζ3 + 428C2
FnfTF +

208

3
CFn

2
fT

2
F

}

(2.12)

Now we can write the correlator Xt(q) as

i

∫

d4x eiqxT{ [Õ1](x)[Õ1](0)}

=i

∫

d4x eiqxT
{

Z2
GG̃
ÕB1 (x)ÕB1 (0) + 2ZGG̃ZGJ Õ

B
1 (x)∂µJ

B µ
5 (0) + Z2

GJ∂µJ
B µ
5 (x)∂νJ

B ν
5 (0)

}

.

(2.13)

In [2] it has been discovered that there are contact terms at two-loop level in the coefficient

C1 for the correlator of O1. The coefficient C0 also has contact terms for the correlator of

two operators O1 or two operators T µν . For the operator Õ1 we can make an important

restriction on possible contact terms due to the fact that it can be exactly expressed as the

divergence of the Chern-Simons current:

Õ1 = ∂µK
µ (2.14)

with

Kµ = εµνρσ
{

4Gaν∂ρG
a
σ +

4

3
gsf
abcGaνG

b
ρG
c
σ

}

. (2.15)

From this follows for (2.13)

i

∫

d4x eiqxT{[Õ1](x)[Õ1](0)}

=qµqν i

∫

d4x eiqxT
{

Z2
GG̃
KB µ(x)KB ν(0) + 2ZGG̃ZGJK

B µ(x)JB ν5 (0) + Z2
GJJ

B µ
5 (x)JB ν5 (0)

}

→qµqν

{

q2Cµν0 (q2) +
1

q2
Cµν1 (q2) + . . .

}

for q2 → −∞ (OPE)

(2.16)

with dimensionless coefficients Cµν0 (q2) and Cµν1 (q2). Because of the non-local factor 1
q2

the coefficient Cµν1 (q2) cannot contain any contact terms. This makes the Wilson coefficent

C1(q2) =
qµqν
q2
Cµν1 (q2) for the correlator (2.13) finite and unambiguous due to the absence

of contact terms.
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〈0|Xt(q)|0〉|pert =

Z2
a







ÕB1 ÕB1

q q








+2ZaZGJ







ÕB1 ∂νJ

B ν
5

q q








+Z2
GJ







∂νJ
B ν
5 ∂νJ

B ν
5

q q








=

Z2
GG̃







ÕB1 ÕB1

+

ÕB1 ÕB1

+

ÕB1 ÕB1

+

ÕB1 ÕB1

+ . . .








+2ZGG̃ZGJ







ÕB1 ∂νJ

B ν
5








+ Z2
GJ







∂νJ
B ν
5 ∂νJ

B ν
5








Figure 2. Diagrams for the calculation of the coefficient C0(Q2)

3 Calculation and results

3.1 Details of the calculation

The leading coefficient C0 is just the perturbative VEV of the correlator eq. (2.13)

(Q2)2C0(q) = 〈0|i

∫

d4x eiqxT{[Õ1](x)[Õ1](0)}|0〉

∣
∣
∣
∣
pert

(3.1)

which has been computed up to order α2
s (three loops). In Figure (2) some sample Feynman

diagrams contributing to this calculation are shown. The operators ÕB1 and ∂µJ
B µ
5 play the

roles of external currents. The Feynman diagrams have been produced with the program

QGRAF [22]. As all diagrams in this problem are propagator-like the relevant integrals

can be computed with the FORM package MINCER [23–25]. For the colour part of the

diagrams the FORM package COLOR [26] has been used.

In order to compute the coefficient C1(Q2) the method of projectors [27, 28] has been

applied, which allows to express coefficient functions for any OPE of two operators in

terms of massless propagator type diagrams only. The method is based the fact that in

dimensional regularization every massless tadpole-like Feynman integral is set to zero.

We apply a projector to both sides of (1.3) which sets every operator on the rhs to zero

8γGG̃ and γsJ can be found in [20, 21] at three-loop level. All renormalization constants and anomalous di-

mensions are available at http://www-ttp.particle.uni-karlsruhe.de/Progdata/ttp13/ttp13-003/
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except for OB1 :

P{Xt(q)} =
∑

i

(Q2)
4−dim(Oi)

2 C
B,(r)
i (Q2) P{OBi } (3.2)

with P{OB1 } = 1 and P{OBi6=1} = 0. This is done in the same way as described in [2]

leading to

C1,B(Q2) = Z2
GG̃
C

(ÕB1 ,Õ
B
1 )

1,B (Q2) + 2ZGG̃ZGJC
(ÕB1 ,∂νJ

B ν
5 )

1,B (Q2) + Z2
GJC

(∂νJB ν5 ,∂νJ
B ν
5 )

1,B (Q2)

(3.3)

with

C
(OBαO

B
β

)

1,B (Q2) =
δab

ng

gµ1µ2

(D − 1)

1

D

∂

∂k1
·
∂

∂k2














k1 k2

gB gB

q

µ2µ1

a b

OBα OBβ













∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
ki=0

, (3.4)

where the blue circle represents the the sum of all (bare) Feynman diagrams which become

1PI after formal gluing of the two external lines representing the operators on the lhs of

the OPE.

ÕB1 ÕB1
q

+ + + + . . .

Figure 3. Diagrams for the calculation of C
(ÕB

1
,ÕB

1
)

1,B .

∂νJ
B ν
5 ÕB1

q

+ + . . .

Figure 4. Diagrams for the calculation of C
(ÕB

1
,∂νJ

B ν

5
)

1,B .

Table (1) shows the number of diagrams generated for the different contributions to C0

and C1 All results are given in the MS scheme with as = αs
π

, αs = g2s
4π and the abbreviation

lµq = ln
(
µ2

Q2

)

where µ is the MS renormalization scale. They can be retrieved from

http://www-ttp.particle.uni-karlsruhe.de/Progdata/ttp13/ttp13-003/
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∂νJ
B ν
5 ∂νJ

B ν
5

q q

+ + . . .

Figure 5. Diagrams for the calculation of C
(∂νJ

B ν

5
,∂νJ

B ν

5
)

1,B .

Correlator 0 loop 1 loop 2 loop 3 loop

〈0|ÕB1 (x)ÕB1 (0)|0〉pert 0 1 12 215

〈0|ÕB1 (x)∂νJ
B ν
5 (0)|0〉pert 0 0 1

〈0|∂νJ
B ν
5 (x)∂νJ

B ν
5 (0)|0〉pert 0 1

P1(ÕB1 (x)ÕB1 (0)) 2 75 2567 94964

P1(ÕB1 (x)∂νJ
B ν
5 (0)) 0 8 345

P1(∂νJ
B ν
5 (x)∂νJ

B ν
5 (0)) 0 8

Table 1. Number of diagrams needed for C0 and C1

The gauge group factors are defined in the usual way: CF and CA are the quadratic Casimir

operators of the quark and the adjoint representation of the corresponding Lie algebra, dR
is the dimension of the quark representation, ng is the number of gluons (dimension of the

adjoint representation), TF is defined so that TF δ
ab = Tr

(

T aT b
)

is the trace of two group

generators of the quark representation.9 For QCD (colour gauge group SU(3)) we have

CF = 4/3 , CA = 3 , TF = 1/2 and dR = 3. By nf we denote the number of active quark

flavours.

3.2 Results

As we have seen from (2.13) contact terms in C0 are possible and it turns out that they

appear starting from one loop. Because of these contact terms an unambiguous result

for C0 can only be given up to local (that is q-independent) contributions. To avoid the

9For an SU(N) gauge group these are dR = N , CA = 2TFN and CF = TF
(
N − 1

N

)
.
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ambiguity the Q2-derivative is presented:

Q2 d

dQ2
C0 =

ng
π2

[

−1 + as

(

−
97

12
CA +

7

3
nfTF

)

+ aslµq

(

−
11

6
CA +

2

3
nfTF

)

+a2s

(

−
51959

864
C2
A +

107

12
nfTFCF +

3793

108
nfCATF −

251

54
n2
fT

2
F

+
55

8
ζ3C

2
A − 3ζ3nfTFCF +

1

2
ζ3nfCATF

)

+a2s lµq

(

−
1135

48
C2
A + 2nfTFCF +

46

3
nfCATF −

7

3
n2
fT

2
F

)

+a2s l
2
µq

(

−
121

48
C2
A +

11

6
nfCATF −

1

3
n2
fT

2
F

)]

.

(3.5)

This result has been derived before [1] which serves as a nice check for the setup. As

discussed above the coefficient C1 is unambiguous and is therefore given in full:

C1 =64

{

1 + as

(
157

36
CA −

5

9
nfTF +

11

12
lµqCA −

1

3
lµqnfTF

)

+a2s

(
25945

1296
C2
A −

11

2
nfTFCF −

4355

648
nfCATF +

25

81
n2
fT

2
F +

1727

216
lµqC

2
A

−
3

2
lµqnfTFCF −

106

27
lµqnfCATF +

10

27
lµqn

2
fT

2
F +

121

144
l2µqC

2
A −

11

18
l2µqnfCATF

+
1

9
l2µqn

2
fT

2
F −

33

8
ζ3C

2
A + 3ζ3nfTFCF −

3

2
ζ3nfCATF

)

+a3s

(
19360399

186624
C3
A +

461

144
nfTFC

2
F −

614501

10368
nfCATFCF

−
1857805

31104
nfC

2
ATF +

28981

2592
n2
fT

2
FCF +

126415

15552
n2
fCAT

2
F −

125

729
n3
fT

3
F

+
594247

10368
lµqC

3
A +

35

32
lµqnfTFC

2
F −

1623

64
lµqnfCATFCF −

68935

1728
lµqnfC

2
ATF

+
105

16
lµqn

2
fT

2
FCF +

6661

864
lµqn

2
fCAT

2
F −

25

81
lµqn

3
fT

3
F +

9779

864
l2µqC

3
A

−
275

96
l2µqnfCATFCF −

2795

288
l2µqnfC

2
ATF +

25

24
l2µqn

2
fT

2
FCF +

61

24
l2µqn

2
fCAT

2
F

−
5

27
l2µqn

3
fT

3
F +

1331

1728
l3µqC

3
A −

121

144
l3µqnfC

2
ATF +

11

36
l3µqn

2
fCAT

2
F

−
1

27
l3µqn

3
fT

3
F +

55

8
ζ5C

3
A − 15ζ5nfTFC

2
F +

15

2
ζ5nfCATFCF + 5ζ5nfC

2
ATF

−
6893

144
ζ3C

3
A +

145

12
ζ3nfTFC

2
F +

1291

48
ζ3nfCATFCF −

349

144
ζ3nfC

2
ATF

−
13

2
ζ3n

2
fT

2
FCF +

121

36
ζ3n

2
fCAT

2
F −

363

32
ζ3lµqC

3
A +

33

4
ζ3lµqnfCATFCF

−3ζ3lµqn
2
fT

2
FCF +

3

2
ζ3lµqn

2
fCAT

2
F

)}

.

(3.6)

The cancellation of all divergences is a strong check for this result. Another important

check is the independence of the gauge parameter ξ as all calculations have been done for

an arbitrary Rξ gauge. The leading term of (3.6) is in agreement with [12] and the part

– 10 –



∝ aslµq has been derived in [17] if we set the colour factors to their QCD values.10 For

QCD colour factors we get

C1 =64

{

1 + as

(
157

12
−

5

18
nf +

11

4
lµq −

1

6
lµqnf

)

+a2s

(
25945

144
−

5939

432
nf +

25

324
n2
f +

1727

24
lµq

−
62

9
lµqnf +

5

54
lµqn

2
f +

121

16
l2µq

−
11

12
l2µqnf +

1

36
l2µqn

2
f −

297

8
ζ3 −

1

4
ζ3nf

)

+a3s

(
19360399

6912
−

7972411

20736
nf +

611093

62208
n2
f −

125

5832
n3
f

+
594247

384
lµq −

264113

1152
lµqnf +

9181

1152
lµqn

2
f −

25

648
lµqn

3
f

+
9779

32
l2µq −

9485

192
l2µqnf +

649

288
l2µqn

2
f −

5

216
l2µqn

3
f

+
1331

64
l3µq −

121

32
l3µqnf +

11

48
l3µqn

2
f −

1

216
l3µqn

3
f

+
1485

8
ζ5 +

145

6
ζ5nf −

20679

16
ζ3 +

46333

864
ζ3nf

+
17

48
ζ3n

2
f −

9801

32
ζ3lµq +

33

2
ζ3lµqnf +

1

8
ζ3lµqn

2
f

)}

.

(3.7)

A nice consistency check for these results is to perform an OPE of the correlator

i

∫

d4x eiqxT{[∂µJ
µ
5 ](x)[∂µJ

µ
5 ](0)} = (Q2)2CJJ0 + CJJ1 [O1] + . . . (3.8)

and then see that (2.6) is fulfilled (except for possible contact terms):

Q2 d

dQ2
CJJ0 =

(
αs
4πnfTF

)2
Q2 d
dQ2 C0, (3.9)

CJJ1 =
(
αs
4πnfTF

)2
C1. (3.10)

Indeed we find

Q2 d

dQ2
CJJ0 =

ng
π2

[

−
a2s
16
n2
fT

2
F

]

(3.11)

and

CJJ1 =4a2sn
2
fT

2
F

{

1 + as

(
157

36
CA −

5

9
nfTF +

11

12
lµqCA −

1

3
lµqnfTF

)}

(3.12)

satisfying (3.9) and (3.10) up to the calculated accuracy of O(a2s) and O(a3s) respectively.

10In [17], however, the leading term differs from this result and the one derived in [12] by a minus sign

and the non-logarithmic term of O(as) is also missing there.
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3.3 RGI operators and Wilson coefficients

Note that the coefficients (3.5) and (3.6) are not Renormalization Group invariant (RGI).

In this section we take RGI versions of all operators and construct RGI Wilson coefficients.

For an operator that is renormalized multiplicatively like ∂µJ
µ
5 in (2.5) constructing a finite

and RGI operator is straightforward (see e.g. [29]). Because of

µ2 d

dµ2
[∂µJ

µ
5 ] = γsJ(as(µ))[∂µJ

µ
5 ] (3.13)

we can define

[∂µJ
µ
5 ]RGI := exp







−

as(µ)∫
γsJ(a)

a β(a)
da







︸ ︷︷ ︸

=:E2(as)

[∂µJ
µ
5 ] (3.14)

which fulfills µ2 d
dµ2 [∂µJ

µ
5 ]RGI = 0. A remarkable feature of the operator (3.14) is its renor-

malization scheme independence (see also [30]). If we start with a different renormalized

operator

[∂µJ
µ
5 ]′ := Z(as)[∂µJ

µ
5 ] (3.15)

we get

γsJ
′(as) = γsJ(as) + µ2 d

dµ2
ln(Z(as)) (3.16)

which leads to

E′2(as) =
E2(as)

Z(as)
(3.17)

and therefore to the same RGI operator

[∂µJ
µ
5 ]RGI = E′2(as)[∂µJ

µ
5 ]′ = E2(as)[∂µJ

µ
5 ]. (3.18)

If we apply the same procedure to the non-diagonal operator Õ1 we get an RG variant

operator

[Õ1]RGV := exp







−

as(µ)∫
γGG̃(a)

a β(a)
da







︸ ︷︷ ︸

=:E1(as)

[Õ1] (3.19)

where E1(as) = as because of (2.9). Taking the derivative wrt the renormalization scale

we find

µ2 d

dµ2
[Õ1]RGV = E1(as)γGJ (as)[∂µJ

µ
5 ] =

E1(as)

E2(as)
γGJ(as)[∂µJ

µ
5 ]RGI (3.20)

which leads to the definition of the RGI operator

[Õ1]RGI :=[Õ1]RGV −

as(µ)∫
E1(a)

E2(a)
γGJ(a)

da

a β(a)
︸ ︷︷ ︸

=:asZ̃(as)

[∂µJ
µ
5 ]RGI

=as
{

ZGG̃(as)Õ
B
1 +

(

ZGJ(as)− E2(as)Z̃(as)Z
s
J(as)

)

∂µJ
B µ
5

}

(3.21)
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fulfilling µ2 d
dµ2 [Õ1]RGI = 0. In similar way as for (3.14) it can be shown that (3.21) is

invariant under transformations [Õ1]→ [Õ1]′ = Z1(as)[Õ1]. Even if we allow for redefinitons

of the kind [Õ1]→ [Õ1]′ = Z1(as)[Õ1] + Z2(as)[∂µJ
µ
5 ] the RGI operator derived with this

method is the same:

[Õ1]RGV′ = [Õ1]RGV +
E1(as)Z2(as)

E2(as)Z1(as)
[∂µJ

µ
5 ]RGI (3.22)

⇒ µ2 d

dµ2
[Õ1]RGV′ =

[
E1(as)

E2(as)
γGJ(as) + µ2 d

dµ2

(
E1(as)Z2(as)

E2(as)Z1(as)

)]

[∂µJ
µ
5 ]RGI (3.23)

⇒ [Õ1]RGI′ = [Õ1]RGV′ −











as(µ)∫
E1(a)

E2(a)
γGJ(a)

da

a β(a)




+
E1(as)Z2(as)

E2(as)Z1(as)






︸ ︷︷ ︸

=asZ̃′(as)

[∂µJ
µ
5 ]RGI

= [Õ1]RGV − asZ̃(as)[∂µJ
µ
5 ]RGI = [Õ1]RGI. (3.24)

The leading RGI Wilson coefficient

CRGI
0 (q) =

1

(Q2)2
〈0|XRGI

t (q)|0〉
∣
∣
∣
pert

(3.25)

in an OPE of the RGI correlator

XRGI
t (q) := i

∫

d4x eiqxT{[Õ1]RGI(x)[Õ1]RGI(0)} (3.26)

can now be calculated from the same three bare correlators as C0 and the result for its

Q2-derivative is

Q2 d

dQ2
CRGI

0 =
a2sng
π2

[

−1 + as

(

−
97

12
CA +

7

3
nfTF −

11

6
lµqCA +

2

3
lµqnfTF

)

+
as

(11CA − 4nfTF )
18nfTFCF + a2s

(

−
51959

864
C2
A +

107

12
nfTFCF

+
3793

108
nfCATF −

251

54
n2
fT

2
F −

1135

48
lµqC

2
A + 2lµqnfTFCF

+
46

3
lµqnfCATF −

7

3
lµqn

2
fT

2
F −

121

48
l2µqC

2
A +

11

6
l2µqnfCATF

−
1

3
l2µqn

2
fT

2
F +

55

8
ζ3C

2
A − 3ζ3nfTFCF +

1

2
ζ3nfCATF

)

+
a2s

(11CA − 4nfTF )

(
291

2
nfCATFCF − 42n2

fT
2
FCF

+33lµqnfCATFCF − 12lµqn
2
fT

2
FCF

)

+
a2s

(11CA − 4nfTF )2

(

−
297

4
nfCATFC

2
F +

475

4
nfC

2
ATFCF

−108n2
fT

2
FC

2
F − 37n2

fCAT
2
FCF + 4n3

fT
3
FCF

)]

.

(3.27)

An explicit calculation confirms that indeed µ2 d
dµ2

(

Q2 d
dQ2 C

RGI
0

)

= 0.
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As explained in [2] a finite and RGI version of O1 can be defined as

ORGI
1 := β̂(as) [O1], β̂(as) :=

−β(as)

β0
= as



1 +
∑

i≥1

βi
β0
ais



 . (3.28)

The RGI Wilson coefficient

CRGI
1 (Q2) =

a2s

β̂(as)

{

Z2
GG̃
C

(ÕB1 ,Õ
B
1 )

1,B (Q2)

+(2ZGG̃ZGJ − 2E2ZGG̃Z
s
J Z̃)C

(ÕB1 ,∂νJ
B ν
5 )

1,B (Q2)

+ (Z2
GJ − 2E2ZGJZ

s
J Z̃ + (E2Z

s
J Z̃)2)C

(∂νJB ν5 ,∂νJ
B ν
5 )

1,B (Q2)

}

(3.29)

which satisfies

CRGI
1 [O1]RGI = C1[O1] (3.30)

in the OPE of (3.26). The result is

CRGI
1 =64as

{

1 + as

(
157

36
CA −

5

9
nfTF +

11

12
lµqCA −

1

3
lµqnfTF

)

(3.31)

+
as

(11CA − 4nfTF )

(

−
17

2
C2
A − 15nfTFCF + 5nfCATF

)

+a2s

(
25945

1296
C2
A −

11

2
nfTFCF −

4355

648
nfCATF +

25

81
n2
fT

2
F +

1727

216
lµqC

2
A

−
3

2
lµqnfTFCF −

106

27
lµqnfCATF +

10

27
lµqn

2
fT

2
F +

121

144
l2µqC

2
A −

11

18
l2µqnfCATF

+
1

9
l2µqn

2
fT

2
F −

33

8
ζ3C

2
A + 3ζ3nfTFCF −

3

2
ζ3nfCATF

)

+
a2s

(11CA − 4nfTF )

(

−
2669

72
C3
A −

785

12
nfCATFCF +

955

36
nfC

2
ATF

+
25

3
n2
fT

2
FCF −

25

9
n2
fCAT

2
F −

187

24
lµqC

3
A −

55

4
lµqnfCATFCF +

89

12
lµqnfC

2
ATF

+5lµqn
2
fT

2
FCF −

5

3
lµqn

2
fCAT

2
F

)

+
a2s

(11CA − 4nfTF )2

(

−
10619

288
C4
A

+
561

8
nfCATFC

2
F +

1451

48
nfC

2
ATFCF +

3013

48
nfC

3
ATF +

129

2
n2
fT

2
FC

2
F

−
301

6
n2
fCAT

2
FCF −

211

8
n2
fC

2
AT

2
F −

1

3
n3
fT

3
FCF +

79

18
n3
fCAT

3
F

)

+a3s

(
19360399

186624
C3
A +

461

144
nfTFC

2
F −

614501

10368
nfCATFCF

−
1857805

31104
nfC

2
ATF +

28981

2592
n2
fT

2
FCF +

126415

15552
n2
fCAT

2
F −

125

729
n3
fT

3
F

+
594247

10368
lµqC

3
A +

35

32
lµqnfTFC

2
F −

1623

64
lµqnfCATFCF −

68935

1728
lµqnfC

2
ATF

+
105

16
lµqn

2
fT

2
FCF +

6661

864
lµqn

2
fCAT

2
F −

25

81
lµqn

3
fT

3
F +

9779

864
l2µqC

3
A

−
275

96
l2µqnfCATFCF −

2795

288
l2µqnfC

2
ATF +

25

24
l2µqn

2
fT

2
FCF +

61

24
l2µqn

2
fCAT

2
F
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−
5

27
l2µqn

3
fT

3
F +

1331

1728
l3µqC

3
A −

121

144
l3µqnfC

2
ATF +

11

36
l3µqn

2
fCAT

2
F

−
1

27
l3µqn

3
fT

3
F +

55

8
ζ5C

3
A − 15ζ5nfTFC

2
F +

15

2
ζ5nfCATFCF + 5ζ5nfC

2
ATF

−
6893

144
ζ3C

3
A +

145

12
ζ3nfTFC

2
F +

1291

48
ζ3nfCATFCF −

349

144
ζ3nfC

2
ATF

−
13

2
ζ3n

2
fT

2
FCF +

121

36
ζ3n

2
fCAT

2
F −

363

32
ζ3lµqC

3
A +

33

4
ζ3lµqnfCATFCF

−3ζ3lµqn
2
fT

2
FCF +

3

2
ζ3lµqn

2
fCAT

2
F

)

+
a3s

(11CA − 4nfTF )

(

−
441065

2592
C4
A

−
109529

432
nfC

2
ATFCF +

1415

9
nfC

3
ATF +

165

2
n2
fT

2
FC

2
F +

15835

216
n2
fCAT

2
FCF

−
7825

216
n2
fC

2
AT

2
F −

125

27
n3
fT

3
FCF +

125

81
n3
fCAT

3
F −

29359

432
lµqC

4
A

−
7717

72
lµqnfC

2
ATFCF +

5281

72
lµqnfC

3
ATF +

45

2
lµqn

2
fT

2
FC

2
F +

925

18
lµqn

2
fCAT

2
FCF

−
205

9
lµqn

2
fC

2
AT

2
F −

50

9
lµqn

3
fT

3
FCF +

50

27
lµqn

3
fCAT

3
F −

2057

288
l2µqC

4
A

−
605

48
l2µqnfC

2
ATFCF +

451

48
l2µqnfC

3
ATF +

55

6
l2µqn

2
fCAT

2
FCF − 4l2µqn

2
fC

2
AT

2
F

−
5

3
l2µqn

3
fT

3
FCF +

5

9
l2µqn

3
fCAT

3
F +

561

16
ζ3C

4
A +

291

8
ζ3nfC

2
ATFCF

−
63

8
ζ3nfC

3
ATF − 45ζ3n

2
fT

2
FC

2
F +

75

2
ζ3n

2
fCAT

2
FCF −

15

2
ζ3n

2
fC

2
AT

2
F

)

+
a3s

(11CA − 4nfTF )2

(

−
1667183

10368
C5
A +

29359

96
nfC

2
ATFC

2
F +

227807

1728
nfC

3
ATFCF

+
1525313

5184
nfC

4
ATF +

727

3
n2
fCAT

2
FC

2
F −

33923

144
n2
fC

2
AT

2
FCF −

129511

864
n2
fC

3
AT

2
F

−
215

6
n3
fT

3
FC

2
F +

317

12
n3
fCAT

3
FCF +

10949

324
n3
fC

2
AT

3
F +

5

27
n4
fT

4
FCF −

395

162
n4
fCAT

4
F

−
116809

3456
lµqC

5
A +

2057

32
lµqnfC

2
ATFC

2
F +

15961

576
lµqnfC

3
ATFCF +

120667

1728
lµqnfC

4
ATF

+
143

4
lµqn

2
fCAT

2
FC

2
F −

897

16
lµqn

2
fC

2
AT

2
FCF −

12989

288
lµqn

2
fC

3
AT

2
F −

43

2
lµqn

3
fT

3
FC

2
F

+
197

12
lµqn

3
fCAT

3
FCF +

346

27
lµqn

3
fC

2
AT

3
F +

1

9
lµqn

4
fT

4
FCF −

79

54
lµqn

4
fCAT

4
F

)

+
a3s

(11CA − 4nfTF )3

(

−
7623

16
nfC

2
ATFC

3
F +

22121

32
nfC

3
ATFC

2
F +

31207

32
nfC

4
ATFCF

−
2079

4
n2
fCAT

2
FC

3
F +

13533

8
n2
fC

2
AT

2
FC

2
F −

29647

12
n2
fC

3
AT

2
FCF − 45n3

fT
3
FC

3
F

−
1911

2
n3
fCAT

3
FC

2
F + 1443n3

fC
2
AT

3
FCF + 178n4

fT
4
FC

2
F − 384n4

fCAT
4
FCF +

104

3
n5
fT

5
FCF

−2178ζ3n
2
fC

2
AT

2
FC

2
F + 2178ζ3n

2
fC

3
AT

2
FCF + 1584ζ3n

3
fCAT

3
FC

2
F − 1584ζ3n

3
fC

2
AT

3
FCF

−288ζ3n
4
fT

4
FC

2
F + 288ζ3n

4
fCAT

4
FCF

)}

.

Again an explicit calculation confirms that indeed µ2 d
dµ2 C

RGI
1 = 0. This result can now

be used to obtain the logarithmic pieces of Q2 d
dQ2C

RGI
0 and CRGI

1 at four-loop level. If a
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generic RGI quantitiy has the structure

QRGI = as(µ)A1 + as(µ)
2(A2 + lµqB2) + as(µ)

3(A3 + lµqB3 + l2µqC3)

+ as(µ)
4(A4 + lµqB4 + l2µqC4 + l3µqD4)

+ as(µ)
5(A5 + lµqB5 + l2µqC5 + l3µqD5 + l4µqE5) +O(a6s)

(3.32)

with scale independent coefficients (Ai, Bi, . . . ) the requirement µ2 d
dµ2Q

RGI !
= 0 leads to

the conditions

B2 = A1β0,

C3 = B2β0, B3 = A1β1 + 2A2β0,

D4 = C3β0, C4 =
1

2
(3B3β0 + 2B2β1) , B4 = A1β2 + 2A2β1 + 3A3β0

which in the cases of Q2 d
dQ2C

RGI
0 and CRGI

1 can be used as checks and

E5 = D4β0,

D5 =
1

3
(4C4β0 + 3C3β1) ,

C5 =
1

2
(2B2β2 + 3B3β1 + 4B4β0) ,

B5 = A1β3 + 2A2β2 + 3A3β1 + 4A4β0.

Using the four-loop β-function11 of QCD [37, 38] the following four-loop contributions (for

QCD colour factors) are derived:

Q2 d

dQ2
CRGI, 4loop

0 =
a5sng
π2

{(

n3
f

54
−

11n2
f

12
+

121nf
8
−

1331

16

)

l3µq

+

(

7n3
f

36
−

1783n2
f

144
+

21647nf
96

−
19569

16

)

l2µq

+
1

(33 − 2nf)2

(

251n5
f

81
+

10n4
fζ3

3
−

147169n4
f

432
− 330n3

fζ3

+
108663n3

f

8
+ 10890n2

f ζ3 −
48109321n2

f

192
−

299475nf ζ3
2

+
138470387nf

64
+

5929605ζ3
8

−
450379545

64

)

lµq + const.

}

,

(3.33)

11The one-loop, two-loop and three-loop results are known from [21, 31–36].
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CRGI, 4loop
1 = 64 a5s

{(

n4
f

1296
−

11n3
f

216
+

121n2
f

96
−

1331nf
96

+
14641

256

)

l4µq

+

(

5n4
f

972
−

1595n3
f

2592
+

4355n2
f

216
−

293975nf
1152

+
424105

384

)

l3µq

+

(

25n4
f

1944
−
n3
fζ3

24
−

6937n3
f

2304
−

77n2
fζ3

16
+

1812625n2
f

13824

+
6171nfζ3

32
−

954133nf
512

−
107811ζ3

64
+

12658057

1536

)

l2µq

+
1

(33 − 2nf)2

(

125n6
f

2187
−

17n5
fζ3

18
−

457613n5
f

15552
−

4237n4
fζ3

54

−
580n4

fζ5

9
+

13206877n4
f

5184
+

38583n3
f ζ3

4
+ 2695n3

fζ5

−
905734235n3

f

10368
−

1172479n2
f ζ3

4
−

56265n2
f ζ5

2
+

6551159345n2
f

4608

+
113749075nf ζ3

32
−

459195nf ζ5
4

−
16816549087nf

1536

−
486694791ζ3

32
+

17788815ζ5
8

+
48864828943

1536

)

lµq + const.

}

(3.34)

For completeness we also give the RGI Wilson coefficients for the correlator

i

∫

d4x eiqxT{[∂µJ
µ
5 ]RGI(x)[∂µJ

µ
5 ]RGI(0)} = (Q2)2CJJ,RGI

0 + CJJ,RGI
1 [O1]RGI + . . . . (3.35)

The results read

Q2 d

dQ2
CJJ,RGI

0 =
ng
π2

[

−
a2s
16
n2
fT

2
F

]

(3.36)

and

CJJ,RGI
1 = 4asn

2
fT

2
F

{

1 + as

(
157

36
CA −

5

9
nfTF +

11

12
lµqCA −

1

3
lµqnfTF

)

+
as

(11CA − 4nfTF )

(

−
17

2
C2
A − 15nfTFCF + 5nfCATF

)}

.
(3.37)

The four-loop extension of these results with QCD colour factors are given by

Q2 d

dQ2
CJJ,RGI, 4loop

0 =
a3sng
π2

[

lµq
n2
f(−33 + 2nf)

384
+ const.

]

(3.38)

and

CJJ,RGI, 4loop
1 = 4a3s

{

lµq
1

864
n2
f(14166 − 1533nf + 20n2

f)

+l2µq

(

121n2
f

64
−

11n3
f

48
+
n4
f

144

)

+ const.

}

.

(3.39)
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3.4 Numerics

We now consider the two cases nf = 0 (pure gluodynamics) and nf = 3 which are most

important for applications. Furthermore we set Q2 = µ2, i.e. lµq = 0. The numerical

results for C1 and CRGI
1 are then

C1(Q2 = µ2, nf = 0) = 64{1 + 13.0833as + 135.547a2s + 1439.88a3s}, (3.40)

C1(Q2 = µ2, nf = 3) = 64{1 + 12.25as + 94.0971a2s + 646.69a3s}, (3.41)

CRGI
1 (Q2 = µ2, nf = 0) = 64as{1 + 10.7652as + 102.475a2s + 1089.78a3s}, (3.42)

CRGI
1 (Q2 = µ2, nf = 3) = 64as{1 + 9.13889as + 55.9532a2s + 361.615a3s}. (3.43)

In order to estimate the numerical significance of the higher order corrections we evaluate

C1 at µ =MZ , µ = 3.5 GeV and µ = 2 GeV with

α(nf=5)
s (MZ) ≈ 0.118 , α(nf=3)

s (3.5GeV) ≈ 0.31 and α(nf=3)
s (2GeV) ≈ 0.47 [39] (3.44)

for the cases nf = 5 and nf = 3 respectively.

C1(Q2 = µ2 =M2
Z , nf = 5) = 64 (0.0116

︸ ︷︷ ︸

3 loop

+ 0.0949
︸ ︷︷ ︸

2 loop

+ 0.4393
︸ ︷︷ ︸

1 loop

+1), (3.45)

C1(Q2 = µ2 = (3.5 GeV)2, nf = 3) = 64 (0.6213
︸ ︷︷ ︸

3 loop

+ 0.9162
︸ ︷︷ ︸

2 loop

+ 1.2088
︸ ︷︷ ︸

1 loop

+1), (3.46)

C1(Q2 = µ2 = (2 GeV)2, nf = 3) = 64 (2.1654
︸ ︷︷ ︸

3 loop

+ 2.1061
︸ ︷︷ ︸

2 loop

+ 1.8327
︸ ︷︷ ︸

1 loop

+1). (3.47)

At the scale µ2 = MZ the two and three-loop contributions are about 9% and 1% wrt

tree-level, whereas at a scale µ2 = (2 GeV)2 these contributions become so large that

perturbation theory stops to work (as is expected). From this evaluation we can assume

that in the case of Q2 = µ2 the Wilson coefficient to this accuracy in perturbation theory

is a valid approximation down to a scale of about µ2 = (3.5 GeV)2.

4 Discussion and Conclusions

I have presented higher order corrections for the coefficient function C1 of the OPE of the

correlator Xt of two pseudoscalar gluonium operators. This result extends the previously

known accuracy by two loops. It is also worth of notice that no contact terms can appear in

this coefficient due to the relation between the operator Õ1 and the Chern-Simons current,

a fact that has been explicitly checked and verified up to O(α3
s ) by this calculation. The

OPE of the correlator of two operators ∂µJ
µ
5 which mixes with Õ1 under renormalization

has been performed as well and the corresponding coefficients CJJ0 and CJJ1 have been given

at three-loop level. In addition the construction of RGI operators and Wilson coefficients

has been discussed, the coefficients CRGI
0 , CRGI

1 , CJJ,RGI
0 and CJJ,RGI

1 have been presented

and their logarithmic part has been derived at four-loop level from the principle of scale

invariance. Finally, a numerical evaluation shows the validity of the OPE for the important

case nf = 3 and the choice Q2 = µ2 down to a scale µ2 = (3.5 GeV)2.
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