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Abstract

We evaluate at next-to-next-to-leading order (NNLO) the QCD corrections to the
charm contribution from penguin diagrams to the decay K

+ → π
+
νν̄. A NNLO

calculation is already available in the literature [1]. We provide an independent
check of the results of non-anomalous and anomalous diagrams. We use Renormal-
ization Group improvement and an effective theory framework to resum the large
logarithms that appear. In the case of the non-anomalous diagrams, our results for
the decoupling coefficients and anomalous dimensions, as well as the final numerical
result, are in agreement with those of Ref. [1]. In the anomalous case, analytical
and numerical disagreements are observed.

1 Introduction

The rare decay mode K+ → π+νν̄, along with KL → π0νν̄, plays an important role
in flavor physics. It probes the quantum structure of flavor dynamics in the Standard
Model (SM) [1–8] or its extensions [9–13] while remaining theoretically clean. A recent
review can be found in Ref. [14]. The cleanness of this decay is the main reason behind
its importance, and it is due to the following:

• It being a semi-leptonic process, the relevant hadronic operator is just a current
operator whose matrix element can be extracted from the leading decay K+ →
π0e+ν, including isospin-breaking corrections [15].

• It is short-distance dominated. Long-distance contributions turn out to be small
[16], and in principle calculable by means of lattice QCD [17].
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Figure 1: Box- and penguin-type contributions to K+ → π+νν̄.

As a consequence, this decay can be reliably computed with available field theoretical
methods. Thus, the SM decay rate K+ → π+νν̄, alone or together with KL → π0νν̄,
allows for clean determinations of Cabibbo-Kobayashi-Maskawa (CKM) matrix elements.
These decays are also very suitable for the search for new physics: a comparison of the
determinations of various parameters from studies of CP violation in B decays with the
determinations from the K → νν̄ decays would provide with a clean signal of physics
beyond the SM if substantial deviations were found.

In the SM, the K+ → π+νν̄ decay is mediated by box- and penguin-type diagrams,
shown in Figure 1. The leading, low-energy hamiltonian for this process can be written
as [7,8]

Heff =
GF√

2

α

2π sin2 θW

∑

l=e,µ,τ

∑

q=t,c,u

V ∗

qsVqdX(xq) s̄γ
µ(1 − γ5)d⊗ ν̄lγµ(1 − γ5)νl . (1)

Here GF , α, and sin2 θW denote the Fermi coupling, the electromagnetic coupling, and the
weak mixing angle, respectively. Vij are CKM matrix elements and xq = m2

q/M
2
W . The

contributions mediated by the exchange of virtual top quarks, encoded in the function
X(xt), can be calculated entirely within ordinary perturbation theory. This function is
known through next-to-leading order (NLO) [5,6], which offers sufficient accuracy. The
contributions involving only the light u, d, and s quarks were computed in Ref. [16]
using Chiral Perturbation Theory, along with those of subleading, dimension-8 operators.
When considering the charm quark contributions given by X(xc), one takes the u, d, and
s quarks to be massless. This leads to a simplification due to the unitarity of the CKM
matrix. Unitarity implies that

V ∗

ts Vtd + V ∗

csVcd + V ∗

usVud = 0 . (2)

Due to its small size, V ∗

ts Vtd can be neglected here, and thus using Eq. (2) on Eq. (1) and
expanding on xc leads to

V ∗

csVcdX(xc) + V ∗

usVudX(xu) ≃ V ∗

csVcd
(
X(xc) −X(0)

)
= V ∗

csVcd
(
X ′(0) · xc + . . .

)
, (3)

where higher powers in xc are neglected. This means that in the diagrams of Figure 1, and
in their QCD corrections, one need only keep terms proportional tom2

c . Perturbative QCD
effects lead to large logarithms of the form L = ln(µ2

c/µ
2
W ), which need to be resummed
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Figure 2: Two anomalous penguin contributions to K+ → π+νν̄.
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Figure 3: The one-loop top quark contribution to the coupling of the Z boson to two and
three gluons. Diagrams obtained by the interchange of the external gluons are not shown.

using Renormalization Group (RG) equations and an effective theory framework. This
calculation was performed at O(αnsL

n+1) (LO) in Refs. [2–4]. A study at O(αnsL
n) (NLO)

was performed in Refs. [7,8], which was extended to O(αnsL
n−1) (NNLO) in Ref. [1].

The NLO calculation did not take into account the contributions from the anomalous
penguin diagrams, such as the ones shown in Figure 2. These diagrams were considered
in the NNLO calculation, but were not computed properly. A Chern-Simons operator
was introduced, which supposedly originated from integrating out the top quark in the
diagrams in Figure 3. However, these diagrams actually vanish in the large mt limit
[18,19], so the Wilson coefficient for the Chern-Simons operator vanishes as well, and this
operator would make no contribution.1

The goal of this paper is to reevaluate the penguin charm contributions to K+ →
π+νν̄, checking the results presented in Ref. [1]. In section 2 we briefly present our
renormalization scheme, determined by our definition of the axial-vector current and off-
diagonal renormalization. In section 3 we present our purely perturbative results for
the anomalous diagrams. In section 4 we perform the RG treatment of non-anomalous
diagrams, which pervades that of the anomalous ones. Then in sections 5 and 6 we treat
the anomalous diagrams involving a top and a bottom triangle, respectively. Finally, in
section 7 we present and discuss our numerical results and conclude in section 8.

1As this work was being finished, we learned that the authors of Ref. [1] had prepared an Erratum to
their original paper in which they recalculated the contribution of the anomalous penguin diagrams. We
discuss the Erratum in section 7.1
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2 Definition of the axial-vector current and off-diagonal

renormalization

We perform our calculations using dimensional regularization and the MS renormalizaton
scheme. Beyond this, our scheme is determined by our choice of renormalization for the
axial-vector current and off-diagonal corrections to the quark propagator.

2.1 The axial-vector current

In dimensional regularization special attention must be paid to the definition of γ5. When-
ever it appears in an open fermion line we can safely use its naive definition, but in closed
loops we use the original definition by ’t Hooft and Veltman [20],

γ5 = i
1

4!
ǫν1ν2ν3ν4γν1γν2γν3γν4 . (4)

The Levi-Civita ǫ tensor is unavoidably a four-dimensional object and thus is taken out-
side the R-operation where a D-dimensional object can be safely considered as a four-
dimensional one. The gamma matrices are taken as D-dimensional inside the R-operation.
With this definition γ5 no longer anticommutes with D-dimensional γµ. For this reason
we use the definition of the axial-vector current presented in Ref. [21],

Aq,0 =
1

2
ψq (γµγ5 − γ5γµ)ψq → i

1

3!
ǫµν1ν2ν3ψqγν1γν2γν3ψq . (5)

The renormalized current is defined as AqR = ξNS
I

(
ZNSAq0 + Zψ AS

0

)
, where AS =

∑
q A

q

[21]. The renormalization constant ZNS cancels divergences arising from non-anomalous
diagrams, whereas Zψ deals with anomalous ones, and thus begins at order α2

s. The
coefficient ξNS

I is a finite piece that is determined by requiring that the matrix elements
of the renormalized non-singlet axial-vector and vector vertices coincide,

ξNS
I 〈ψγµγ5T

aψ〉R = 〈ψγµT aψ〉Rγ5 , (6)

where T a is the generator of a flavor group. This effectively restores the anticommutativity
of the γ5 matrix for the non-singlet vertex, and so the standard Ward identities as well.
This also means that the non-singlet axial-vector current defined in this way has zero
anomalous dimension.

2.2 Off-diagonal renormalization

The W and φ bosons can lead to flavor-changing corrections to the quark propagator,
which in turn imply the appearance of reducible contributions to the penguin-type di-
agrams, such as the one in Figure 4. In order to avoid these diagrams, we choose to
renormalize the left-handed doublets in the following way [22–24],

(
u
d′

)0

L

= Z
1/2
1

(
u
d′

)R

L

,

(
c
s′

)0

L

= Z
1/2
2

(
c
s′

)R

L

, (7)
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Figure 4: An example of a reducible penguin-type diagram.

where d′ = d cos θW + s sin θW and s′ = −d sin θW + s cos θW . This leads to the following
off-diagonal counterterm in the lagrangian,

Lct =

[
sL

(
i/∂ + gst

aGa
µγ

µ +
gEW

cos θW
γµ
(
Id3 − sin2 θW ed

)
Zµ

)
dL + (s↔ d)

]

×(Z1 − Z2) sin θW cos θW , (8)

which contains the couplings to a gluon Ga
µ, with the strong coupling constant gs and

the SU(3) generator ta, and the coupling to a Z boson, with the electroweak coupling
constant gEW . Iq3 = (+1/2,−1/2) and eq = (+2/3,−1/3) are the electroweak isospin and
electric charge of up- and down-type quarks, respectively.

We set the value of (Z1 − Z2) by requiring the cancellation of off-diagonal self-energy
corrections,

s d

W

+

s d

+ s d = 0 ,

(9)
plus corrections in αs. This fixes also the off-diagonal gluon and Z-vertex counterterms.

In the case of non-anomalous penguin diagrams, only the Z-vertex counterterms, like
the ones shown in Figure 5, survive. By definition, reducible diagrams like the one in
Figure 4 are cancelled by the insertion of the off-diagonal propagator counterterm in the
external lines. Then we can have irreducible diagrams like the two shown in Figure 6.
However, because the factor i/∂ in the propagator counterterm kills the denominator of one
fermion propagator (and the factors of i introduce a sign), the sum of these two diagrams
is zero. In the non-anomalous case we always have the same number of diagrams involving
off-diagonal propagator or gluon counterterms, so they all cancel out against each other.
The irreducible counterterm diagrams in the anomalous case are shown in Figure 7. Here
the balance is broken, and one diagram with an off-diagonal gluon counterterm survives.
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Figure 6: Two irreducible diagrams involving off-diagonal counterterms.
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Figure 7: The counterterm diagrams for the anomalous case.

3 Perturbative results for anomalous diagrams

Since the anomalous diagrams where initially computed incorrectly in Ref. [1], we will
show their calculation in detail, and begin by the perturbative results from their dia-
grammatic calculations. We used the program qgraf [25] to generate all of the diagrams,
and the packages q2e and exp [26,27] to express them as a series of vertices and propa-
gators that can be read and evaluated by the FORM [28] package MATAD 3 [29].

For greater convenience when resumming logarithms later on, we will express the
results in terms of the operator Qν(µ), defined as

Qν(µ) =
m2
c(µ)

g2
s(µ)µ2ǫ

s̄γµ(1 − γ5)d , (10)
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and write the expression for the charm contribution to Heff as

Hc
eff =

GF√
2

α

2π sin2 θW

π2

2M2
W

V ∗

csVcdHν ⊗
∑

l=e,µ,τ

ν̄lγµ(1 − γ5)νl

=
g4
EW

128M4
W

V ∗

csVcdHν ⊗
∑

l=e,µ,τ

ν̄lγµ(1 − γ5)νl , (11)

where we have defined Hν = DQν(µ) and split up the global factor comming from the
external neutrinos. We factored out the factor π2/(2M2

W ) so that the coefficient D will
have the same normalization as the decoupling coefficients in Refs. [1,7]. The relation
between X, defined in Eq. (1), and D is simply X = π2/(2M2

W )m2
c/g

2
s D.

Because of the different logarithms that appear in them, we divide the coefficient D
in different contributions, D = DW,t +DW,b +Dφ. Here DW,t stands for diagrams with a
W boson and a top triangle, DW,b for diagrams with W and a bottom triangle, and Dφ

contains all anomalous diagrams with Goldstone bosons ( ℓµ/mX
= ln[µ2/m2

X(µ)] )

DW,t =
(
a(6)(µ)

)3

12CF

[(
1 − 4ℓµ/mt

)(
1 + ℓµ/MW

− ℓµ/mc

)]
, (12)

DW,b =
(
a(6)(µ)

)3

4CF

[
6ℓ2µ/MW

+ 6ℓ2µ/mb
− 12ℓµ/mb

ℓµ/mc
+ 9ℓµ/MW

+ 3ℓµ/mc
+ 36 + 2π2

]
,

(13)

Dφ = −
(
a(6)(µ)

)3

CF

[
6ℓ2µ/mt

+ 6ℓ2µ/MW
− 12ℓµ/mt

(3 + ℓµ/MW
) + 36ℓµ/MW

+ 75 + 2π2
]
,

(14)

D =
(
a(6)(µ)

)3

3CF

[
8ℓ2MW /mb

− 2ℓ2MW /mt
− 16ℓMW /mb

ℓMW /mc
− 4ℓMW /mt

(1 − 4ℓMW /mc
)

+ 2 π2 + 27
]
, (15)

with a(nf) = α
(nf )
s /(4π) being the QCD coupling constant in the effective nf flavor theory

and CF = 4/3. One can see by inspecting Eqs. (12)-(14) that the explicit ℓµ dependence
cancels separately in Dφ and the sum DW,t +DW,b.

As they are, the results from the diagrams involving the W boson are of little use
because of the large logarithms present in them, and an RG treatment is called for.
However, as we can see in (14) the Goldstone contribution only contains the W and top
quark scale, which are of similar size. We won’t treat this contribution when we proceed
with the RG improvement in the effective field theory language.

4 RG improvement: non-anomalous diagrams

Part of the goal of this paper is to check the results for non-anomalous penguin diagrams
from Ref. [1]. These diagrams are always present as subgraphs in the anomalous case. In
particular, we will need the Wilson coefficients and anomalous dimensions related to the
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Figure 8: Two non-anomalous penguin diagrams at NNLO.

decoupling of the MW scale up to NNLO, that is up to diagrams like the ones in Figure 8.
It is useful then to present first the full RG improvement of the non-anomalous case at
NNLO, and introduce the elements that we will need throughout.

All penguin diagrams originate from the Z current, where the Z coupling to a fermion
q is defined as

Qq
Z = vq V

q + aq A
q = 2

(
Iq3 − 2 eq sin2 θW

)
V q − 2 Iq3 A

q , (16)

with the vector and axial-vector current

V q = ψq γ
µ ψq and Aq = ψq γ

µγ5 ψq . (17)

Since for the vector current the anomalous diagrams vanish and we want to use some
results of the non-anomalous calculation later on, we look at the vector and axial-vector
current separately. In the non-anomalous diagrams only the Z coupling to the four lightest
quarks (d, u, s and c) is present, so it is convenient to define the non-anomalous current
as

ANA = −Ac − Au + As + Ad , (18)

which is the sum of all axial-vector parts of the Z current, the signs being determined by
the prefactor −2 Iq3 . In our renormalization scheme, the operators As and Ad only enter
in anomalous diagrams, to cancel the ones coming from Ac and Au. Since the axial-vector
current appears only on open fermion lines in non-anomalous diagrams, we could (and
did) use the naive definition of γ5 in their computation. Using the definition in Eq. (4)
leads in principle to different results: the difference between inserting one γ5 or the other
on a fermion line is of O(ǫ). If this line is part of a loop diagram with a pole 1/ǫ, as in the
penguin diagrams involving a Goldstone boson, the difference will turn finite. However,
since this difference stems from a residue, it will be local, and thus it can be cancelled
by adding a finite counterterm proportional to Qν . If one does this consistently at every
order the results with a naive γ5 or with ’t Hooft and Veltman’s γ5 can be made to agree.

We will now present the decoupling of the three heavy scales in our problem, mt, MW ,
and mb. Each decoupling will be assumed to take place at the appropriate scale µ close
to the heavy scale in particular, and we will present the RG evolution that can make this
possible afterwards.
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Figure 9: Leading order examples of a penguin-diagram (a) and a four-quark subdiagram
(b).

4.1 Decoupling at the top scale

The first scale to separate is that of the top quark, which in this case only enters through
gluon self-energy corrections, as in Figure 8. Since we neglect all power corrections in-
volving the top mass, this decoupling is trivial, as it is given solely by the decoupling
relations from nf = 6 to nf = 5 in all the elements involved in this calculation, namely a,
the masses, the gauge parameter ξ, and the wave functions. These relations can be found
in [30].

4.2 Decoupling at the W scale

Next one needs to consider the decoupling of the W boson. Let us therefore look at the
leading order penguin-diagram depicted in Figure 9a. When considering an expansion
of the diagram in terms of m2

c/M
2
W there are two distinct cases. The first one is when

the loop momentum going through the u(c) line is of the order of MW . Then the whole
diagram shrinks to a point and can be represented by the local operator Qν defined in
Eq. (10). The second case is when the loop momentum going through the u(c) line at
the Z vertex is of the order of mc, and MW -sized loop momenta run only through a
subdiagram containing the W line, like the one shown in Figure 9b. The decoupling of
the W in the subdiagram can be described by the effective Hamiltonian

HW,q
eff =

g2
EW

8M2
W

(C+Q
q
+ + C−Q

q
−) , (19)

with the definition of the effective operators (α and β are color indices)

Qq
± =

1

2

[(
s̄αγµ(1 − γ5)q

α
)(
q̄βγµ(1 − γ5)d

β
)
±
(
s̄αγµ(1 − γ5)q

β
)(
q̄βγµ(1 − γ5)d

α
)]
. (20)

The combination of color indices in the definition of Qq
± is chosen so that these operators

will not mix under renormalization. The value of the coefficients will be given later on.
After decoupling W in this subdiagram, the whole diagram is then represented by the
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bilocal operators

V± = −i
∫

d4x T
{ ∑

q=d,u,s,c

(
Qc

±
(x) −Qu

±
(x)
)
vq V

q(0)
}
, (21)

ANA
±

= −i
∫

d4x T
{(
Qc

±
(x) −Qu

±
(x)
)
ANA(0)

}
, (22)

for the vector and axial-vector current, respectively. The minus sign between Qc
±

and Qu
±

comes from the GIM mechanism discussed in Eq. (3).
Besides the operators Qq

± one must also consider a set of evanescent operators Qq
Ei

(and the corresponding bilocal operators). We take the definitions from Ref. [1] (modified
by a normalization factor), which we present in Appendix A. Evanescent operators vanish
at four dimensions, but yield non-zero contributions when inserted in loop diagrams with
poles in ǫ. We choose a renormalization scheme for them in which their matrix elements
vanish and they do not mix with physical operators [31]. The physical operators still mix
with them, though, so the evanescents contribute to the anomalous dimensions of Qq

±,
and, inserted into bilocal operators, to those of V± and ANA

±
.

Putting everything together, we describe the non-anomalous penguin-diagrams with
a vector and axial-vector current with the Hamiltonian

HNA
ν,eff = C+

[
V+ + ANA

+

]
+ C−

[
V− + ANA

−

]
+ CNA

ν Qν , (23)

Here we have omitted the normalization and neutrino factors, which are the same as the
ones multiplying Hν in Eq. (11). The coefficients in HNA

ν,eff are ( ℓµW /MW
= ln[µ2

W/M
2
W ] )

C+(µW ) = 1 + a(5)(µW )
[

11
3

+ 2 ℓµW /MW

]

+
(
a(5)(µW )

)2[
ℓ2µW /MW

(
13 − 2

3
nf
)

+ 5
18
ℓµW /MW

(159 − 8nf)

− 1
18

(55 + 24 ζ2)nf + 26 ζ2 + 21709
1800

]
, (24)

C−(µW ) = 1 − a(5)(µW )
[

22
3

+ 4 ℓµW /MW

]

+
(
a(5)(µW )

)2[
ℓ2µW /MW

(
− 14 + 4

3
nf
)

− 5
9
ℓµW /MW

(105 − 8nf)

+ 1
9
(55 + 24 ζ2)nf − 28 ζ2 − 92443

900

]
, (25)

CNA
ν (µW ) = a(5)(µW ) 8

[
ℓµW /MW

+ 2
]

+
(
a(5)(µW )

)2
16
3

[
12 ℓ2µW /MW

+ 34 ℓµW /MW
+ 24 ζ2 + 33

]

+
(
a(5)(µW )

)3 [
− 64

3
ℓ3µW /MW

(−24 + nf ) + ℓ2µW /MW

(
3408 − 1024

9
nf
)

− 16
9
ℓµW /MW

(
− 5270 − 1728 ζ2 + nf (161 + 72 ζ2) + 468 ζ3

)

− 416 ζ4 − 8896
3
ζ3 + 6816 ζ2 − 64

9
nf(49 + 32 ζ2 − 12 ζ3)

+ 7995148
675

]
. (26)
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The bilocal operators V± do not mix under the RG evolution with other operators and
their matrix elements vanish. Therefore, we don’t have to consider the vector current any
longer, its only effect being inside the decoupling constant CNA

ν .

4.3 Decoupling at the bottom scale

First note that when decoupling a heavy quark, the non-singlet vector or axial-vector
current is the same in the full and effective theory due to Ward identities [18,19,32]. As
a consequence, the non-anomalous current is the same in the five and four flavor theory
([ANA](5) = [ANA](4)). Also, the decoupling coefficient for the Qν operator stems purely
from the prefactor m2

c/g
2
s ,

[
Qν

](5)
= Bν

[
Qν

](4)
, (27)

with ( ℓµb/mb
= ln[µ2

b/m
2
b(µb)] )

Bν(µb) =1 − 2

3
a(5)(µb) ℓµb/mb

− 2

27

(
a(5)(µb)

)2[
30 ℓ2µb/mb

+ 39 ℓµb/mb
+ 56

]
. (28)

The decoupling equations for the local operators Qq
± are

[
Qq

±

](5)
= B±

[
Qq

±

](4)
, (29)

with

B+(µb) =1 − 1

54

(
a(5)(µb)

)2[
36 ℓ2µb/mb

+ 12 ℓµb/mb
+ 59

]
, (30)

B−(µb) =1 +
1

27

(
a(5)(µb)

)2[
36 ℓ2µb/mb

+ 12 ℓµb/mb
+ 59

]
. (31)

These results then can be used to get the decoupling coefficients for the bilocal operators,
whose decoupling equations read

[
ANA

±

](5)
= B±

[
ANA

±

](4)
+BNA

±,ν

[
Qν

](4)
, (32)

with

BNA
+,ν(µb) =

8

9

(
a(5)(µb)

)3[
12 ℓ3µb/mb

− 96 ℓ2µb/mb
+ 261 ℓµb/mb

+ 96 ζ3 − 1279
3

]
, (33)

BNA
−,ν,u(µb) = − 8

9

(
a(5)(µb)

)3[
12 ℓ3µb/mb

− 96 ℓ2µb/mb
+ 241 ℓµb/mb

+ 96 ζ3 − 1231
3

]
. (34)

11



4.4 Decoupling at the charm scale

At the charm scale one matches finally the operator ANA
±

to Qν and finds the coefficient
X(xc), cf. Eq. (1). The operator multiplying X has no anomalous dimension, which
means that X is independent of µ. In this case it is unnecessary to move to a three-flavor
theory, and one stays in the four-flavor one,

[
ANA

±

](4)
= CNA

±,ν

[
Qν

](4)
, (35)

with the coefficients ( ℓµc/mc
= ln[µ2

c/m
2
c(µc)] )

CNA
+,ν(µc) =16 a(4)(µc)

[
1 − ℓµc/mc

]
−
(
a(4)(µc)

)2[
48ℓ2µc/mc

− 80ℓµc/mc
− 44

]
, (36)

CNA
−,ν(µc) = − 8 a(4)(µc)

[
1 − ℓµc/mc

]
+

4

3

(
a(4)(µc)

)2[
36ℓ2µc/mc

+ 36ℓµc/mc
− 21

]
. (37)

After showing the decouplings at different scales, we now show how the operators can be
evolved between these scales.

4.5 Running to different scales

The evolution of the operator Qν is given by

µ2 d

dµ2
Qν(µ) = γν Qν(µ) , (38)

where γν is easily determined from the renormalization constants of mc and αs. Defining
dµ2/µ2a = aβ(a),

γν = 2(γm − β) = a
[
3 − 2

3
nf

]
− 2

9
a2
[
147 + 37nf

]

+
1

162
a3
[
− 173259− 18705nf + 1535n2

f + 17280 ζ3nf

]
. (39)

The solution of Eq. (38) is

Qν(µ) = Uν(µ, µ0)Qν(µ0) = exp

(∫ a(µ)

a(µ0)

dz

z

γν(z)

β(z)

)
Qν(µ0) . (40)

Considering the RG equations for the local operators Q± and ANA

µ2 d

dµ2
Qq

±(µ) = γ±Q
q
±(µ) , (41)

µ2 d

dµ2
ANA(µ) = 0 , (42)

12



one gets for the bilocal operators

µ2 d

dµ2
ANA

±
(µ) = γ±A

NA
±

(µ) + γNA
±,ν Qν(µ) . (43)

The anomalous dimensions are

γ+ = − 2 a+ a2
[

7
2
− 2

9
nf

]
+ a3

[
− 275267

300
+ 52891

1350
nf + 130

81
n2
f +

(
336 + 80

3
nf
)
ζ3

]
, (44)

γ− = 4 a+ a2
[
7 + 4

9
nf

]
+ a3

[
− 12297

50
+ 31343

675
nf − 260

81
n2
f −

(
336 + 160

3
nf
)
ζ3

]
, (45)

and

γNA
+,ν = − 16 a− 144 a2 + a3

[
− 1060082

225
+ 144nf + 896 ζ3

]
, (46)

γNA
−,ν = 8 a+ 208 a2 + a3

[
879586

225
− 144nf − 64 ζ3

]
. (47)

The factor 1/g2
s was introduced in the definition of Qν , cf. Eq. (10), so that the anomalous

dimensions γNA
±,ν would begin at order a, and not a0. The solution of Eq. (43) is

ANA
±

(µ) = U±(µ, µ0)A
NA
±

(µ0) + UNA
±,ν(µ, µ0)Qν(µ0) , (48)

where

U±(µ, µ0) = exp

(∫ a(µ)

a(µ0)

dz

z

γ±(z)

β(z)

)
, (49)

UNA
±,ν(µ, µ0) = exp

(∫ a(µ)

a(µ0)

dz

z

γ±(z)

β(z)

)
·
∫ a(µ)

a(µ0)

dz

z

γNA
±,ν(z)

β(z)

· exp

(∫ z

a(µ0)

dz′

z′
γν(z

′) − γ±(z′)

β(z′)

)
. (50)

4.6 Result

Using all the decoupling coefficients and evolution equations presented in the previous
sections one can find the final result for the non-anomalous diagrams. We start by Eq. (23)
with nf = 5, and evolve the operators down to a scale µb ∼ mb using Eqs. (40), (49) and
(50). We decouple the b quark using Eqs. (27) and (32) and continue evolving the operators
with nf = 4 down to a scale µc ∼ mc, where we express everything in terms of Qν using
Eq. (35), and then find the expression of XNA. We define the masses m̃q ≡ mq(mq) and
the logs ℓµq/emq

≡ ln(µq/m̃q). Further, we define the factors

Kc =

(
a(4)(µc)

a(4)(m̃c)

)
, L =

(
a(4)(µc)

a(4)(µb)

) 1

25

, M =

(
a(5)(µb)

a(5)(µW )

) 1

23

. (51)
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Kc comes from expressing mc(µ) in terms of m̃c, and M and L from the evolution from
µW to µb and from µb to µc, respectively. With these conventions, our result reads

XNA =
m̃2
c

M2
W

1

32 a(4)(µc)
K

24

25

c

{
48
7
L−6M−6 + 24

11
L12M12

+ L
(
− 744

65
M−1 + 96

35
M−6 − 48

143
M12

)

+ a(5)(µW )
[

51784
3703

L−6M−6 − 74968
5819

L12M12 + L
(

2888594
103155

M−1 + 103568
18515

M−6 + 149936
75647

M12
)

+ ℓµW /MW

(
96
7
L−6M−6 − 96

11
L12M12 + L

(
− 248

65
M−1 + 192

35
M−6 + 192

143
M12

))]

+ a(5)(µb)
[
− 2609808

2314375
L−6M−6 + 3769008

3636875
L12M12 + L

(
317527296
21490625

M−1 − 598688792
34715625

M−6

− 212453104
141838125

M12 + ℓµb/emb

(
496
65
M−1 − 32

5
M−6 − 16

13
M12

))]

+ a(4)(µc)
[
− 966244

13125
L−6M−6 − 57302

6875
L12M12 + ℓµc/emc

(
− 16L−6M−6 + 8L12M12

)

+ L
(

3772576
40625

M−1 − 486784
21875

M−6 + 243392
89375

M12
)]

+ O(a2)

}
. (52)

The O(a2) coefficient is simply too long to print here. The full result can be retrieved from
http://www-ttp.particle.uni-karlsruhe.de/Progdata/ttp12/ttp12-048/. We will
give numerical results for XNA in section 7. The expression above agrees with the result of
the NLO calculation performed in Refs. [7,8], correcting for the fact that in those publica-
tions no decoupling was performed at µb, and more importantly, that ln [µc/mc(µc)] was
simply changed by hand to ln [µc/mc(mc)], and so they are missing a couple terms related
to Kc. Unfortunately, we could not readily compare the final expression of our full result
to that of Ref. [1], but we found agreement in the decoupling coefficients and anomalous
dimensions leading to it (accounting in some cases for differences in normalization).

If we re-expand Eq. (52) around µW we obtain

XNA =
m̃2
c

M2
W

{
1
4

(
ℓ emc/MW

+ 3
)

+ 2 a(5)(µW )
[
ℓ2µW /µb

+ ℓ2µW /MW
+ ℓµb/µc

(
1
6
− ℓ emc/MW

)

+ ℓµb/emc

(
ℓµc/emc

− ℓµW /MW
− 4
)

+ ℓµW /µb

(
ℓµb/emc

+ ℓµc/emc
− 2ℓµW /MW

− 23
6

)

− ℓµW /MW

(
ℓµc/emc

− 23
6

)
+ 1

6

(
ℓµc/emc

+ 2π2 + 29
) ]

+
(
a(5)(µW )

)2[
8
3
ℓ3µW /µb

+ 3 ℓ3µb/µc
+ 1

3
ℓ2µb/emc

(
ℓµc/emc

− ℓµW /MW
+ 20

)

+ 9 ℓ2µb/µc

(
ℓµW /µb

− ℓµW /MW
+ ℓµc/emc

+ 5
18

)
+ . . .

]
+ O

(
a2ℓ0

)
}
, (53)

where for brevity’s sake we only show a few terms of the long, last-order coefficient. If one
differentiates this re-expanded expression with respect to the various µx scales present in
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Figure 10: Top anomalous diagram (10a), with heavy subdiagram leading to Ct (10b) and
the remaining subdiagram (10c).

it one finds a residual logarithmic dependence on them at the order a2, which was of course
not present in the original, perturbative calculation. The reason is that our treatment
is only valid up to constant terms times a2. Small logs like ℓµc/emc

, ℓµb/emb
, and ℓµW /MW

are effectively taken as constants in our treatment, and thus beyond our reach in the last
order of Eq. (53). By adding logs like these to Eq. (53) one can cancel its µx dependence,
which serves as a check of the correctness of our result.

5 Top quark anomalous diagram

5.1 Decoupling at the top scale

The anomalous penguin diagram with a W boson and a top quark is shown in Figure 10a,
and the counterterm diagrams in Figure 7. Diagrams with the gluons attached to either
one or both external quark lines vanish at out order (1/m0

t ). Much like in the non-
anomalous case, when considering the decoupling of the top quark we have two distinct
cases. The first one is when the loop momenta of the size of mt run only through the
subdiagram in Figure 10b. The decoupling equation for this subdiagram reads

[
At
](6)

= Ct
[
AS
](5)

,
[
AS
](5)

=
[
Ab + Ac + As + Au + Ad

](5)
(54)

The decoupling coefficient reads [32] ( ℓµt/mt
= ln[µ2

t/m
2
t (µt)] )

Ct(µt) =
(
a(6)(µt)

)2[
2 − 8 ℓµt/mt

]
. (55)

The resulting penguin diagram, with the operator AS inserted, is shown in Figure 10c.
The second case is when all loop momenta are of the size of mt. Then the whole diagram
10a is treated as heavy and we get some coefficient Cν times the local operator Qν . As it
turns out this coefficient is zero, i.e. the subdiagram shown in Figure 10b factorizes from
the penguin diagram.
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5.2 Decoupling at the W scale

When decoupling the W we only have to treat the singlet penguin diagram in Figure 10c,
which leads then, analogously to the non-anomalous problem, to the effective Lagrangian

Ht
ν,eff = Ct

(
C+A

S
+ + C−A

S
−

+ CS
ν Qν

)
, (56)

with the operator

AS
±

= −i
∫

d4x T
{(
Qc

±
(x) −Qu

±
(x)
)
AS(0)

}
(57)

and the coefficient ( ℓµW /MW
= ln[µ2

W/M
2
W ] )

CS
ν (µW ) = − a(5)(µW ) 8 (3 + ℓµW /MW

) . (58)

5.3 Decoupling at the bottom and charm scales

Because of the overall multiplying factor Ct, when decoupling the bottom quark we can
neglect all terms of higher order than a2. This makes the decoupling equation quite trivial,

[
AS

±

](5)
=
[
AS

±

](4)
+ O

(
a2
)
. (59)

In the next section, when we treat the bottom anomalous diagrams, we will give this
decoupling equation to a higher order. The singlet current in the five flavor theory contains
the bottom quark, while in the four flavor theory only the four lightest quarks are present.
The decoupling equation for Qν is given in Eq. (27).

At the charm scale, the matching equation reads
[
AS

±

](4)
= CS

±,ν

[
Qν

](4)
. (60)

At our order, this matching is influenced only by non-anomalous diagrams generated
by the Ac and Au currents. We got rid of non-anomalous contributions from As and Ad

with our off-diagonal renormalization scheme, so these operators could only enter through
anomalous diagrams. At the charm scale, however, these diagrams would only produce
terms beyond our precision. Nevertheless, the matching for AS

±
at this scale will not the

same as the one for ANA
±

. Since ANA only appeared in open fermion lines we used the
naive definition of γ5 for it, but AS appears here through the decoupling of the current At,
which is inserted in a closed triangle loop. We used the definition in Eq. (5) for At, and
use it too for AS. As mentioned in section 4, the different definitions of the axial-vector
current produce different results for the penguin diagrams, which in turn leads to different
constant parts in CS

±,ν compared to the coefficients CNA
±,ν given in Eqs. (36) and (37),

( ℓµc/mc
= ln[µ2

c/m
2
c(µc)] )

CS
+,ν(µc) =16 a(4)(µc)

[
2 + ℓµc/mc

]
+
(
a(4)(µc)

)2[
48ℓ2µc/mc

− 80ℓµc/mc
− 524

3

]
, (61)

CS
−,ν(µc) = − 8 a(4)(µc)

[
2 + ℓµc/mc

]
− 4

3

(
a(4)(µc)

)2[
36ℓ2µc/mc

+ 36ℓµc/mc
+ 17

]
. (62)
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The minus sign between these and the previous expressions comes from the different signs
with which the currents Ac/u enter in the definitions of AS and ANA.

5.4 Running to different scales

In contrast to ANA the singlet operator AS has a non-vanishing anomalous dimension

µ2 d

dµ2
AS(µ) = γSAS(µ) , (63)

with [19,21]

γS = −8nf a
2 + a3

[
− 340

3
nf −

8

9
n2
f

]
. (64)

The solution of Eq. (63) is

AS(µ) = US(µ, µ0)A
S(µ0) = exp

(∫ a(µ)

a(µ0)

dz

z

γS(z)

β(z)

)
AS(µ0) . (65)

For the bilocal operator we get the following RG equation,

µ2 d

dµ2
AS

±
(µ) = γS

±
AS

±
(µ) + γS

±,ν Qν(µ) , (66)

with γS
±

= γ± + γS and

γS
+,ν = 16 a− 144 a2 + a3

[
− 896 ζ3 + 800

9
nf + 67682

225

]
, (67)

γS
−,ν = −8 a+ 80 a2 + a3

[
64 ζ3 + 560

9
nf + 147614

225

]
. (68)

The solution of Eq. (66) is

AS
±
(µ) = US

±
(µ, µ0)A

S
±
(µ0) + US

±,ν(µ, µ0)Qν(µ0) , (69)

with US
±

and US
±,ν defined as in Eqs. (49) and (50) with γ± (γNA

±,ν) replaced by γS
±

(γS
±,ν).

5.5 Result

With the same definitions as in Eq. (51), our result for the top anomalous diagrams reads

XW,t =
m̃2
c

M2
W

1

32 a(4)(µc)
K

24

25

c ·
(
a(6)(µt)

)2[
2 − 8 ℓµt/mt

][48

7
L−6M−6 +

24

11
L12M12

+ L

(
−744

65
M−1 +

96

35
M−6 − 48

143
M12

)]
. (70)
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Figure 11: The irreducible anomalous diagrams in the bottom case, omitting mirror
images.

6 Bottom quark anomalous diagrams

The irreducible anomalous penguin diagrams with a W boson and a bottom quark are
shown in Figure 11, and the counterterm diagrams in Figure 7. At the order we are
interested in there is no top quark appearing in the anomalous bottom diagrams. However,
there are some considerations to be made before we start right away with the decoupling
of the W boson. As mentioned in section 3, the explicit scale dependence of top and
bottom anomalous diagrams cancels only in their sum. Since we started the evolution of
top diagrams at the scale µt, we must choose the same starting point in the bottom case,
lest we end up with an unbalanced µt dependence in the final result. Alternatively, given
that ℓmt/MW

∼ 1.4, we could simply perform the decoupling of the top quark at µW in the
previous section. However, proceeding in this way effectively leads to the same problem.
The top and W scales may be relatively large, and their difference relatively small, but
these anomalous diagrams start already at order a2, and unlike the diagrams with the φ
boson they contain also big logs involving the mc scale. Seemingly small differences can
(and do) have noticeable effects in this case. Take the result from Eq. (70), substituting
µt by µW . Its µW dependence is, with our precision, formally the exact opposite of that of
the result from the anomalous bottom diagrams starting at µW , which will be presented
later in Eq. (91). However, numerically the dependence is about an order of magnitude
bigger in (the modified) Eq. (70) than in the bottom case, which breaks the balance
present in the original perturbative results. Starting from µt is formally equivalent but
will lead to better-behaved final expressions.

Thus, we consider the anomalous bottom diagrams starting from µt. At our order,
the decoupling of the top quark is trivial,

[
Ab
](6)

=
[
Ab
](5)

+ O(a3) . (71)

Next we must evolve our expressions to the scale µW . Since the current Ab mixes with
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AS under the RG evolution, we make use of the identity

Ab = Ab − 1

nf
AS +

1

nf
AS = ANS +

1

nf
AS , (72)

with ANS = Ab − 1/nfA
S, to express Ab through the non-mixing operators ANS and

AS. Our choice of renormalization scheme for the axial current, presented in section 2.1,
ensures that ANS has a vanishing anomalous dimension. The evolution of AS was shown
in Eq. (65). Thus, we have that

[
Ab(µt)

](5)
=
[
ANS(µW )

](5)
+

1

5
US(µt, µW )

[
AS(µW )

](5)

=
[
Ab(µW )

](5)
+
(24

23

(
a(5)(µt) − a(5)(µW )

)
+ O(a2)

)[
AS(µW )

](5)
. (73)

The treatment of AS is now the same as in the top quark case, and exchanging Ct by the
coefficient from the expansion of US, the result will be the same as in Eq. (70), with a
sign coming from the different isospins of top and bottom quarks. This all leaves us with

the operator
[
Ab(µW )

](5)
, whose treatment we present in the following sections.

6.1 Decoupling at the W scale

As in the other cases we look at the different possible heavy subdiagrams to obtain the
operators and coefficients in the effective theory. The effective Hamiltonian reads

Hb
ν,eff = C+A

b
+ + C−A

b
−

+ Cb
ν Qν , (74)

with

Ab
±

= −i
∫

d4x T
{(
Qc

±
(x) −Qu

±
(x)
)
Ab(0)

}
, (75)

and ( ℓµW /MW
= ln[µ2

W/M
2
W ] )

Cb
ν(µW ) =

(
a(5)(µW )

)3 8

3

[
55 + 4 π2 + 18 ℓµW /MW

+ 12 ℓ2µW /MW

]
. (76)

We will apply the same replacement to the bilocal operator as in Eq. (72). The resulting
operators ANS

±
and AS

±
can now be evolved separately from the W to the bottom scale.

6.2 Decoupling at the bottom and charm scales

For the local operators Qq
± and Qν the decoupling equations are given in the previous

sections. For Ab the decoupling equation reads

[
Ab
](5)

= Cb

[
AS
](4)

, (77)
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with ( ℓµb/mb
= ln[µ2

b/m
2
b(µb)] )

Cb(µb) =
(
a(5)(µb)

)2[
2 − 8 ℓµb/mb

]
(78)

in complete analogy to the top decoupling in (54). Unlike the top quark case, however, the
contribution from treating the whole diagram as heavy is not zero. Thus, the decoupling
equation for the bilocal operator Ab

±
reads

[
Ab

±

](5)
= B±Cb

[
AS

±

](4)
+Bb

±,ν

[
Qν

](4)
. (79)

where the coefficients B± have been defined in Eq. (29), and Bb
±,ν read

Bb
+,ν(µb) = −

(
a(5)(µb)

)3[
64 ℓ2µb/mb

+ 64 ℓµb/mb
+ 368

3

]
, (80)

Bb
−,ν(µb) =

(
a(5)(µb)

)3[
32 ℓ2µb/mb

− 64 ℓµb/mb
+ 328

3

]
. (81)

At the order we are interested in, the operator Aq for the four lightest quarks decouples
naively ([Aq](5) = [Aq](4) + O(a3)). Also, as in the previous section, As and Ad make
no contribution, since in our renormalization scheme they could only enter in anomalous
diagrams that would lie beyond our precision. The decoupling of the bottom quark in a
bilocal operator with an insertion of the current Ac + Au is given by

[
A

(c+u)
±

](5)
= B±

[
A

(c+u)
±

](4)
+B

(c+u)
±,ν

[
Qν

](4)
, (82)

with

B
(c+u)
+,ν (µb) = − 8

9

(
a(5)(µb)

)3[
12 ℓ3µb/mb

+ 12 ℓ2µb/mb
+ 107 ℓµb/mb

+ 96 ζ3 − 3616
27

]
, (83)

B
(c+u)
−,ν,u (µb) =

8

9

(
a(5)(µb)

)3[
12 ℓ3µb/mb

+ 12 ℓ2µb/mb
+ 95 ℓµb/mb

+ 96 ζ3 − 3020
27

]
. (84)

At our order, the difference between B
(c+u)
±,ν and BNA

±,ν , besides an obvious sign, stems from
the fact that here we are using the ’t Hooft-Veltman definition of γ5 instead of the naive
one that we used for the non-anomalous diagrams, as mentioned before. Using Eqs. (79)
and (82), and remembering the definition ANS = Ab − 1/5AS we find at last that

[
ANS

±

](5)
= B±

(
4

5
Cb −

1

5

)[
AS

±

](4)
+

(
4

5
Bb

±,ν −
1

5
B

(c+u)
±,ν

)[
Qν

](4)
+ O

(
a3
)
, (85)

[
AS

±

](5)
= B±

(
Cb + 1

)[
AS

±

](4)
+
(
Bb

±,ν + B
(c+u)
±,ν

) [
Qν

](4)
+ O

(
a3
)
. (86)

The matching at the charm scale is given in Eq. (60).

20



6.3 Running to different scales

The evolution of AS
±

was given in Eq. (69). ANS has a vanishing anomalous dimension,
and for ANS

±
we have

µ2 d

dµ2
ANS

±
(µ) = γ±A

NS
±

(µ) +
1

5
γNS
±,ν Qν(µ) , (87)

where

γNS
+,ν = −16 a+ 144 a2 + a3

[
896 ζ3 + 64

9
nf − 67682

225

]
, (88)

γNS
−,ν = 8 a− 80 a2 − a3

[
64 ζ3 + 128

9
nf + 147614

225

]
. (89)

The factor 1/5 in Eq. (87) comes from the definition ANS = Ab − 1/5AS. The differ-
ence between γNA

±,ν, given in Eqs. (46) and (47), and γNS
±,ν comes again from the different

definitions of γ5. The solution to Eq. (87) is

ANS
±

(µ) = U±(µ, µ0)A
NS
±

(µ0) +
1

5
UNS
±,ν(µ, µ0)Qν(µ0) , (90)

with UNS
±,ν defined as in Eq. (50) with γNA

±,ν replaced by γNS
±,ν.

6.4 Result

Again with the same definitions as in Eq. (51), our result for the bottom anomalous
diagrams reads

XW,b =
m̃2
c

M2
W

1

32 a(4)(µc)
K

24

25

c

{
− 24

23

(
a(5)(µt) − a(5)(µW )

) [48

7
L−6M−6 +

24

11
L12M12

+ L

(
−744

65
M−1 +

96

35
M−6 − 48

143
M12

)]
+ a(5)(µb)

[
1152
161

L−6M−6 +
576

253
L12M12

− L

(
1600

161
M−6 +

400

253
M12

)]
+ a(5)(µW )

[
− 1152

161
L−6M−6 − 576

253
L12M12

+ L

(
912

65
M−1 − 2304

805
M−6 +

1152

3289
M12

)]
+ O(a2)

}
. (91)

The part proportional to
(
a(5)(µt) − a(5)(µW )

)
comes from

[
AS(µW )

](5)
, the rest from

[
Ab(µW )

](5)
. Like in the case of the non-anomalous diagrams, the O(a2) term is too long

to print here, and can be retrieved from
http://www-ttp.particle.uni-karlsruhe.de/Progdata/ttp12/ttp12-048/. We give
numerical results for XW,b in the following section.

In the original perturbative calculation the scale dependence of the sum XW,t+XW,b is
of order a3. The sum of the resummed results of Eqs. (70) and (91) satisfies this as well.
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However, as in the non-anomalous case, the re-expanded expression has some residual
scale dependence at order a2. It reads

XW,t +XW,b =
m̃2
c

M2
W

(
a(6)(µt)

)2[
2 ℓµb/µc

(ℓµW /µt
+ ℓµt/emt

− ℓµW /emb
) − ℓ2µW /µb

+ 2 ℓµW /µb
(ℓµW /µt

+ ℓµt/emt
− ℓµc/emc

)

− 2 ℓµW /µt
(1 + ℓµW /MW

− ℓµc/emc
) + O

(
a2ℓ0

) ]
. (92)

The argument is the same as before. Our expansion misses constant terms times a2, and
small logs like ℓµc/emc

, ℓµb/emb
, ℓµW /MW

, and ℓµt/emt
are effectively constants here. Adding

terms involving these logs to Eq. (92) one can cancel its scale dependence and bring it to
essentially the same form (up to pure constants) as the purely perturbative result given
by the sum of Eqs. (12) and (13).

7 Numerical Results and Discussion

In this section we present our numerical results for the non-anomalous and anomalous
diagrams. The analytic expression for the former is given in Eq. (52), and those of the
latter in Eqs. (14), (70), and (91). We use the numerical solution of the differential
equation relating αs(µ0) with αs(µ) at two loops, together with the decoupling relations
at threshold, which we take from the Mathematica package RunDec [33]. We choose the
following parameter values ( m̃q ≡ mq(mq) ),

αs(MZ) = 0.118 ,

MW = 80.4 GeV , µW = MW ,
m̃t = 162 GeV , µt = m̃t ,
m̃b = 4.16 GeV , µb = 10 GeV ,
m̃c = 1.29 GeV , µc = 3 GeV .

(93)

Our results are

• Non-anomalous diagrams:

XNA = −(2 ± 2) · 10−5 , (94)

• Anomalous diagrams:

XW,t = −(1.8 ± 0.3) · 10−8 , (95)

XW,b = −(5 ± 5) · 10−7 , (96)

XW,t+b = −(5 ± 5) · 10−7 , (97)

Xφ = −(5 ± 2) · 10−8 . (98)
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Figure 12: Evolution of the relative uncertainties at each order for XNA and XW,t+b. The
bold line represents δXµc

, the dashed one δXµb
, the dot-dashed one δXµW

, and the dotted
one δXµt

.

The uncertainty estimates were obtained by varying µW between 40 and 160 GeV, µb
between 5 and 15 GeV and µc between 1.5 and 4.5 GeV. XW,t+b represents the sum
of top and bottom anomalous diagrams, and in this case, in addition to the uncertainty
estimates already mentioned, we added the one fom varying µt between m̃t/2 and 2m̃t (we
did not touch this scale in the separate top and bottom cases as only their sum should
be independent of it). The result for Xφ is simply the evaluation of Eq. (14), times
π2m̃2

c/(2M
2
W g2

s), evaluated at µ = MW . Its error, obtained by varying µW as described
above, could be reduced with an RG treatment, but its size makes that treatment rather
pointless.

We observe that the anomalous contributions, dominated by XW,b, are two orders
of magnitude smaller than the non-anomalous ones, and the uncertainty of the latter
makes them completely negligible. Indeed, the uncertainties in for XNA and XW,b are of
a remarkable size. In Figure 12 we show the relative uncertainties of XNA and XW,t+b

at each order, that is δXNA
LO /|XNA

LO |, δ(XNA
LO + XNA

NLO)/|XNA
LO + XNA

NLO)| and so on. As
we can see, δXNA is completely dominated by the µc dependence, δXNA

µc
, which grows

substantially in relative size at NLO, and keeps growing at NNLO. In the case of XW,t+b

the µc dependence still dominates and grows, although not to the same degree as in the
non-anomalous case.

We observe uncertainties in the pictures growing when moving from one order to the
next. This was unexpected, as normally uncertainties should diminish when increasing
the order of our calculation. This odd increase in µ dependence, and the dominance
of δXµc

especially in the non-anomalous case, seem to indicate that there might be a
problem with the perturbation series, and that it might stem from the size of αs(µc). At
µ = 3GeV, we have that αs ≃ 0.252.

We test this in two ways. First, we artificially set αs(MZ) = 0.097, which leads to
αs(3GeV)≃ 0.170. Second, we artificially increase the mass of the charm quark, setting it
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tomc = 3 GeV and varying µc in the range 4.5 GeV< µc < 7.5 GeV. The results are shown
in Figures 13 and 14. When using the artificially smaller αs, the uncertainties in both
XNA and XW,t+b behave as we would have expected, except maybe for δXW,t+b

µW
, which

stays stable from one order to the next. When using the heavier mc, δX
NA
µc

still increases
slightly at NLO, but its behavior is much milder than with the real mc. In the case of the
anomalous diagrams, δXW,t+b

µc
decreases and δXW,t+b

µW
increases slightly less than before.

From all this it seems that the low scale µc is really straining our perturbative treatment
of the penguin diagrams, even with the log resummation provided by the RG evolution.
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7.1 Comparison with the previous calculation

As mentioned in section 4.6, the final analytic expression for XNA could not be readily
compared with that of Ref. [1], but we checked our agreement in the decoupling coefficients
and anomalous dimensions that lead to it. A direct comparison between our numerical
results for XNA is also not possible, since only the sum of the (non-anomalous) penguin
and box contributions (also, they chose µc = 1.5 and µb = 5) was shown in Ref. [1].
Following their treatment, we computed the box diagrams and found full agreement with
the decoupling coefficients and the anomalous dimensions they presented. However, our
calculation was incomplete, in that we did not include the effects of the mass of the τ
lepton at NNLO. Nevertheless, choosing their values for the parameters and the scales,
and computing what they called the “theory” error, which comes from varying the scales
within the ranges they chose and adding the error from different treatments of αs (which
they stated as ±0.001 and we did not include in our results above), we obtained for the
quantity Pc(X) defined in their Eq. (2) the result Pc(X) = 0.376± 0.01, whereas in their
Eq. (119) they presented Pc(X) = 0.375 + 0.009theory. Thus, even with our incomplete
box-diagrams calculation we have a very good agreement with their result.

Our value for Pc(X) corresponds to X = XB +XNA = (9.6± 0.3) · 10−4. The relative
error here looks much better than in all of the results in Eqs. (94)-(98), but this is simply
because the result is dominated by the (incomplete) box contribution,

XB = (9.7 ± 0.2) · 10−4 ,

XNA = −(1 ± 1) · 10−5 .

Our result for XNA has changed from that of Eq. (94) because of the different choice of
µb and µc. It is worth noting that we did not observe any of the odd behavior of scale
uncertainties with the box diagrams. It seems that only the penguin diagrams are so
overly sensitive.

Unfortunately, in the anomalous case the situation is more complicated. In the Er-
ratum of Ref. [1], the result for the anomalous diagrams is presented as ∆Pc(X) =
1/λ4(XW,t + XW,b + Xφ), where λ = |Vus|, for which they took the value λ = 0.2248.
As in the non-anomalous case, they chose the scales µc = 1.5 and µb = 5. Also like in the
non-anomalous case we could not readily compare their treatment with ours. However,
they show an expression of their analytic result after re-expansion, and a picture with the
evolution of ∆Pc(X) as a function of µc in the range 1 GeV < µc < 3 GeV at NLO and
NNLO. The result we get for ∆Pc(X) after re-expanding Eqs. (70) and (91) and adding
Eq. (14) only up to NNLO reads,

∆Pc(X) =
1

λ4

m̃2
c

M2
W

(αs(µt)
4π

)2[
2 ℓµb/µc

(ℓµW /µt
+ ℓµt/emt

− ℓµW /emb
) − ℓ2µW /µb

+ 2 ℓµW /µb
(ℓµW /µt

+ ℓµt/emt
− ℓµc/emc

)

− 2 ℓµW /µt
(1 + ℓµW /MW

− ℓµc/emc
)

− 1
4
ℓ2MW /emt

+ 3
2
ℓMW /emt

+ O
(
α2
sℓ

0
) ]

. (99)
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Figure 15: ∆Pc(X) (a) and ∆P ′

c(X) (b) as a function of µc in the range 1 GeV < µc < 3
GeV at NLO (dashed line) and NNLO (solid line).

As mentioned before, there is a scale dependence in this expression that comes simply
from the fact that our expansion misses terms of order α2

s times some small log, like ℓµx/emx
.

Such logs are effectively constants in our treatment and therefore missed at NNLO, and
the fact that they are all that is needed at this order to cancel the scale dependence
of Eq. (99) and bring it to essentially the same form as the perturbative result (up to
constants) is a good check of our calculations.

In Ref. [1] the result for ∆Pc(X) is given as

∆Pc(X) =
1

λ4

m2
c

M2
W

(αs
4π

)2
{(

ln
µ2
W

µ2
b

− 2 ln
µ2
W

µ2
c

+ 1

)
ln
µ2
W

µ2
b

}
+ O

(
α2
s ln0 µ

2
W

µ2
b

, α3
s

)
.

(100)

This expression is significantly different from ours. The first thing one notices is the
absence of logs of masses in it, which leads to the impossibility of canceling its scale
dependence with small logs of the type ℓµx/ fmx

. One also notices the absence of µt, which
makes us believe that the top and W scales were considered equal. However, even if
ℓµt/MW

is considered small, in the perturbative result for DW,t in Eq. (12) we see that
it is multiplied by a big log, namely ℓmc/MW

, and therefore one should have either µt or
mt in the final result. Finally, in Eq. (100) there is a linear ℓµW /µb

that is not present
in our case. In any case, regardless of the discrepancies of our analytic expressions, the
size of the uncertainties makes our numerical results and theirs basically the same, both
negligible compared to the non-anomalous case anyway.

Regarding the evolution of ∆Pc(X) with µc at different orders, given that Xφ is in-
dependent of this (or, to our order, any) scale, we simply add Xφ as a constant both
at NLO and NNLO. Alternatively, we define ∆P ′

c(X) = ∆Pc(X − Xφ). Our results are
shown in Figure 15. Neither plot agrees with that of Ref. [1], where the curves have the
same shape but are translated upwards. Guided by the absence of the top scale in their
re-expanded expression, we can find agreement with their picture if we plot ∆P ′

c(X) and
in the bottom case we neglect the running from µt to µW , that is, if we compute the top

26



case starting from µt and the bottom case starting from µW . This produces essentially
the same results within the errors, but as mentioned before it produces an unbalanced µt
dependence which was not present in the original perturbative diagrams.

8 Conclusion

In this paper we set out to check the results for penguin-type charm contributions to the
decay K+ → π+νν̄ presented in Ref. [1]. It is quite an involved calculation, certainly
deserving an independent check. We have found full agreement for all the decoupling
coefficients and anomalous dimensions for the non-anomalous diagrams. In Ref. [1] the
final numerical result presented was the sum of non-anomalous penguin and box-type
diagrams, so in order to perform a comparison we also had to compute the latter. Our
calculation missed τ -mass effects, but again we confirmed the corresponding decoupling
coefficients and anomalous dimensions presented in Ref. [1]. Incomplete as our result for
the box diagrams was, it was enough to allow us to obtain very good agreement in the final
numerical result, both in the central value and the estimate of theoretical uncertainty.

We found some discrepancies with Ref. [1] in our results for the anomalous diagrams.
Although numerically the differences get washed out by the uncertainty (and by the sheer
smallness of the anomalous contributions versus the non-anomalous ones), the analytic
expression of our re-expanded result differs significantly from that of Ref. [1].

Our results show some unstable behavior and quite a large uncertainty. The cause
seems to be the low scale µc, which might be testing the limits of perturbation theory.
This only applies to the penguin diagrams, however, as in our evaluation of the box
diagrams the scale uncertainties behaved as expected, diminishing at each order and
remaining relatively small. We were not able to find an analytic reason for the unique
unstable behavior of the penguin diagrams.
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A Definition of the evanescent operators

In dimensional regularization the operators Qq
± introduced in Eq. (20) are not enough to

perform the decoupling of the W boson in the subdiagram shown in Figure 9b. A set
of evanescent operators (vanishing at d = 4) is required. In our renormalization scheme
these operators have vanishing matrix elements, but they still contribute by determining
the anomalous dimensions of Qq

±. Since we reach O(α2
s) in our calculations, we need six

evanescent operators. We take the definitions from Ref. [1], with a different normalization
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factor, coming from using a (V −A) current instead of left-handed fields. If we define

Qq
1 =

(
s̄γµ(1 − γ5)t

aq
)(
q̄γµ(1 − γ5)t

ad
)

(101)

Qq
2 =

(
s̄γµ(1 − γ5)q

)(
q̄γµ(1 − γ5)d

)
, (102)

where ta is a generator of the color group, then one can define the following evanescent
operators,

Eq
1 =

(
s̄γµ1µ2µ3(1 − γ5)t

aq
)(
q̄γµ1µ2µ3

(1 − γ5)t
ad
)
− (16 − 4ǫ− 4ǫ2)Qq

1 , (103)

Eq
2 =

(
s̄γµ1µ2µ3(1 − γ5)q

)(
q̄γµ1µ2µ3

(1 − γ5)d
)
− (16 − 4ǫ− 4ǫ2)Qq

2 , (104)

Eq
3 =

(
s̄γµ1µ2µ3µ4µ5(1 − γ5)t

aq
)(
q̄γµ1µ2µ3µ4µ5

(1 − γ5)t
ad
)

−(256 − 224ǫ− 5712
25
ǫ2)Qq

1 , (105)

Eq
4 =

(
s̄γµ1µ2µ3µ4µ5(1 − γ5)q

)(
q̄γµ1µ2µ3µ4µ5

(1 − γ5)d
)

−(256 − 224ǫ− 10032
25

ǫ2)Qq
2 , (106)

Eq
5 =

(
s̄γµ1µ2µ3µ4µ5µ6µ7(1 − γ5)t

aq
)(
q̄γµ1µ2µ3µ4µ5µ6µ7

(1 − γ5)t
ad
)

−(4096 − 7680ǫ)Qq
1 , (107)

Eq
6 =

(
s̄γµ1µ2µ3µ4µ5µ6µ7(1 − γ5)q

)(
q̄γµ1µ2µ3µ4µ5µ6µ7

(1 − γ5)d
)

−(4096 − 7680ǫ−)Qq
2 . (108)

Here the notation γµ1µ2...µn
= γµ1

γµ2
. . . γµn

has been used. The operators Qq
1,2 are com-

bined to produce Qq
± in the following way,

Qq
+ = Q1 +

nc + 1

2nc
Q2 , (109)

Qq
− = −Q1 +

nc − 1

2nc
Q2 , (110)

where nc is the number of colors. In the same way, the pairs (Eq
3 , E

q
4) and (Eq

5 , E
q
6) are

combined to generate E± operators, which are the ones we use. The above definitions of
the evanescent operators ensure that Qq

± do not mix with each other through NNLO.
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