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Abstract

We compute the O(ay) corrections to the Wilson coefficient of the kinetic operator
in inclusive semileptonic B decays. Our analytic calculation agrees with reparame-
terization invariance and with previous numerical results and paves the way to the
calculation of analogous corrections to other power-suppressed coeflicients.



1 Introduction

The precision determination of the Cabibbo-Kobayashi-Maskawa quark mixing matrix re-
mains a central goal in the flavor physics program. A new generation of high-luminosity
B factories is expected to start operations in a few years and in view of the improved
experimental resolution the theoretical uncertainties should be reduced whenever possible.
In the case of inclusive semileptonic B decays, which currently provide the most precise
determination of |V and |V,;|, theoretical uncertainties are already dominant, but there
is space for improvement.

As is well known, the theoretical foundation for our understanding of inclusive semilep-
tonic decays B — X /v is an Operator Product Expansion (OPE) which ensures that
non-perturbative effects are suppressed by at least two powers of the bottom mass my,.
They are parameterized by a limited number of matrix elements of local operators which
can be extracted from experimental data. The total inclusive width and the first few mo-
ments of the kinematic distributions can be well approximated by a double series in ay
and Aqep/my [1, 2|. After extracting the most important non-perturbative parameters,
including the heavy quark masses, from the moments, one can therefore use them in the
OPE expression for the total semileptonic width and determine |V,| from the comparison
with the experimental rate.

It is worth emphasizing that the information obtained from the fits to the moments of
B — X v (see [3, 4] for recent accounts) find other important applications. Indeed, the b
quark mass and the OPE expectation values obtained from the moments are crucial inputs
in the determination of |V,,;| from inclusive semileptonic charmless decays, see e.g. [5] and
refs. therein. The heavy quark masses and the OPE parameters are also relevant for a
precise calculation of other inclusive decays like B — Xy [6].

The reliability of the inclusive method rests on our ability to control the higher order
contributions in the OPE. If we neglect perturbative corrections, i.e. if we work at tree-
level, we presently know the O(1/m?) and O(1/mj}) contributions [7], while the O(1/m}) and
O(1/ m%) effects have been studied in [8]. Unfortunately, new non-perturbative parameters
appear at each order in the OPE: as many as nine new expectation values appear at
O(1/m}). As a result, only the parameters associated with the O(1/m;?) corrections are
routinely fitted from experiment. In [8] the parameters associated with O(1/ méf) effects
have been estimated in the ground state saturation approximation, finding a relatively
small +0.4% net effect on |V,|. Recently, the validity of the ground state saturation has
been investigated [9], and it has been shown that the non-factorizable contributions can be
in general comparable to the factorizable ones. Additional work is therefore necessary to
assess the importance of higher order power effects.

For what concerns the purely perturbative corrections to the free quark decay, they are
known at O(a?) in all the relevant cases, namely for the width and the first few moments
of the lepton energy and hadronic mass distributions. The complete O(c,) and O(a?5,)
corrections have been computed some time ago (see [10] and refs. therein), while the remain-



ing two-loop corrections to the width and to the first few moments have been calculated in
Refs. [11, 12, 13, 14]. The theoretical uncertainty due to missing purely perturbative effects
is now relatively small [14].

The O(aSA?QCD /m3) corrections appear to be a potentially more important source of the-
oretical uncertainty. The O(c) corrections to the Wilson coefficient of the kinetic operator
have been computed numerically in [15]; they can be also obtained from the parton level
O(as) result using reparameterization invariance relations [1, 16, 17, 18]. They lead to
numerically modest O(asu?/m?) corrections to the width and moments, where p2 is the
matrix element of the kinetic operator. However, in order to have all the O(aSAéCD /m?)
effects one should also consider the O(ay) corrections to the Wilson coefficient of the chro-
momagnetic operator. A complete O(aSAéCD /m2) calculation has been performed in the
simpler case of inclusive radiative decays [19], where the O(«y) corrections increase the
coefficient of pZ, the matrix element of the chromomagnetic operator, by almost 20% in
the rate.

In this paper we present the first part of an analytic calculation of the O(asAdep/m;)
corrections. We extend the method developed in [19] to semileptonic decays into hadronic
final states containing a massive quark and validate it rederiving the O(asu?/m?) correc-
tions and reproducing the reparameterization relations. As we did in [19], we compute
the relevant Wilson coefficients at O(ay) by Taylor expanding off-shell amputated Green
functions around the b quark mass shell, and by matching them onto local operators in
Heavy Quark Effective Theory (HQET). The extension to semileptonic decays implies new
technical difficulties, because one needs to consider the mass of the final quark and the
non-vanishing invariant mass of the lepton pair. The integrals involved are therefore less
divergent but more complex. We identify a small number of master integrals and express
our results in terms of the same functions appearing in the O(c«;) parton calculation. In or-
der to compute contributions to arbitrary moments, we give explicit corrections to the three
independent structure functions, namely of the triple differential rate. The O(a uZ/mi)
calculation is under way and will be presented in a forthcoming publication.

The outline of this paper is as follows. In section 2 we introduce our notation and review
the known O(1/m}) and O(ay) corrections to the triple differential rate. Section 3 is
devoted to a description of the calculation of the O(a,u2/m?) contributions. Our analytic
results can be found in section 4. In section 5 we review the reparameterization invariance
constraints and show that they are satisfied by our results. In section 6 we summarize
and conclude. The relevant master integrals and a few technical details are given in the
Appendix.

2 Leading Order results

We start recalling the tree-level results and the O(«) corrections to the leading, free-quark
term of the OPE. We consider the decay of a B meson of four-momentum pp = Mpgv
into a lepton pair with momentum ¢ and a hadronic final state containing a charm quark



with momentum p’ = pp — ¢. The hadronic tensor W which determines the hadronic
contribution to the differential width is given by the absorptive part of a current correlator
in the appropriate kinematic region,

2i
W (pg,q) = Im
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where JY = ¢y*Prb is the charged weak current. The correlator is subject to an OPE in
terms of local operators, which at the level of the differential rate takes the form of an
expansion in inverse powers of the energy release, whose leading term corresponds to the
decay of a free quark.

We generally follow the notation of Ref. [10] and express the b-quark decay kinematics in
terms of the dimensionless quantities
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where p = myv is the momentum of the b quark and
0<a<iy=(1-+/¢@?-p and 0<q¢<(1-/p> (2.3)

We will also employ the energy of the hadronic system normalized to the b mass

1
E:§(1+p+ﬁ—(j2). (2.4)

The case of tree-level kinematics corresponds to 4 = 0; we indicate the corresponding energy
of the hadronic final state as

By=5(+p- ) (25)
The normalized total leptonic energy is
Go=1—F from which follows u=2(1—FEy—qo). (2.6)
We also introduce a threshold factor
A= 4@ — @) = 4 (B>~ p— @) 2.7

In the case of tree-level kinematics, the threshold factor becomes \g = 4(E? — p). It is
convenient to introduce a short-hand notation for the square root of A:

VA Vo

t=—= ty = ~22.
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(2.8)

It is customary to decompose the hadronic tensor as follows

my W (pp,q) = =Wi g™ + Wovtv” +iWs 7 v,4, + Wad"q” + W5 (v'¢"+0"¢"), (2.9)
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where the structure functions W; are functions of ¢, gy or equivalently of ¢2,4, v is the
four-velocity of the B meson, and ¢* = ¢*/my.

In the limit of massless leptons only W; s 3 contribute to the decay rate and one has

dr 2
= L'E{cb'e(m—a)x (2.10)
dE, d@? di 16m

-2
X {@2W1 - [QEZ — 2B+ 1 ] Wa + §*(2E; — o) Ws }
where 4, = (1 — 1/42)® — p represents the kinematic boundary on @, and E, = E;/m, is

the normalized charged lepton energy. Thanks to the OPE, the structure functions can be
expanded in series of as and Aqep/me. There is no term linear in Aqep/my and therefore
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where we have neglected terms of higher order in the expansion parameters. p2 and pZ, are
the B-meson matrix elements of the only gauge-invariant dimension 5 operators that can
be formed from the b quark and gluon fields [1, 2]. The leading order coefficients are given
by

W = w9 5(a):; W =28, WV =4 W =2 (2.12)

The tree-level nonperturbative coefficients [2] read

W'(W,O) _ wgw,o) 5(@) + wi(ﬂ,l) 5/(@) + w§”’2) 5//(11); (213)

7

’wgﬂ—,o) = %(1 — E0)7 wiml) = %EO(l - E0)7 w§7"72) - %EO)\O’
0 =0

wi™ =0, wi™ = —8(1 — Ey), wy™? = 320;
T S i Y
and
I/I/i(Gvo) — w,EG,O) 5(,&) + 'LU,EGJ) 5/(7}/)’ (214)

wi® = —4(2-5F), w® = —4(Ey+3E2 + {ho);

wéG’,O) — 0’ wéG’l) = %(3 — 5E0),
o0 =8, o0 ~ 401455

The perturbative corrections to the free quark decay have been computed in [10] and refs.
therein. They read

0(a)
(p+ )

wl = {s §(0) — 2 (1 — Eoly) H ) + } + R; 0(q), (2.15)
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where S; = S + A, and

1—p—6¢° (1—p)* = 64¢°(1 +p) +5(¢*)?
S = 2Ey(lho—I1p) —1— —————Inp— Lo;
0 ( 2,0 4,0) A2 np 432 1,0 5
p 1—p (1-p)? 1+4p
Ay = ——=1y; Ay = 1 — Lo Az =0
1 By 10 2 17 Hp+< 17 1 1,05 3 ;

and the functions R; are given in Eqs. (2.32-2.34) of Ref. [10].! The integrals Iy, Iy, I,
and I, are given below in Eqs. (A.6,A.7,A.8) and the plus distribution is defined by

H — lim {me 5(i) + = 0t — )0(1 - a)} (2.16)

u i e—0

or equivalently by its action on a test function f():

/dﬁf(a) H+ _ /01 gi L@ = JO) (2.17)

u u

The upper limit of integration in the rhs of (2.17) can be chosen arbitrarily, but it is
convenient to have it larger than the physical boundary, 4. Ref. [10] uses 4, as upper
limit, and the two definitions are related by the simple expression

U U U

3 The calculation of O(a,u2/m}) effects

The four diagrams in Fig. 1 are our starting point. They contribute to the weak current
correlator of Eq. (2.1) and are sufficient to determine both VVi(l) and VVi(W’l), while additional
diagrams with external background gluons are necessary for the determination of W'Z-(G’l).
The momenta of the external b quarks and W bosons are p = muv+k and ¢, respectively. We
write down the corresponding off-shell forward amplitudes, and extract the contributions
to Wi 2,3 by contraction with appropriate tensor projectors. We then Taylor expand around
k = 0, i.e. around the mass-shell of the b quarks, through O(k?). We always work in
d = 4 — 2¢ dimensions and use dimensional regularization for both ultraviolet and infrared
divergences. The result of the Taylor expansion is reduced to scalar integrals, which are in
turn expressed in terms of 4 independent master integrals, listed in the Appendix, using
Integration by Parts (IBP) identities [20].

The forward amplitudes obtained in this way correspond to quark matrix elements of
local operators which eventually have to be evaluated in the B meson. In particular, the

!The variables ©, Ay, and 7 of Ref. [10] correspond to —2Ep, A and (1 —t)/(1 + t), respectively.
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Figure 1: One-loop diagrams contributing to the current correlator.

k-dependent coefficients of the master integrals should be expressed in terms of B meson
matrix elements of local operators. To this end it is convenient to use HQET: all O(k) and
O(k?) matrix elements can be expressed in terms of

o _ 1 - g _
AL = %<B(v)|bv(iD)va|B(v)> , Ao = —%(B(z})\bv%Gwa"”bv\B(v)) . (3.1)
where D), = 0,+ig;G}, T is the covariant derivative, G, the gluon field tensor, and b, is the
static quark field (see [19] and refs. therein for details). While A\; and A, are defined in the
asymptotic HQET regime, in practical applications one deals with u2 = —\; + O(1/my)
and pZ = 3X\y + O(1/my), defined in terms of full QCD states at finite my. The power
corrections to these relations are irrelevant for our calculation. In this paper we consider
only the terms proportional to A;.

The next step to compute the physical structure functions W; consists in taking the
imaginary part of the result. There are two kinds of contributions to the imaginary part:
the first comes from the imaginary part of a charm propagator, raised to power n, outside
of the loop, via

1. 1 _ D" s
T [(v—q?—p+in)"  nl

the other comes from the imaginary part of a loop integral, and is related to real gluon

emission. In the first case the real part of the loop integrals is multiplied by §(u) or

its derivatives. It follows that the real parts of the master integrals, together with their

derivatives wrt 4, are only needed at @ = 0, i.e. with partonic kinematics. The derivatives

of the master integrals wrt @ can be, in turn, re-expressed in terms of the same master

(@); (3-2)



integrals, for example using

a _ %094, 9 _ L@~ dogu) O (3.3)
di | fixed ¢2 ot 3(]0 3qﬂ fixed g2 2 (qAQ — QAS) 3(]“ . .

As a result, the contribution to the final result coming from the real parts of the loop
integrals can be expressed in terms of a single combination of dilogarithms and a single
logarithm, defined as I, and I, o in Egs. (A.6,A.7). The latter are the same functions that
appear in Eq. (2.15).

All the singularities are located at the threshold, « = 0. We therefore identify in the
master integrals the terms which potentially lead to infrared divergences and employ the
identity

A-1

o ArBe Z (—1)? 5@ (q) N i (Be)" {ln"u} | (3.4)

— pl 1+p— A+ Be n! A

valid for A > 0, where the plus distributions are defined by generalizing Eq. (2.17),

ol o [t fo-Faeo]

p=

with f®)(u) = %(p“). These terms enter the imaginary part of the master integrals and
control the infrared divergences due to real gluon emission.

In the calculation of W 5 the problem of the d-dimensional definition of 5 can be avoided
by simply anticommuting it with all v* matrices. In the case of the parity violating structure
function W3, however, one needs to proceed with care and adopt a d-dimensional definition
for the axial-vector current. One possibility is to follow [21] and employ the replacement

1
Y ysh — —1 3'6"”" Y Yp Yo, (3.6)

where €77 is a strictly 4-dimensional object. This Levi-Civita tensor is multiplied by
another antisymmetric e tensor, necessary to extract the W3 component of the amplitude,
and their product can be expressed as a combination of metric tensors. The latter can then
be taken in 4 — 2¢ dimensions. This definition has several advantages but it violates chiral
symmetry and its basic Ward identities. Therefore it requires the introduction of a finite
one-loop renormalization constant Z5

1
Yyt ysh — —i 56‘“’”" Z5 E%Y Yo bs (3.7)

of course in addition to the wave-function renormalization of the external legs. Z5 is given
in [21] and Refs. therein for the massless case,

Zs=1-Cp 22, (3.8)
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and we have checked that this result applies to the case of massive quarks as well. Another
possibility, which leads to the same result without an extra finite renormalization, is to
anticommute 75 to the extreme left of the Dirac string in all diagrams and then to replace
it by its four-dimensional definition.

After combining all the diagrams, the infrared divergences are cancelled and the ultraviolet
divergences are removed by the b quark wave function renormalization and the charm mass
renormalization. The charm mass renormalization also removes all the §”(4) terms. No
renormalization is necessary in the effective theory [19].

4 The O(azu2/m?) results

We now report our results for the O(ay) corrections to the Wilson coefficients of the kinetic
operator. The most singular part of the W;s has a universal structure

Ao

Bem =3

{[S +3(1—E0110)]5”( ) — 4(1 — Eoly,) {%L} (4.1)

and the complete results are

_ 8 1 1 ) /e
W = 2B B 500 Bl - B (B |5 <2 (] ) o
+ +

SE 1 — E E2 A
T0 { . 5, — No(1 — Eolip) — 70+(3E02—p)1170 — 2Fy(14+ 1) + 3} §'(a)

8 A 1 — E,)? 3
2 |8y — EoSy 4 Eo(1—Eoly ) | 2 — (= Eo)” +Ey )+ (E2—ZE)— P Lo
3 2 o 4 4

3E3 — 2(E2 4+ 2Ey — 2p(1 — E
+4 0 4( 0+ 0 p( 0)) 5({07 (42>
02
- 1 ) nse
W™D = 4By — 16(1 — Bl 0)(1 — Ey) [ﬁ} + R 0(a) (4.3)
+

o+ 28] 51a)

2 13E, )
—+ <§ —+ 12 ) [1@}5(’&),

i 2 1 1 ™) o/ n
W3( 71) — 23(3771—) - 4(1 - EOILQ) (g(l — Eo) |:A—:| — |:7:| ) + Ré )e(u)
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N _(1—E)>\ E2—pEy+2 5
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;L {(1 — Ep)S +2Xo(1 — Eplh) — 2<[1 0— %) (Eo — p)} 6'(@) (44)



Eo(Eo—p)
2

In the above expressions the coefficients of the derivatives of (@) have been reduced using

integration by parts: for instance

_2{5_(4(1—3))2 4Ey  2Xo 5(4).

_ 220 1) 1—Eyl 1= Eg) o —
» 3 + 3 +1)( 01,0)+( 0) 1,0

f(a)8"(a) = f(0) 6" (@) — 2f'(0) &'(@) + f"(0) 6(a). (4.5)

The coefficients of the plus distributions can be similarly reduced by Taylor expanding them
around u = 0, for example:

i |5| =10 |5] +roff] LGRS G

2
N U

where the last term is regular for « — 0.

The functions REF) are related to real gluon emission and are given by

R — §EO((1—E0)(E0 —2a) Eo>\o>IL0 3@t +2(1-5E)u+ 3 (E*-E) (I 1 )

1 — —

3 [ a3 A E
ST 3 ﬂ+E—z+E2)\+E(E—E2—)\) I+16E2(E—z)
3\8° 8 4 i 3 2 ! 3022
0? (4E* — Bz — 22%) n —8F3 —3E?2 +5E2(2 + 1) + (5 — 22)2? (47
6F 23 323 '
AE(2E?* —5Ez +42%) 0 (24E* — 12F32 + 4E%(2 — 3)2 + E (22 — 623) + 323)
+ . + :
31 22 6F 24
16 Eg\ 16(1— Fy) E, I 2 4(1—Fy)? — X
(r)y 010 0)L0 1 4
Ry’ = ~3 5 ([10—[1)——a2 ([1,0— g) _§[16E0 il
1—Eg)?Ey /1 1 E% — E(T1i+ 94) 4 1042 + 430 + 24
—64w(———>+70 (714 4 94) + 100° + 434 + +2][1
i Ao A A
8(E—1)*(14(E* — E) — 4(15E — 24 — 3)) 1 8E E
+ A2 (Il B E) + 24
2(6Fi — 8E +a(3a—4)) SCETEREER) st qgsp gy
+ + . —
323 U 3\
L (2E- 1)a2 . SAE? —25E+7 (22E2—21E+3)a)\ (4 1
3E3 3E? 6E3 Az
202 | -
S _10E—-T7a+10 32E(E — z)
E 4.8
22 + 3uz (4.8)
R _ _8E (Ao—an+(1—%)a)]lo 8(3E—5E*+2z) 8EA 4-% 2 .
3 303 ’ 302 303 i 3
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4(1-E)(3(E—E?) — 4(1-9E+24)) (1 1 ) L ABU 2(4B” + 3B+ )
_ g _

3N E 24 323
$E? 208z 4 8:(: +1) | 6E(E-z) | T-3E-2 TE-2-1
3022 302z 322 3Ez ’ ’

with z = 4 + p. Of course, the functions RZ@ are regular in the limit @ — 0.

The above results can be used in Eq. (2.11) to compute the O(a,u2/m?) corrections to
the total rate and to the moments of various differential distributions. The phase space
integration is rather delicate because of strong cancelations between different singular terms,
especially in the presence of a cut on the lepton energy. We have compared the numerical
results with those in Tables 1 and 2 of Ref. [15] and found agreement in all cases. In
principle, it is also possible to take the limit p — 0 and obtain analytic results for the
B — X, (v decay.

5 Reparameterization Invariance relations

Reparameterization Invariance (RI) [16, 17] connects different orders in the heavy quark
expansion. In particular, as we have mentioned in the Introduction, RI links the coefficient
of the kinetic operator to the coefficient of the leading, dimension 3 operator. In the total
rate this corresponds to a rescaling factor 1 — p2 /2m? on the leading power result, which is
nothing but the relativistic dilation factor of the lifetime of a moving quark and applies at
any order in perturbation theory. The relations for differential distributions and moments
tend to be more intricate, see [15], especially in the presence of experimental cuts.

Recently Manohar has derived elegant RI relations [18] that apply directly at the level
of the structure functions W;. They are also valid to all orders in perturbation theory and
give the a” coefficient of p2 in terms of the leading o coefficient and its derivatives:

2 dﬂf(") by dQHf(")
wrm = g S gg, — L 4 22 )
! rot g g T3 daz
5 14 dwi”  xew
Wyt = S = = — 2 — S 5.1
2 372 T 3™ T ga T3 aw (5:.1)

I ) SR Y16

5T T3P Tga T 3Tda
To verify these relations from Eq. (2.15) we need the first two derivatives of the plus
distribution of Eq. (2.17). They can be re-expressed in terms of the higher order plus

distributions introduced in Eq. (3.5) and of delta functions:

H' . {iwa ~§(a), (52)



where we have neglected terms that do not contribute upon integration in the physical
range (2.3). The coefficients WZ-(W’I) obtained from Eq. (2.15) using the RI relations agree
with the results given in the previous Section. Using Eqs. (5.1) one can also verify the
relations between moments with and without cuts given in [15].

6 Summary

We have presented an analytic calculation of the O(ay) corrections to the Wilson coefficient
of the kinetic operator in inclusive B — X fv semileptonic decays, following and extending
the method developed in Ref. [19]. We have confirmed the numerical results presented in
[15] and reproduced the RI relations given by Manohar [18]. We have provided several
details of the technique we have used; in particular, the Appendix contains all the master
integrals.

The calculation represents the first part of a complete study of the perturbative corrections
to the coefficients of the power suppressed dimension 5 and 6 operators, and has offered us
the opportunity to perform various checks. Our technique is currently employed to compute
the O(aspu?,/m?) corrections, as done already in the case of B — Xy in [19].
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Appendix

In this Appendix we list the master integrals relevant to our calculation. Whenever ap-
propriate, they are expanded in € up to the order which is necessary in our calculation.
As explained above, we need both the imaginary and real parts of the master integrals.
However, since their real parts always appear multiplied by d(u) or its derivatives, the real
parts and their derivatives wrt @ are only necessary at @ = 0, i.e. with partonic kinematics.
We introduce

dk; 1
[n na,n3) — —1 26/ . . ) ’ Al
(n1,n2,n3) L w2 (k2 +in)™ [(k—p)2—m + in]"2[(k—p—+q)? — m?2 + in|"s (A1)
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Let us also employ 2 = (p — q)?/m? = 4 + p. The massive tadpole integral is always real
and is given by

To10) = m} ~y 1+1+e 1+7T—2 + O(€?) (A.2)
” b\ m? € 12 ’

with Jg,1) given by the same expression with my < m.. We have two distinct two-point
functions. The first one develops an imaginary part for (p — ¢)* > m?2:

2 € 1 A —€
Inony = € T(e) (“—) / dz(1 — )~ {1 - %x - m] (A.3)
0

2
me

2\ € (1 1
_ <N_2) {261 111726 |:€z7re <_ + 2) - 1:|
mb € 2¢

zZ+ 1 ulnz+2pln
+ p[ +2- P p}—i—O(e)}.

2 |e Z+p

The value and derivatives wrt @ of I(1,1) at % = 0 can be readily obtained from the above
integral representation:

dl01 p*\° _ [1
Inon|,_y = —20—S2Y ] = (55) p ~+2+0(9),

du m;
d*I1,0,1) 2\ 5[]
i ’12:0 = (m_§> 1% [; +1+ O(E)} s
Plaoy, 5 (2N o [L 1 50
ais =0 C\z) P e T2 T

The second 2-point function is always real in the kinematic domain we are interested in.
It can be directly expanded in e:

2

Iowy = e™T(e) (“—2) /O i [zp+ (1 —2)(1 — 26%)] " (A.4)

my

2\ € 9
12 1 1-— —(q Eoto 1+t0
= — - +24+ ——1 1 O .
<m§> L#— + 27 np—+ 7 nl—t0+ (€)

The only three-point function is I(11,1); we reduce it in the following way

GF € 2\ € L s ~ . —1—¢
Iniy = _ewem_(g) (:1_%) /0 dedys=[zx — (1 —y)(a+in)] " (A.5)
Ld

L@\ Ay [ o gmel (11 X
- __— (= -d € 2ime — [ 21 O
mj (mi) /0 X [u e\ ety (€

1 1
—— +Iny— -1
2€+ ny 5 nx+O(e)],
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where xy = 2+ y(1—¢* — 2) + ¢*y*, x = p+ y(1 — ¢° — p) + ¢*y*.
We need the real and imaginary parts of /111, as well as its derivatives wrt @ at @ = 0.
The latter can be computed from the Feynman parameter integral or can be expressed in

terms of the master integrals at « = 0 by applying the derivative wrt @ at the integrand
level in (A.1), see Eq. (3.3). We obtain, up to O(e) terms,

1 1
1 = ~Iio—1
(1,1,1) 420 ng <€ 1,0 4,0) )
d 1 1 I
I — —E))(= =2 1—Ey)(— -1 FEyl
o0 = oo (0= BE =24 p(1 = E)(2 — 1ug) + )
d? I 2 fi()z—ﬁ/pz+ a2+A2 Lo I N 16 (Inp+2)
= — — — — (In
daz” M) o Adm? de o 1 € 0 p? P
7 1 1-¢°
T, L 1= (+2ph,) ’
2 2 2p
where 3 = —8E2(Ey + p) + 4p(5Fy — p), a = 2(1 — Ey), and
| In 1t 1y In Lo
L = / dy—— = —=", Lip= / dy—— = =3 (A.6)
o Xy VA o X VX
Polx(y) 1
I = / dy— = Lis (a1)—Lis (@
4,0 0 Y X(ZJ) tO EO 2 ( 1) 2 ( 2)
1+tg 1 3 l—Eo(l—to)
1 In Eo(1—tg)4(1+¢ In Eg(1+tp) In ——————% A7
oy nEo(1—to)t(14to)* +In Bo(I+to) Ing—p = v ) (A7)
and
2t0/(1 +t0) 2t0 EO
a; = 5 Az = )
1 — Eo(1 —tp) 1 — Eo(1 —tp)
For the imaginary part we also need the integral
1 Y
I, - / dy In[x(y)/(1 — y)*]
0 X(y)
and its first derivatives at @ = 0:
I, o Ly — 215,
dI 2(1 - Eo) (p—Eo)Inp
—= = ———— L (I — 21— 21 22—
74 oo o (Is0 1,0 2,0) + o PR
d2[X _ (3@2 + 2E02t3) ([470 — 3[170 — 2[270) + qA2<[170 — Eo/p) _ ﬁ — 6Oép2 (ln _ 1)
du? la=o A\a/4 pEA2 P ’
where )
In(1 — Lis(1 — Eo(1 + 1)) — Lis(1 — Ep(1 — ¢
Lo = / dy n(_ Y) _ io( o(1 + o)) — Lis( o 0)). (A.8)
0 X(y) Vo
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