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Abstract

We consider the most general CP-conserving renormalizable effective scalar potential involving
two doublets plus one singlet Higgs and satisfying the electroweak gauge symmetry. After deriving
the electroweak-symmetry breaking conditions, we focus on special cases, characterized by specific
symmetry properties and/or relations to supersymmetry-inspired extensions of the Standard Model
(e.g. n/NMSSM, UMSSM). We then investigate the question of the reconstruction of the potential
parameters from the Higgs masses and mixing angles and show that in some specific cases, such
as the one of an underlying NMSSM, an accuracy at the order of leading-logarithms is achievable
with minimal effort. We finally study a few phenomenological consequences for this latter model.
More specifically, we consider how our parameter reconstruction modifies the outcome of two publicly
available codes : micrOMEGAs and NMSSMTools. We observed noteworthy effects in regions of parameter
space where Higgs-to-Higgs decays are relevant, impacting the collider searches for light Higgs states
and the prediction of the Dark-Matter relic density.



Introduction

The origin of ElectroWeak Symmetry Breaking (EWSB) stands as one of the critical questions in high-
energy physics and a central goal of the Large Hadron Collider (LHC) is to reveal its nature. The
recent discovery of a new massive boson around 125 GeV [?], reported by both the ATLAS and CMS
collaborations [?], and supported by the broad excess seen at TeVatron [?], represents a first step towards
the identification of the Higgs boson and the measurement of the underlying Higgs potential, a task which
however only the next generation of colliders will probably complete. Although essentially compatible
with the Higgs boson of the Standard Model (SM), this new state may already be hinting towards some
new physics, in that the peaks of the diphoton and ZZ → 4l decays differ from what one would expect
in the SM. The stronger signal in the H → γγ channel, in particular, seems of importance because this
loop-induced process is particularly sensitive to physics beyond the SM. One should also consider the
non-observation of events at CMS – although supported by very little statistics – in the H → ττ channel.
Testing the SM-nature of this would-be Higgs state, inspecting possible deviations in its coupling to SM
particles shall represent a major undertaking of modern particle physics and a probable probe into the
mechanism of EWSB.
The ‘Higgs mechanism’ [?], involving scalar elementary fields, is the most efficient way to generate
masses for the fermions and gauge-bosons. Its implementation within the SM is the minimal one: only
one scalar field, transforming as a doublet under SU(2)L, is introduced to break the electroweak (EW)
symmetry through its vacuum expectation value (v.e.v.). Nevertheless the Higgs sector is still essentially
undetermined and there is no reason to stick to minimality if some benefits should emerge from a more
elaborate scalar sector. For instance, introducing a second Higgs doublet allows for an implementation of
CP violation through this sector [?]: CP violation appears in this context because some of the parameters
in the potential of the Two Higgs Doublet Model (2HDM) can be chosen complex (non-real). Yet the
requirements relative to neutral flavor conservation constrain this possibility significantly. Large flavour-
changing couplings of neutral Higgs bosons can be avoided in the so-called ‘2HDM of type II’, where
the Higgs doublets Hu and Hd, of opposite hypercharges Y = ±1, enter separately, and respectively, up-
and down-type Yukawa terms (at tree level). Another (more exotic) possibility consists in requiring the
alignement of the Yukawa coupling matrices in flavor space: see [?]. Although such 2HDM’s may hold as
autonomous extensions of the SM, they can also be embedded within more elaborate models: Left-Right
gauge models and their Grand-Unification Theory (GUT) ramifications – Pati-Salam, SO(10), etc.– offer
a first framework for this operation, in which the question of CP-violation was originally central [?].
From another angle, the well-documented ‘Hierarchy Problem’ [?] underlines the theoretical difficulties
for understanding the stability of a Higgs mass at the electroweak scale, with respect to new-physics at
very-high energies (GUT, Planck scales). Regarding the SM as the low-energy effective theory of some
more-fundamental model, the quadratic sensitivity of scalar squared masses to new-physics masses would
lead to a technically unnatural fine-tuning of the Higgs-mass parameter in the more-fundamental theory
with the radiative corrections resulting from the integrated-out new-physics states. . . Unless new-physics
appears sufficiently close to the electroweak scale: typically at the TeV scale. Among the proposed
solutions, Supersymmetry (SUSY) allows to stabilize a scalar Higgs mass at the electroweak scale, due to
the renormalization properties of supersymmetric theories. However, SUSY being obviously not realized
in low-energy particle physics, viable SUSY-inspired models need to include SUSY-breaking effects, which
are parametrized within the Lagrangian through the so-called ‘soft terms’, generate e.g. mass terms for
all non-SM particles and trigger the Higgs mechanism. This ad-hoc setup could yet remain an acceptable
solution to the Hierarchy Problem only if the supersymmetry-breaking scale is near the electroweak
scale. Other attractive properties of SUSY-inspired models lie in the possibility of one-step unification,
due to the more-convergent running of SM-gauge couplings in the presence of the enlarged SUSY field-
content [?], or in the dark-matter (DM) sector, the lightest supersymmetric particle being a stable (or
long-lived) and viable candidate in the presence of (approximate) R-parity [?].
Holomorphicity of the superpotential (cancellation of gauge-anomalies) dictates the requirement for at
least two SU(2)L Higgs doublets in a SUSY-inspired model, intervening in a Type II 2HDM fashion, so
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that both up-type and down-type masses be generated. The simplest implementation of a SUSY-inspired
SM, known as the Minimal Supersymmetric Standard Model (MSSM) [?] confines to this minimal 2HDM
requirement. There, the quartic Higgs couplings are determined by the EW gauge couplings, which results
in tight constraints on the tree-level mass of the lightest Higgs boson: the latter is indeed bounded from
above by the Z0-boson mass MZ . Radiative corrections improve this feature and can arrange for fairly
heavy Higgs masses provided the SUSY-scale is large enough, see for example [?]. Yet this last necessity
tends to conflict with the naturalness-dictated <∼ 1 TeV SUSY-breaking scale. Accommodating for a
Higgs state at 125 GeV in the MSSM hence severely constrains the parameter space of this model [?].
Another criticism to this minimal setup, the so-called ‘µ-problem’ [?], points out the necessity of tuning
a supersymmetric mass-term, the conventionally-baptized µ parameter, at the electroweak/TeV scale in
order to ensure EWSB: being of supersymmetric origins, this parameter is in principle unrelated to the
SUSY-breaking scale and would thus coincide with it out of sheer coincidence.
The introduction of an additional gauge-singlet superfield S addresses both shortcomings of the MSSM.
The µ-term can indeed be generated effectively through a λSHu ·Hd term when the singlet takes a v.e.v.
s: µeff. ≡ λs [?]. Concerning the lightest Higgs mass, the presence of a new superfield coupling to the
Higgs doublets induces additional contributions to the Higgs mass matrix, so that the MSSM limit can
be exceeded, already at tree-level [?, ?]. It is also worth to mention that the lightest CP-even Higgs
state in this context might well be dominantly of a singlet nature, hence, the singlet decoupling from
SM-fermions and gauge bosons, essentially invisible at colliders: the SM-like Higgs state would then be
the second lightest and a small mixing effect with the singlet would thus shift its mass towards slightly
higher values. In short, radiative corrections are no longer the only mechanism able to generate a SM-like
Higgs-state heavier than MZ in such a singlet-extension.
The simplest version of such a model with singlet-enlarged superfield content is known as the Next-to-
Minimal Supersymmetric Standard Model (NMSSM) [?,?]. It relies on a Z3 discrete symmetry in order
to forbid all dimensional parameters (including µ) in the superpotential, so that the soft-terms provide
the only relevant scale in the scalar potential, triggering the EWSB. Several other SUSY-models engaging
a singlet in addition to the two Higgs doublets are to be found in the literature, including the nearly
Minimal Supersymmetric Standard Model (nMSSM, sometimes MNSSM) [?,?], U(1)′-extended MSSM’s,
with their simplest version known as the UMSSM [?], models based on the E6 exceptional group [?],
SUSY/compositeness hybrids, such as ‘fat Higgs models’ [?] or models using the Seiberg Duality [?], etc.
In the present paper, we aim at studying the effective Higgs potential involving 2-doublet+1-singlet Higgs
fields. The relations between physical input, represented by the mass matrices and mixing angles, and
the parameters of the potential, as well as with the trilinear Higgs couplings, shall be at the center of
this discussion, in view of a possible reconstruction of the potential from such input, at, and beyond,
leading order (LO). Similar analyses for the 1-doublet setup [?], or the 2-doublet setup, for instance
in [?], with the MSSM as a background-model, have already been proposed in the literature. Given
that the singlet-extensions of the MSSM offer a natural origin to our 2-doublet+1-singlet setup, we
shall refer and return explicitly to such models in the course of our discussion: specific attention will
be dedicated in particular to the n/NMSSM or the UMSSM. Most of our discussion should however be
generalizable to other models resulting in a 2-doublet+1-singlet Higgs potential1, as long as matching
conditions or/and symmetry properties are satisfied. The first part of the present paper shall be dedicated
to the presentation of the general framework, including notations, the discussion of residual symmetries
and the pattern of EWSB leading to the Higgs spectrum. In the second part, we shall focus on the
question of the reconstruction of the potential from a measurement of the Higgs masses and mixing
angles: beyond the general case where a large number of undetermined parameters remain, the possibility
of a reconstruction in constrained models will be discussed at leading order. The analysis of the large
logarithms appearing in the Coleman-Weinberg [?, ?] approach shall convince us, in particular, that a

1We have already referred to Left-Right models and their GUT extensions as an alternative approach to the 2HDM
framework. Note that the addition of a SM-gauge singlet is essentially an undemanding requirement and may be arranged
within such models as well.
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full reconstruction at the order of leading logarithms should be achievable in the Z3-symmetric case
represented by an underlying NMSSM. Concentrating on the NMSSM in the last part, we shall analyse
the phenomenological consequences for this model, both in terms of constraints from Higgs-to-Higgs
decays and computation of the Dark-Matter relic density. The decay h0i → γγ [?] will also be revisited,
although little impact is expected there. This phenomenological analysis will rely on the numerical
output of several public codes, including NMSSMTools_3.2.0 [?,?], micrOMEGAs_2.4.1 [?,?] and a version
of SloopS [?,?] adapted to the NMSSM [?].

1 Two Higgs doublet plus one singlet potential

1.1 General parametrization

New-Physics (NP) effects are most conveniently encoded in terms of effective Lagrangians. Under the
guidelines of Lorentz and gauge invariance, as well as possible additional symmetries, one can write a list
of all the operators, classified according to their mass-dimension. For the two SU(2)L doublets and the
singlet, we shall use the notations (with vd, vu and s representing the v.e.v.’s of these fields):

Hd =

(

vd + (h0d + ia0d)/
√
2

H−

d

)

, Hu =

(

H+
u

vu + (h0u + ia0u)/
√
2

)

, S = s+ (h0s + ia0s)/
√
2 (1.1)

The most general Higgs potential involving these fields and compatible with the electroweak gauge sym-
metry then reads, when one restricts to renormalizable terms:

VS
eff. = m2

Hu
|Hu|2 +m2

Hd
|Hd|2 −

(

m2
12Hu ·Hd + h.c.

)

+
λ1

2
|Hd|4 +

λ2

2
|Hu|4 + λ3|Hu|2|Hd|2

+ λ4|Hu ·Hd|2 +
[

λ5

2
(Hu ·Hd)

2 + (λ6|Hu|2 + λ7|Hd|2)Hu ·Hd + h.c.

]

+ m2
S|S|2 + κ2|S|4 +

[

λTS +
µ2
S

2
S2 +

AS

3
S3 +

ÃS

3
S|S|2 + κ2S

4
S4 +

κ̃2S
4
S2|S|2 + h.c.

]

+
[

AudSHu ·Hd + ÃudS
∗Hu ·Hd + λM |S|2Hu ·Hd + λM

P S∗ 2Hu ·Hd + λ̃M
P S2Hu ·Hd + h.c.

]

+ λu
P |S|2|Hu|2 + λd

P |S|2|Hd|2 +
[

(AusS + λ̃u
PS

2)|Hu|2 + (AdsS + λ̃d
PS

2)|Hd|2 + h.c.
]

(1.2)

The first two lines comprise the usual 2HDM potential, the third one, the pure-singlet terms and the
latter two, the singlet-doublet mixing-terms. m2

Hu
, m2

Hd
, λ1, λ2, λ3, λ4, m

2
S, κ2, λu

P and λd
P are (10) real

parameters, while m2
12, λ5, λ6, λ7, λT , µ2

S , AS , ÃS , κ2S , κ̃2S , Aud, Ãud, λM , λM
P , λ̃M

P , Aus, Ads, λ̃
u
P and λ̃d

P

are (19) in-principle-complex parameters. One parameter (e.g. λT ) is superfluous and may be absorbed
in a translation of the singlet; three others (m2

S , m2
Hu

and m2
Hd

) can be traded for the field vacuum
expectation values through the minimization conditions. From now on, we will consider, for simplicity,
that all the parameters are real, hence barring the possibility of CP-violation. (We will however continue
to refer to the 19 potentially non-real parameters as ‘complex’ parameters.)

1.2 Symmetry classification

By imposing additional symmetries, the form of the potential in Eq.(??) can be further constrained
at the classical level and the remaining parameters2 λcl.

i will be called ‘classical’ parameters. At the
quantum level, all the eliminated terms λqm

j may reappear, in principle, if the symmetry is broken, either
directly by the quantum fluctuations, or spontaneously, when the fields acquire v.e.v.’s. In the later
case, symmetry-violation is a relic from higher-dimensional operators at the non-symmetric vacuum, due

2We shall use the notation ‘λi’ in order to concisely refer to any parameter entering Eq.(??).
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to the truncation of the potential to dimension ≤ 4 terms. To be definite, if at high energy, beyond
a certain scale Λ, the symmetry holds, the potential V is then well approximated by its classical form
(the symmetry-violating effects being negligible) and the λcl.

i at the scale Λ may be chosen as boundary
conditions for the general parameters of Eq.(??),

λcl.
i = λ(Λ) ; λqm

j = 0 (1.3)

such that V ≡ V(λcl.
i (Λ)). At scales µ ≪ Λ, however, symmetry-violating effects are no longer negligible

so that non-trivial values of λqm are generated by the renormalization group equations.
We shall now enumerate possible symmetries one can impose to the potential of Eq.(??):

• Discrete Zn-symmetries: they are characterized by the transformations Φ 7→ e
2ıπ
n

QΦΦ, where
Φ = S,Hu,Hd and QS,Hu,Hd

are the charges under the discrete symmetry group. They allow for
significant selectivity among the complex terms of the general potential, while avoiding the prob-
lem of an axion (unless the potential they induce is also accidentally U(1)-invariant). Spontaneous
breakdown of these symmetries (through Higgs v.e.v.’s) however generically leads to cosmological
difficulties, in the form of a domain-wall problem [?], which should then be addressed separately.

1. The complex doublet-terms are controlled by QHu + QHd
: QHu + QHd

≡ 0 [n] causes no con-
straint; for even n, QHu + QHd

≡ n
2 [n] allows only for λ5; other choices forbid all the corre-

sponding terms.

2. Complex mixing-terms are governed by both QHu+QHd
and QS . Only in the case {QHu+QHd

≡
0 [n],QS ≡ 0[n]} are they all allowed by the Zn-symmetry. Otherwise, the relative choice
of QS and QHu + QHd

constrains them, with the specific values QS ≡ ±(QHu + QHd
) [n],

2QS ≡ ±(QHu +QHd
) [n] and up to the exclusion of all these terms.

3. The complex singlet-terms are governed by QS , ranging from conservation of all (QS ≡ 0 [n])
to exclusion of all, with the special cases 2QS ≡ 0 [n], 3QS ≡ 0 [n] and 4QS ≡ 0 [n].

A typical example for such a discrete symmetry and deserving particular attention is that of the Z3-
symmetry with charges QS,Hu,Hd

= 1: this corresponds to the case of an underlying NMSSM.Invariance

under Φ 7→ e
2ıπ
3 Φ reduces the potential to the form:

VS
Z3

= m2
Hu

|Hu|2 +m2
Hd

|Hd|2 +
λ1

2
|Hd|4 +

λ2

2
|Hu|4 + λ3|Hu|2|Hd|2 + λ4|Hu ·Hd|2

+ m2
S |S|2 + κ2|S|4 +

[

AS

3
S3 + h.c.

]

+ λu
P |S|2|Hu|2 + λd

P |S|2|Hd|2 +
[

AudSHu ·Hd + λM
P S∗ 2Hu ·Hd + h.c.

]

(1.4)

The tree-level conditions resulting from the NMSSM read:

λ1 =
g2 + g′2

4
= λ2 ; λ3 =

g2 − g′2

4
; λ4 = λ2 − g2

2
; λu

P = λ2 = λd
P ;

λM
P = λκ ; AS = κAκ ; Aud = λAλ ; κ2 = κ2

(1.5)

Our notations for the SUSY parameters follow those of [?], except for the electroweak gauge couplings
which we denote as g′ and g for, respectively, the hypercharge U(1)Y and the SU(2)L symmetry.

• Continuous global symmetries: here we mean essentially global phase transformations Φ 7→ eıQΦαΦ,
that is U(1)-Peccei-Quinn (P.Q.) symmetries [?]. Such symmetries are spontaneously broken by the
v.e.v.’s of the Higgs fields so that they produce massless axions. They are also chiral in nature, so
that anomalies will be generated at the quantum level (unless the field-content is enlarged so as to
cancel them). Such symmetries are thus likely to stand only as approximate limiting cases.

1. {QHu +QHd
= 0, QS = 0} is automatically satisfied: this is the hypercharge.
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2. {QHu + QHd
= 0, QS 6= 0} preserves the doublet potential while constraining drastically the

singlet couplings:

VS−S
PQ = m2

Hu
|Hu|2 +m2

Hd
|Hd|2 −

(

m2
12Hu ·Hd + h.c.

)

+
λ1

2
|Hd|4 +

λ2

2
|Hu|4 + λ3|Hu|2|Hd|2

+ λ4|Hu ·Hd|2 +
[

λ5

2
(Hu ·Hd)

2 + (λ6|Hu|2 + λ7|Hd|2)Hu ·Hd + h.c.

]

+ m2
S |S|2 + κ2|S|4 + λu

P |S|2|Hu|2 + λd
P |S|2|Hd|2 +

(

λM |S|2Hu ·Hd + h.c.
)

(1.6)

3. {QHu +QHd
6= 0, QS = 0} constrains severely the doublet sector, as well as the mixing terms,

while leaving the pure-singlet potential untouched:

VS−D
PQ = m2

Hu
|Hu|2 +m2

Hd
|Hd|2 +

λ1

2
|Hd|4 +

λ2

2
|Hu|4 + λ3|Hu|2|Hd|2 + λ4|Hu ·Hd|2

+ m2
S |S|2 + κ2|S|4 +

[

λTS +
µ2
S

2
S2 +

AS

3
S3 +

ÃS

3
S|S|2 + κ2S

4
S4 +

κ̃2S
4
S2|S|2 + h.c.

]

+ λu
P |S|2|Hu|2 + λd

P |S|2|Hd|2 +
[

λ̃u
PS

2|Hu|2 + λ̃d
PS

2|Hd|2 + h.c.
]

+
[

AusS|Hu|2 +AdsS|Hd|2 + h.c
]

(1.7)

4. {QHu + QHd
6= 0, QS = −(QHu + QHd

)} is the ‘usual’ Peccei-Quinn symmetry (e.g. [?]) and,
without loss of generality, one may choose (QHu = 1 = QHd

, QS = −2). It induces a potential
of the same form as that of the Z3-symmetry (Eq.(??)), with the further requirement that AS

and λM
P vanish.

VS
PQ = m2

Hu
|Hu|2 +m2

Hd
|Hd|2 +

λ1

2
|Hd|4 +

λ2

2
|Hu|4 + λ3|Hu|2|Hd|2 + λ4|Hu ·Hd|2

+ m2
S|S|2 + κ2|S|4 + λu

P |S|2|Hu|2 + λd
P |S|2|Hd|2 + [AudSHu ·Hd + h.c.] (1.8)

5. {QHu +QHd
6= 0, QS = QHu + QHd

} is equivalent to the preceding case with the replacement
S 7→ S̃ = S∗.

6. {QHu + QHd
6= 0, QS = 1

2(QHu + QHd
)} is a variant, concerning the singlet-doublet mixing-

sector. This is again a subcase of the Z3-potential (Eq.??), with vanishing AS and Aud: in a
coarse understanding of the term, this may be considered as the ‘R-symmetric’ potential.

VS
PQ′ = m2

Hu
|Hu|2 +m2

Hd
|Hd|2 +

λ1

2
|Hd|4 +

λ2

2
|Hu|4 + λ3|Hu|2|Hd|2 + λ4|Hu ·Hd|2

+ m2
S |S|2 + κ2|S|4 + λu

P |S|2|Hu|2 + λd
P |S|2|Hd|2 +

[

λM
P S∗ 2Hu ·Hd + h.c.

]

(1.9)

Note that if one is interested in a SUSY-inspired model, this PQ′-symmetry would a priori forbid
the λSHu · Hd term, resulting in vanishing tree-level conditions for most of the parameters of
Eq.(??): it is therefore best understood as a R-symmetry at the SUSY level.

7. {QHu + QHd
6= 0, QS = −1

2(QHu + QHd
)} is equivalent to the preceding choice, with the

replacement S 7→ S̃ = S∗.

8.
{

QHu +QHd
6= 0, QS 6= ±

{

0, 12 , 1
}

(QHu +QHd
)
}

forbids all the complex terms, hence leading
to another, more-constrained subcase of the Z3-potential:

VS−C
PQ = m2

Hu
|Hu|2 +m2

Hd
|Hd|2 +

λ1

2
|Hd|4 +

λ2

2
|Hu|4 + λ3|Hu|2|Hd|2 + λ4|Hu ·Hd|2

+ m2
S|S|2 + κ2|S|4 + λu

P |S|2|Hu|2 + λd
P |S|2|Hd|2 (1.10)

In the following, we shall focus only on VS
PQ and VS

PQ′, which both can be viewed as subcases of

VS
Z3

.
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• U(1)′-gauge symmetries: they can be regarded as the gauged-version of the P.Q. symmetries, with
the important consequence that the P.Q.-axion is now unphysical. They emerge naturally from
U(1)′-SUSY models, containing SM-singlets charged under the additional U(1)′-gauge symmetry
and breaking it spontaneously while acquiring v.e.v.’s. The simplest version of such models, with
only one singlet, is called UMSSM [?] and leads back to the Z3-invariant Higgs potential, but with
vanishing AS and λM

P , i.e. VS
UMSSM = VS

PQ: see Eq.(??). The further tree-level conditions are
shifted from Eq.(??) according to (with QS,Hu,Hd

the Higgs charges under the U(1)′-symmetry and
gZ′ , the coupling constant):

λ1,2 → λ1,2 +
g2Z′

2
Q2

Hu,d
; λ3 → λ3 + g2Z′QHuQHd

; λu,d
P → λu,d

P + g2Z′Q2
Hu,d

; κ2 =
g2Z′

2
Q2

S (1.11)

Note that the SM-fermion sector is also charged under the U(1)′-gauge group, so as to ensure
invariance of the usual Yukawa terms. To avoid a chiral anomaly of the U(1)′ symmetry, an exotic
fermion sector will also be necessary.

One may also write tree-level conditions of a different form, not protected by any symmetry: this is
for instance the case in the nMSSM, where a Z

R
5 or a Z

R
7 symmetry [?] is imposed at the level of the

superpotential, so as to forbid all renormalizable pure singlet-terms, then broken explicitly by gravity
effects, in order to arrange for an effective tadpole term (so as to break the resulting P.Q. symmetry),
broken also explicitly by the soft-terms. The tree-level potential then differs from the Z3 case (??) by
the requirements:

λM
P = κ = AS = 0 ; λT ,m

2
12 6= 0 (1.12)

We hence define:

VS
T = m2

Hu
|Hu|2 +m2

Hd
|Hd|2 −

(

m2
12Hu ·Hd + h.c.

)

+
λ1

2
|Hd|4 +

λ2

2
|Hu|4 + λ3|Hu|2|Hd|2 + λ4|Hu ·Hd|2

+ m2
S |S|2 + [λTS + h.c.] + λu

P |S|2|Hu|2 + λd
P |S|2|Hd|2 + [AudSHu ·Hd + h.c.] (1.13)

While the absence of a residual symmetry at low-energy is a deliberate feature of the nMSSM (in order
to circumvent both axion and domain-wall problems), the resulting lack of protection of the tree-level
couplings at low-energy will lead to sizeable consequences for the parameter reconstruction at the loop-
level, as we will see later.

1.3 Mass matrices

Spontaneous symmetry breaking is achieved when the scalar fields develop a v.e.v.,

〈Hu〉 =
(

0
vu

)

, 〈Hd〉 =
(

vd
0

)

, 〈S〉 = s (1.14)

Imposing the minimization conditions associated with the most general potential in Eq.(??), one may
trade the parameters m2

Hd
, m2

Hu
, m2

S for the v.e.v.’s vu, vd, s. Introducing the usual definitions v ≡
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√

v2u + v2d ≃ 174 GeV, tan β ≡ vu/vd, we can write these relations as3,

m2
Hd

=
[

Aud + Ãud + (λM
P + λ̃M

P + λM )s
]

s tβ −
[

2Ads + (λd
P + 2λ̃d

P )s
]

s

− λ1v
2c2β − (λ3 + λ4 + λ5) v

2s2β +
(

λ6v
2s2β −m2

12

)

tβ + 3v2s2βλ7

m2
Hu

=
[

Aud + Ãud + (λM
P + λ̃M

P + λM )s
]

s t−1
β −

[

2Aus + (λu
P + 2λ̃u

P )s
]

s

− λ2v
2s2β − (λ3 + λ4 + λ5) v

2c2β +
(

λ7v
2c2β −m2

12

)

t−1
β + 3v2s2βλ6 (1.15)

m2
S =

[

Aud + Ãud + 2(λM
P + λ̃P

M + λM )s
] v2s2β

2s
−

[

AS + ÃS + (2κ2 + κ2S + κ̃2S)s
]

s

−
[

(Aus + 2λ̃u
P s)s

2
β + (Ads + 2λ̃d

P s)c
2
β

] v2

s
− λu

P v
2s2β − λd

P v
2c2β − λT

s
− µ2

S

The quadratic terms in H±

u,d provide us with the charged Higgs mass matrix:

M2
H± ≡

[

(Aud + Ãud + (λM
P + λ̃M

P + λM )s)s−
(

1

2
(λ4 + λ5)s2β − λ6s

2
β − λ7c

2
β

)

v2 −m2
12

] [

t−1
β 1

1 tβ

]

(1.16)

Its diagonalization expectedly delivers (massless) charged Goldstone bosons G± ≡ cosβH±

d − sinβH±
u

and the physical charged Higgs H± ≡ cosβH±
u + sinβH±

d , with mass:

m2
H± =

2

s2β

[

(Aud + Ãud + (λM
P + λ̃M

P + λM )s)s−
(

1

2
(λ4 + λ5)s2β − λ6s

2
β − λ7c

2
β

)

v2 −m2
12

]

(1.17)

We turn to the CP-odd squared mass matrix, written in the basis (a0d, a
0
u, a

0
s):

M2
P 11 =

[(

Aud + Ãud + (λM
P + λ̃M

P + λM )s

)

s+
(

λ6s
2
β + λ7c

2
β − λ5s2β

)

v2 −m2
12

]

tβ

M2
P 22 =

[(

Aud + Ãud + (λM
P + λ̃M

P + λM )s

)

s+
(

λ6s
2
β + λ7c

2
β − λ5s2β

)

v2 −m2
12

]

t−1
β

M2
P 33 =

[

Aud + Ãud + 4(λM
P + λ̃M

P )s
] v2s2β

2s
−

[

3AS +
ÃS

3
+ (4κ2S + κ̃2S)s

]

s (1.18)

−
[(

Aus + 4λ̃u
P s

)

s2β +
(

Ads + 4λ̃d
P s

)

c2β

] v2

s
− 2µ2

S − λT

s

M2
P 12 =

[

Aud + Ãud + (λM
P + λ̃M

P + λM )s
]

s+
(

λ6s
2
β + λ7c

2
β − λ5s2β

)

v2 −m2
12

M2
P 13 =

[

Aud − Ãud − 2(λM
P − λ̃M

P )s
]

vsβ

M2
P 23 =

[

Aud − Ãud − 2(λM
P − λ̃M

P )s
]

vcβ

The neutral Goldstone boson G0 ≡ cosβa0d − sinβa0u can be isolated through the rotation with angle β
and we are left with the 2× 2 matrix M2

P ′ in the basis (a0D, a
0
S), with a0D ≡ cosβa0u + sinβa0d

M2
P ′ 11 =

2

s2β

[(

Aud + Ãud + (λM
P + λ̃M

P + λM )s

)

s− (λ5s2β − λ6s
2
β − λ7c

2
β)v

2 −m2
12

]

M2
P ′ 22 =

[

Aud + Ãud + 4(λM
P + λ̃M

P )s
] v2s2β

2s
−

[

3AS +
ÃS

3
+ (4κ2S + κ̃2S)s

]

s (1.19)

−
[(

Aus + 4λ̃u
P s

)

s2β +
(

Ads + 4λ̃d
P s

)

c2β

] v2

s
− 2µ2

S − λT

s

M2
P ′ 12 =

[

Aud − Ãud − 2(λM
P − λ̃P

M )s
]

v

3We use the shorthand notations cβ = cosβ, sβ = sinβ, s2β = sin2β, tβ = tanβ etc. . .
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M2
P ′ is diagonalized in the subblock of the physical states (a0D, a

0
S) by the orthogonal matrix P ′, to give

the two physical CP-odd squared mass m2
a0
1

, m2
a0
2

, such that

diag(m2
a0
1

,m2
a0
2

) = P ′M2
P ′P ′−1 (1.20)

Finally, the CP-even squared mass matrix, in the basis (h0d, h
0
u, h

0
S), reads:

M2
S 11 =

[(

Aud + Ãud + (λM
P + λ̃M

P + λM )s

)

s+ (λ6s
2
β − 3λ7c

2
β)v

2 −m2
12

]

tβ + 2λ1v
2c2β

M2
S 22 =

[(

Aud + Ãud + (λM
P + λ̃M

P + λM )s

)

s+ (λ7c
2
β − 3λ6s

2
β)v

2 −m2
12)

]

t−1
β + 2λ2v

2s2β

M2
S 33 =

[

Aud + Ãud

] v2s2β
2s

+
[

AS + ÃS + 2(2κ2 + κ2S + κ̃2S)s
]

s−
(

Auss
2
β +Adsc

2
β

) v2

s
− λT

s

M2
S 12 = −

[

Aud + Ãud + (λM
P + λ̃M

P + λM )s
]

s+
[

(λ3 + λ4 + λ5)s2β − 3(λ6s
2
β + λ7c

2
β)
]

v2 +m2
12

M2
S 13 = −

[

Aud + Ãud + 2(λM
P + λ̃M

P + λM )s
]

vsβ + 2
[

Ads + (λd
P + 2λ̃d

P )s
]

vcβ (1.21)

M2
S 23 = −

[

Aud + Ãud + 2(λM
P + λ̃M

P + λM )s
]

vcβ + 2
[

Aus + (λu
P + 2λ̃u

P )s
]

vsβ

which is diagonalized by a 3 × 3 orthogonal matrix S, resulting in three CP-even squared masses m2
h0

1

,

m2
h0

2

, m2
h0

3

, such that

diag(m2
h0

1

,m2
h0

2

,m2
h0

3

) = SM2
SS

−1 (1.22)

We are thus finally left with seven physical Higgs particles, once the three Goldstone bosons G0, G±,
giving mass to the W± and Z0 bosons, have been discarded. In the particular case of the U(1)′-gauge
symmetry, however, the P.Q.-axion (associated to the vanishing eigenvalue of M2

P ′) is also unphysical
(giving mass to the Z ′-boson, gauge-field of the U(1)′ symmetry [?]), so that we are left with only one
CP-odd physical mass.

2 Reconstruction of the effective parameters

2.1 Masses and mixing angles as physical input

From an experimental point of view, the ‘λi’ parameters are not directly accessible: they will enter as
combinations within the expressions for the Higgs masses and self-couplings. The latter can hopefully
be accessed through the experimental measurement of physical quantities. ‘Inverting the system’, we
can therefore trade some λi parameters for such physical input. In the simplest case, one would directly
use the Higgs masses and their mixing angles, assuming these can be measured (e.g. from fermion/gauge
couplings), as the new, physical input. For the 2-doublet+1-singlet system, such quantities provide us
with 12 conditions (input measurements) on the λi’s: the masses of the 2 CP-odd bosons, 3 CP-even
and 1 (complex) charged Higgs; the mixing angles from the CP-even (3), CP-odd (1) and the Goldstone

(1: β) sectors; finally, the electroweak v.e.v. v =
√

v2u + v2d (from MW for example). Should those

twelve relations prove insufficient to determine all the λi’s (as is obviously the case for the most general
potential), one would have to resort to Higgs self-couplings (or input from another sector) in order to
fully determine the parameters.Accessing such self-couplings would require that double or triple Higgs
production are kinematically open. This task would most comprehensibly done at future linear colliders.
In the meanwhile, the measurements of masses and mixing angles still allow for a partial inversion.
We will assume in the following that all the Higgs-masses have been measured. Note that this hypothesis
is somewhat optimistic since singlet-like fields do not couple directly to SM-fermions and gauge-bosons,
hence are essentially elusive: only when there is substantial mixing with the doublet states can we expect
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to access them without having to rely on multi-Higgs couplings. As for the mixing angles, assuming all
the Higgs states have been observed in SM decay-channels, one can derive them from the couplings to
fermions (note that leptonic decay channels are likely to give cleaner information) and gauge bosons. For
a type II model, we have (taken from [?]):

h0i tLt
c
R = − Yt√

2
Si2

h0i bLb
c
R =

Yb√
2
Si1

h0i τLτ
c
R =

Yτ√
2
Si1

a0i tLt
c
R = −i

Yt√
2
cβP

′

i1 (2.1)

a0i bLb
c
R = i

Yb√
2
sβP

′

i1

a0i τLτ
c
R = i

Yτ√
2
sβP

′

i1

H+bLt
c
R = Ytcβ

H−tLb
c
R = −Ybsβ

H−ντLτ
c
R = −Yτsβ

where,

Yt =
mt

vsβ
, Yb =

mb

vcβ
, Yτ =

mτ

vcβ
(2.2)

and (we mention here only the 1-Higgs to 2-gauge couplings; note that, albeit more difficult to measure,
2-Higgs to 1-gauge as well as quartic couplings shall play a very important role for testing the model):

h0iZµZν = gµν
g′2 + g2√

2
v (cβSi1 + sβSi2)

h0iW
+
µ W−

ν = gµν
g2√
2
v (cβSi1 + sβSi2) (2.3)

Combining Higgs couplings to the vector bosons with those to up/down fermions, one can access e.g.
Si1/Si2. Moreover, one may be tempted to use Higgs decays into two photons to extract information
about the mixing angles: even admitting that such processes are dominated by quark loops, the corre-
sponding relation of branching ratios to mixing angles is already non-trivial and would require an involved
extraction procedure for exploitation.
Unitarity relations could also prove useful. For example, a ‘missing’ matrix element Sij could be recon-
structed from

3
∑

k=0

SikSjk = δij =

3
∑

k=0

SkiSkj i, j = 1, 2, 3 (2.4)

A possible (naive) strategy to reconstruct the mixing angles would be the following: having measured
the charged Higgs decay into third generation quarks, one could then deduce tβ, since the ratio mt,b/v is
fixed by SM measurements. Then the (doublet) elements Si1, Si2, P

′
i1 could be obtained unambigously

from the decays of neutral higgs states into fermions and gauge-bosons. The unitarity relations would
finally provide the magnitude of the Si3 and P ′

i2 (singlet) elements.
Note finally that, while a full experimental determination of the Higgs mass matrices may seem over-
optimistic in the short run, there exists a practical case where we have access to such data: it is that of
the output of spectrum generators (e.g. the publicly available NMSSMTools, [?]). We will resort to that
practical application in the last part of the present paper.
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2.2 Partial reconstruction in the general case

Considering the general potential of Eq.(??) and discarding any assumption as to an underlying model, a
complete reconstruction of the 29 parameters (28 of which being relevant) cannot succeed with only the
twelve mass/mixing conditions, hence calls for the measurement of Higgs self-couplings. Yet, information
from Eqs.(??,??,??) can already be implemented in a partial reconstruction:































































































[(Aud + λM
P s)s−m2

12]
2

s2β
= m2

a0i
P

′ 2
i1 + λ1

P

(Aud − 2λM
P s)v = m2

a0i
P ′
i1P

′
i2 + λ12

P

−3ASs+
(

Aud + 4λM
P s

) v2s2β
2s − λT

s
= m2

a0i
P

′2
i2 + λ2

P

2
s2β

[

(Aud + λM
P s)s− λ4

2 v2s2β −m2
12

]

= m2
H± + λ±

[(Aud + λM
P s)s−m2

12]tβ + 2λ1v
2c2β = m2

h0

i

S2
i1 − λ1

S

[(Aud + λM
P s)s−m2

12]t
−1
β + 2λ2v

2s2β = m2
h0

i

S2
i2 − λ2

S

ASs+ 4κ2s2 +Aud
v2

2ss2β − λT

s
= m2

h0

i

S2
i3 − λ3

S

−(Aud + λM
P s)s+ (λ3 + λ4)v

2s2β +m2
12 = m2

h0

i

Si1Si2 − λ12
S

−(Aud + 2λM
P s)vsβ + 2λd

P svcβ = m2
h0

i

Si1Si3 − λ13
S

−(Aud + 2λM
P s)vcβ + 2λu

P svsβ = m2
h0

i

Si2Si3 − λ23
S

(2.5)

where λ1,2,3
P , λ12

P , λ±, λ
1,2,3
S , λ12,13,23

S are given by











































































































λ1
P = − 2

s2β

[

2
(

Ãud + (λ̃P
M + λM )s

)

s− (λ5s2β − λ6s
2
β − λ7c

2
β)v

2
]

λ12
P = (Ãud − 2λ̃P

Ms)v

λ2
P = −

(

Ãud + 4λ̃M
P s

)

v2s2β
2s +

[

ÃS

3 + (4κ2S + κ̃2S)s
]

s+
[

(Aus + 4λ̃u
P s)s

2
β + (Ads + 4λ̃d

P s)c
2
β

]

v2

s
+ 2µ2

S

λ± = − 2
s2β

[

(Ãud + (λ̃M
P + λM )s)s−

(

1
2λ5s2β − λ6s

2
β − λ7c

2
β

)

v2
]

λ1
S =

[(

Ãud + (λ̃M
P + λM )s

)

s+ (λ6s
2
β − 3λ7c

2
β)v

2

]

tβ

λ2
S =

[(

Ãud + (λ̃M
P + λM )s

)

s+ (λ7c
2
β − 3λ6s

2
β)v

2

]

t−1
β

λ3
S = Ãud

v2s2β
2s + ÃSs+ 2(κ2S + κ̃2S)s

2 −
(

Auss
2
β +Adsc

2
β

)

v2

s

λ12
S = −(Ãud + (λ̃M

P + λM )s)s+
[

λ5s2β − 3(λ6s
2
β + λ7c

2
β)
]

v2

λ13
S = −

[

Ãud + 2(λ̃M
P + λM )s

]

vsβ + 2(2λ̃d
P s+Ads)vcβ

λ23
S = −

[

Ãud + 2(λ̃M
P + λM )s

]

vcβ + 2(2λ̃u
P s+Aus)vsβ

(2.6)
Our (arbitrary) choice in ordering the parameters within Eqs.(??,??) was guided by the terms that are
relevant at leading order in the n/NMSSM and the UMSSM potentials: beyond m2

Hd
, m2

Hu
, m2

S, which
are common to the three models, those are given by

NMSSM : λ1−4, λ
u,d
P , λM

P , κ2, Aud, AS

nMSSM : λ1−4, m
2
12, λ

u,d
P , λT , Aud

UMSSM : λ1−4, λ
u,d
P , κ2, Aud

These parameters were collected on the left-hand side of Eq.(??), while the remaining ones enter the
right-hand side through Eq.(??).
Note that the relations of Eq.(??) hold at any order (since Eq.(??) is the most general renormalizable
potential satisfying the gauge-symmetry). A practical use of Eq.(??) would lie in a model-independent
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analysis of a 2-doublet+1singlet potential (in order to discriminate among models, constrain them through
precision tests). Then the twelve mass conditions can be used to simplify twelve (arbitrarily chosen)
parameters, hence leaving the remaining couplings as the relevant degrees of freedom intervening in / to
be determined from the Higgs self-couplings. Not much predictivity should be expected, however, in this
general case.

2.3 Reconstruction at the classical level in the constrained models

We focus here on the specific cases inspired by the SUSY models: VS
T , VS

PQ, VS
PQ′ and VS

Z3
. Note that

such potentials are considered at the classical order: quantum effects and explicit/spontaneous breaking
of the symmetries in principle destabilize those potentials to generate the most general one. At this
leading order, however, the Eqs.(??) vanish, leaving Eqs.(??) in a very simple form. Note additionally
the further requirements for each potential:

VS
Z3

: m2
12 = λT = 0

VS
T : AS = κ2 = λP

M = 0
VS
PQ : AS = λP

M = m2
12 = λT = 0

VS
PQ′ : AS = Aud = m2

12 = λT = 0

We end up with eleven classical parameters and eleven conditions4 for both the potentials VS
PQ and VS

PQ′.
In these cases, all the parameters in the Higgs potential can thus be reconstructed (at leading order)
from Higgs masses and mixings: this procedure is explicitly carried out in appendix ??, Eqs.(??,??).
In the case of VS

Z3
, the thirteen classical parameters cannot be fully determined from the twelve condi-

tions. The remaining degree of freedom is conveniently chosen as the singlet v.e.v. s: the reconstruction
is also given in appendix ??, Eqs.(??,??). Several tracks can be followed in order to determine this
remaining degree of freedom. The first one, sticking to the Higgs potential, would consist in relying on
trilinear couplings, such as h0iH

+H− or h0i a
0
ja

0
j , where the neutral Higgs fields would be largely singlet in

nature: kinematical limits and the elusive nature of singlets would tend to disfavor this strategy. Another
possibility would be to input information from some other sector (if any): measurement of the higgsino
masses in the NMSSM could provide the missing information. Finally, a more predictive option would be
to enforce some additional requirement, such as relations among the tree-level couplings: the tree-level

relations of the NMSSM,
λu
P

λd
P

= 1 or
κ2(aλu

P+bλd
P )

(λM
P

)2·(a+b)
= 1 (where a, b are real numbers), for instance, or a

measure of the P.Q. symmetry breaking, such as
(a+b)λM

P

aλu
P
+bλd

P

∼ κ
λ
, may be used as guidelines.

Finally for VS
T , we have twelve parameters and twelve conditions. Yet a full inversion is not possible

either, because CP-even and CP-odd singlet masses are explicitly degenerate in this potential, leaving a
bound system. The remaining degree of freedom is again chosen as the singlet v.e.v. s in appendix ??,
Eq.(??), but could be replaced by e.g. λT , as a measure of the violation of Z3, for example.
So far, we have considered only the Higgs potentials separately. Moving explicitly to the underlying
SUSY models, however, the λi’s are further constrained by the tree-level relations resulting from their
supersymmetric origins: we count 7 parameters in the nMSSM Higgs sector (λT , m2

12, m
2
Hu

, m2
Hd

, m2
S,

λ, Aλ), 7 in the NMSSM as well (m2
Hu

, m2
Hd

, m2
S , λ, Aλ, κ, Aκ) and 6 in the UMSSM (m2

Hu
, m2

Hd
, m2

S,
λ, Aλ, gZ′ ; note that we regard the Higgs charges under U(1)′ as fixed). Those parameters are then
over-constrained by Eq.(??) and one should thus consider the remaining conditions as a measurement
of the deviation from tree-level conditions due to higher orders (we remind here that the tree-level
relations induced by the model of origin among the parameters of the potential are likely to be spoilt
by quantum corrections). Depending on the information at our disposal in the remaining spectrum (e.g.
SUSY masses), such conditions may be used to estimate the missing parameters (e.g. sfermion masses or
trilinear soft couplings) or regarded as precision tests of the model. Note that if the SUSY spectrum is

4The explicit presence of a P.Q.-axion, identified as a0

1, leads to one trivial condition in the CP-odd sector.
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sufficiently documented as well, this measurement of the Higgs parameters at leading order, would allow
for a (perturbative) computation of all the λi’s within the specific models at higher orders.

2.4 Reconstruction at the loop level: NMSSM vs. nMSSM

Now we want to apply this formalism to higher order effects. The purpose is simple: it has been shown
that, in the MSSM, the bulk of the corrections in Higgs-to-Higgs couplings could be absorbed in writing
such couplings in terms of the corrected masses (see for example [?, ?] and the third reference in [?]);
could a similar recipe apply to the 2-doublet+1singlet setup? A first strategy is the one presented at the
end of the previous subsection: in a definite model, the Higgs spectrum may allow for a determination of
the Higgs parameters at leading order; then, provided sufficient information from the other sectors stand
at our disposal, reconstructing all the λi’s at higher order is simply a matter of perturbative calculations.
Yet, this approach relies on a heavy machinery and on input which is external to the Higgs sector. We
would like to consider cases where input from the Higgs sector only (or almost only) would already
improve on the simple tree-level expression for the Higgs self-couplings.
In principle, whatever the potential looked like at the classical level, quantum corrections will generate
contributions to all the parameters in the general potential – Eq.(??) – (unless a symmetry protects cer-
tain parameters, but we have seen that such symmetries are spontaneously broken by the Higgs v.e.v.’s
anyway). Therefore, while the partial-inversion of the general case (Eqs.(??,??)) is still possible, little
predictivity or practical use is to be expected from such relations, because the number of undetermined
parameters is high. To extract meaningful information, beyond the leading order, from the Higgs spec-
trum, one would need the corrected potential to retain a sufficiently simple form beyond the classical
order.
To be more specific, we consider a tree-level potential of the form (H representing any of the Higgs fields,
µ2, a bilinear, A, a trilinear, and λi, a quartic coupling):

Vtree = µ2H2 +AH3 + λH4 (2.7)

We now include the radiative corrections, which shift the potential as:

Veff = (µ2 + δµ2)H2 + (A+ δA)H3 + (λ+ δλ)H4 + δµ̃2H2 + δÃH3 + δλ̃H4 (2.8)

where δµ2, δA and δλ represent corrections to parameters existing at tree-level, while δµ̃2, δÃ and δλ̃
denote new couplings which were forbidden by symmetries at tree-level and emerge only at the radiative
level. Neglecting numerical coefficients, the corrected Higgs mass m2 and the trilinear self-coupling g will
read (schematically):

{

m2 ≃ µ2 + δµ2 + δµ̃2 + (A+ δA+ δÃ)〈H〉+ (λ+ δλ+ δλ̃)〈H〉2 = m2
tree +O(δ, δ̃)

g ≃ A+ δA + δÃ + (λ+ δλ+ δλ̃)〈H〉 = gtree +O(δ, δ̃)
(2.9)

(with the short-hand notation δ/δ̃ for loop induced corrections to parameters present/absent at tree level.)
We now assume that we have access to the mass m2, either from experimental data or from a spectrum
generator. Using gtree in the computation of physical quantities (branching ratios, cross-sections) will

result in an error of order O
(

δ,δ̃
g

)

. If we use the expression for the corrected mass to inverse (partially)

the relation between mass and tree level parameters, we obtain: δ = δm2 +O(δ̃), where δm2 symbolises
the result of the inversion procedure. The trilinear couplings then provide: gm2 = g +O(δ̃), resulting in

an error of O
(

δ̃
g

)

at the level of cross sections/branching ratios. Claiming that the inversion procedure

carries any improvement with respect to a simple tree-level evaluation holds at the sole condition that
radiative corrections δ to tree-level parameters are more important, in magnitude, than the contributions
δ̃ to other operators. Otherwise, even if we identify the parameters subject to large contributions, it is
unlikely that the mass-matrices would suffice in determining both these parameters and those intervening
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at tree-level, unless we input some additional tree-level relations, as in the case of the matching conditions
in Eq.(??), (??) or (??).
This discussion shows that, to extract some benefits – beyond the leading order – from the conditions
relating masses to effective parameters, we need to identify which terms are potentially subject to large
radiative corrections. A simple criterion can be invoked at the one-loop level: it is that of the leading
logarithms. To identify those, we simply resort to the Coleman-Weinberg [?] one-loop effective potential
and analyse the outcome for the special case of the SUSY-inspired models under scrutiny. This method
has long been employed for the computation of corrections to the Higgs masses, both in the MSSM [?]
and in the NMSSM [?,?] (and references therein). In this approach, the effective corrections to the scalar
potential at a scale Λ are determined by the field-dependent tree-level mass matrices M2

Φ(S,Hd,Hu, . . .)
of the various fields Φ entering the spectrum, according to (in the DR-scheme, but note that we shall be
interested in the logarithms only):

∆VΛ
eff(S,Hd,Hu, . . .) =

1

64π2

∑

Φ

CΦM
4
Φ

[

ln

(

M2
Φ

Λ2

)

− 3

2

]

(2.10)

Here CΦ, which counts the degrees of freedom, takes the values 1 for real scalar fields, 2 for complex ones,
−2 for Majorana fermions, −4 for Dirac fermions and 3 for real gauge-fields. Note that we are interested
in the Higgs potential solely, so that we will retain dependence on S,Hd,Hu only, within M2

Φ. Moreover,
we consider no EW-violating effects so that we will not expand the doublet fields Hd, Hu around their
v.e.v.’s (except within logarithms). Additionally, the SU(2)L-symmetry can then be invoked to retain
only the neutral Higgs fields S,H0

d ,H
0
u (the dependence on the charged Higgs fields can then be restored

afterwards in virtue of SU(2)L: only the λ3 and λ4 parameters cannot be disentangled in this fashion, but
both parameters being present at tree-level in the models we consider, this will be of little consequence for
our analysis). We then determine the contributions to the parameters of Eq.(??) by letting the singlet
take its v.e.v., S = s + S̃, then truncating Eq.(??) to renormalizable terms, finally projecting on the
couplings of Eq.(??).
The results of our analysis of the large logarithms, in the cases of the NMSSM and nMSSM, are provided
in appendix ??. The situation of the NMSSM is quite simple: leading logarithms favor Z3-conserving
terms. We can thus claim, for this model, that the inversion procedure for the Z3-conserving potential,
presented in the previous subsection and Eqs.(??,??), improves on the tree-level implementation of the
couplings and actually includes leading-logarithms automatically. Note that, as defined in Eqs.(??,??),
the effective Z3-conserving parameters are directly determined in terms of physical quantities, meaning
that they do not depend on the renormalization scale Λ : they are simply the parameters of the effective
Z3-conserving potential associated with the physical Higgs spectrum. What we checked explicitly in the
Coleman-Weinberg approach (which depends on the renormalization scale Λ) is that this constrained
form of an effective potential was legitimate at least up to leading logarithms. Beyond, the effect of the
Z3-violating terms (due to the truncation of the potential to operators of mass-dimension ≤ 4) cannot
be neglected. In the case of the nMSSM, however, potentially large logarithms affect non-classical terms.
In fact, all the sectors contribute to the Z3-conserving parameters (including those vanishing at tree
level in this model). Additionally, logarithms originating from the nMSSM Higgs sector (the only sector
which is sensitive to the breakdown of Z3 at tree-level) also affect Z3-violating terms. Inclusion of the
leading higher-order effects from the inversion procedure of subsection ??, Eq.(??), thus seems dubious
in this case. It seems natural to ascribe this difference of behavior, between nMSSM and NMSSM, to
the protection of the parameters by the Z3-symmetry, which albeit spontaneously broken by the singlet
v.e.v., continues to favor Z3-conserving terms within the NMSSM. We should thus expect a similar
property, whatever the Z3-symmetric model is (SUSY or not), and, beyond the Z3-symmetry, in any
model retaining a symmetry (or approximate symmetry) at low-energy, e.g. PQ or PQ′.
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