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We compute the beta functions for the three gauge couplings of the Standard
Model in the minimal subtraction scheme to three loops. We take into account
contributions from all sectors of the Standard Model. The calculation is performed
using both Lorenz gauge in the unbroken phase of the Standard Model and back-
ground field gauge in the spontaneously broken phase. Furthermore, we describe in
detail the treatment of 5 and present the automated setup which we use for the
calculation of the Feynman diagrams. It starts with the generation of the Feynman
rules and leads to the bare result for the Green’s function of a given process.
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I. INTRODUCTION

Renormalization group functions are fundamental quantities of each quantum field theory.
They provide insights in the energy dependence of cross sections, hints to phase transitions
and can provide evidence to the energy range in which a particular theory is valid. The
renormalization group functions of the gauge couplings in the Standard Model (SM) are of
particular importance in the context of Grand Unified Theories allowing the extrapolation
of low-energy precision data to high energies, not accessible by collider experiments.

Important milestones for the calculation of the gauge coupling beta functions in the
Standard Model are the following computations:

e The one-loop beta functions in gauge theories along with the discovery of asymptotic
freedom have been presented in Refs. [1, 2].

e The corresponding two-loop corrections

— in gauge theories without fermions [3, 4],
— in gauge theories with fermions neglecting Yukawa couplings [5-7],

— with corrections involving Yukawa couplings [8],
are also available.

e The two-loop gauge coupling beta functions in an arbitrary quantum field theory have
been considered in Ref. [9, 10].

e The contribution of the scalar self-interaction at three-loop order has been computed
in [11, 12].

e The gauge coupling beta function in quantum chromodynamics (QCD) to three loops
is known from Ref. [13, 14].

e The three-loop corrections to the gauge coupling beta function involving two strong
and one top quark Yukawa coupling have been computed in Ref. [15].

e The three-loop corrections for a general quantum field theory based on a single gauge
group have been computed in [16].

e The four-loop corrections in QCD are known from Refs. [17, 18].

Two-loop corrections to the renormalization group functions for the Yukawa and Higgs boson
self-couplings in the Standard Model are also known [10, 19-23]. Recently the dominant
three-loop corrections to the renormalization group functions of the top quark Yukawa and
the Higgs boson self-coupling have been computed in Ref. [24]. In this calculation the gauge
couplings and all Yukawa coupling except the one of the top quark are set to zero.

In this paper we present details to the three-loop calculation of the gauge coupling renor-
malization constants and the corresponding beta functions in the SM taking into account
all sectors. The results have already been presented in Ref. [25].

The remainder of the paper is organized as follows: In the next Section we introduce our
notation and describe in detail how we proceed to obtain the beta functions of the gauge
couplings. In particular, we describe the calculation in Lorenz gauge and background field



gauge (BFG), discuss our setup for an automated calculation, and explain our treatment of
vs. The analytical results for the beta functions are presented in Section III. In contrast
to Ref. [25] we show the results including all Yukawa couplings. Section IV is devoted to a
description of the checks which have been performed to verify our result. A discussion of the
numerical impact of the newly obtained corrections is given in Section V. We conclude in
Section VI. Explicit results for the renormalization constants are relegated to Appendix A
and Appendix B. In Appendix C we present three-loop results for the beta functions of the
QED coupling constant and the weak mixing angle. Furthermore, we present in Appendix D
translation rules which are useful in order to compare parts of our findings with the results

of Ref. [16].

II. THE CALCULATION OF THE BETA FUNCTIONS

In this paper we present the beta functions for the three gauge couplings of the SM
up to three loops in the modified minimal subtraction (MS) renormalization scheme. In
the corresponding calculation we took into account contributions involving the three gauge
couplings of the SM, the top, the bottom, and the tau Yukawa couplings and the Higgs
self-coupling. Let us mention that we were able to derive the beta functions for a general
SM Yukawa sector from the calculation involving the aforementioned seven couplings. We
postpone the discussion of this issue to the next Section. In the following, we give details
on the computation at the three-loop order.

We define the beta functions as

d Q;
s = Ao} o), )
where € = (4 — d)/2 is the regulator of Dimensional Regularization with d being the space-
time dimension used for the evaluation of the momentum integrals. The dependence of the
couplings «; on the renormalization scale is suppressed in the above equation.

The three gauge couplings o, as and a3 used in this paper are related to the quantities
usually used in the SM by
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where aqgp is the fine structure constant, Oy the weak mixing angle and «; the strong
coupling. We adopt the SU(5) normalization which leads to the factor 5/3 in the equation
for a;.

The Yukawa couplings are defined as
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where m, and My, are the fermion and W boson mass, respectively.



We denote the Higgs boson self-coupling by A\, where the Lagrange density contains the
following term

Loy =...— @n)\)(HH?+ ..., (4)

describing the quartic Higgs boson self-interaction.
The beta functions are obtained by calculating the renormalization constants relating
bare and renormalized couplings via
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Taking into account that a®® does not depend on j, Egs. (1) and (5) lead to
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where 7 = 1,2 or 3. We furthermore set ay = o4, a5 = ay, ag = o and a7 = A

The first term in the first factor of Eq. (6) originates from the term ¢ in Eq. (5) and
vanishes in four space-time dimensions. The second term in the first factor contains the beta
functions of the remaining six couplings of the SM. Note that (for the gauge couplings) the
one-loop term of Z,, only contains «;, whereas at two loops all couplings are present except
A. The latter appears for the first time at three-loop level. As a consequence, it is necessary
to know (3; for j = 4,5,6 to one-loop order and only the e-dependent term for 37, namely
7 = —eaz/m. From the second term in the first factor and the second factor of Eq. (6) one
can read off that three-loop corrections to Z,, are required for the computation of 3; to the
same loop order.

We have followed two distinct paths to obtain the results for the three-loop renormaliza-
tion constants, which we discuss in the following Subsections, where we mention features
and differences.

A. Lorenz gauge in the unbroken phase of the SM

The first method used for the calculation of the renormalization constants is based on
Feynman rules derived for the SM in the unbroken phase in a general Lorenz gauge with
three independent gauge parameters corresponding to the three simple gauge groups. All
building blocks of our calculation are evaluated for general gauge parameters in order to
have a strong check of the final results for the beta functions which have to be gauge
parameter independent. It is possible to use the unbroken phase of the SM since the beta
function in the MS scheme is independent of all mass parameters and thus the spontaneous
symmetry breaking does not affect the final result. Note that this choice is advantageous
for the calculation because in the unbroken phase much less different types of vertices have
to be considered as compared to the phase in which the spontaneous symmetry breaking is
present.

In principle each vertex containing the coupling ¢g; = v/4mq; can be used in order to
determine the corresponding renormalization constant via
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where Z,, stands for the renormalization constant of the vertex and Zj ¢ for the wave
function renormalization constant; k runs over all external particles.

We have computed Z,, using both the ghost-gluon and the three-gluon vertex. Z,, has
been evaluated with the help of the ghost-W3, the W W,W3 and the ¢ ¢~ W3 vertex where
¢* is the charged component of the Higgs doublet corresponding to the charged Goldstone
boson in the broken phase and Wi, W, and W3 are the components of the W boson. As to
Zu,, & Ward identity guarantees that there is a cancellation between the vertex and some
of the wave function renormalization constants yielding

1
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where Zp is the wave function renormalization constant for the gauge boson of the U(1)
subgroup of the SM in the unbroken phase.

In Fig. 1 we show several one-, two- and three-loop sample diagrams contributing to the
considered two- and three-point functions.

We have not used vertices involving fermions as external particles as they may lead to
problems in connection with the treatment of 75 in d # 4 dimensions. The vertices selected
by us are safe in this respect. A detailed discussion of our prescription for s is given below.

In order to compute the individual renormalization constants entering Eq. (7) we proceed
as outlined, e.g., in Ref. [15]. The underlying formula can be written in the form

Zr=1-K.(ZT) , (9)

where I' represents the two- or three-point function corresponding to the renormalization
constant Zr and the operator K, extracts the pole part of its argument. From the structure
of Eq. (9) it is clear that Zr is computed order-by-order in perturbation theory in a recursive
way. It is understood that the bare parameters entering I" on the right-hand side are replaced
by the renormalized ones before applying K.. The corresponding counterterms are only
needed to lower loop orders than the one which is requested for I'. In our approach the three-
loop calculation of Z,, requires — besides the result for Z,, to two loops — the one-loop
renormalization constants for the other two gauge and the Yukawa couplings. Furthermore
we have to renormalize the gauge parameters; the corresponding renormalization constants
are given by the wave function renormalization constants of the corresponding gauge bosons
which we anyway have to evaluate in the course of our calculation.

B. Background field gauge in the spontaneously broken phase

The second method that we used in order to get an independent result for the renormal-
ization constants of the gauge couplings is a calculation in the BFG [26, 27]. The basic idea
of the BFG is the splitting of all gauge fields in a “quantum” and a “classical” part where
in practical calculations the latter only occurs as external particle.

The BFG has the advantage that Ward identities guarantee that renormalization con-
stants for gauge couplings can be obtained from the exclusive knowledge of the corresponding
wave function renormalization constant.! Thus we have the following formula

! In Lorenz gauge, this only works for U(1) gauge groups, cf. Subsection IT A.
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FIG. 1. Sample Feynman diagrams contributing to the Green’s functions which have been used

for the calculation of the renormalization constants of the gauge couplings. Solid, dashed, dotted,
curly and wavy lines correspond to fermions, Higgs bosons, ghosts, gluons and electroweak gauge
bosons, respectively.
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where A denotes the gauge boson corresponding to the gauge coupling «;.

In contrast to the calculation using Lorenz gauge, we performed the calculation in the
BFG in the spontaneously broken phase of the SM. As discussed in the last Subsection, such
a calculation is more involved than a calculation in the unbroken phase since more vertices
are present. On the other hand it constitutes an additional check of our result, that allows
us not only to compare the BFG and the Lorenz gauge but also to switch from the broken
to the unbroken phase of the SM.

Since the calculation has been performed in the broken phase we have computed the
transverse part of the two-point functions of the (background) photon, Z boson, photon-Z
mixing, W boson and gluon which we denote by IL,, IIz, IL, 7, IIyy, 11,4, respectively. Sample
Feynman diagrams up to three loops can be found in the first two lines of Fig. 1.

Iy and II, can be used in analogy to Subsection II A in order to obtain the corresponding
renormalization constants which leads in combination with Eq. (10) to the renormalization
constants for ay and «a,. We found complete agreement with the calculation performed in
Lorenz gauge.

As far as the self energies involving photon and Z boson are concerned, we consider at the
bare level appropriate linear combinations in order to obtain the B and W boson self-energy
contributions. To be precise, we have

2 gb bare ;= ob 2 b
g = cos® Oy 1L, + 2 cos Oy sin O™ °1L, 7 + sin” 6711 |
_ _:.2 pbare bare _: bare 2 pbare
Iy = sin® 0" °IL, — 2 cos Oy sin 0711, z + cos” 0711 . (11)

The second linear combination can immediately be compared with the bare result obtained
from the charged W boson self energy and complete agreement up to the three-loop order has
been found. This constitutes a strong consistency check on the implementation of the BFG
Feynman rules. Ilp is used together with Eq. (10) in order to obtain the renormalization
constant for a;. Again, complete agreement with the calculation described in the previous
Subsection has been found.

In our BFG calculation we want to adopt Landau gauge in order to avoid the renor-
malization of the gauge parameters &;. However, it is not possible to choose Landau gauge
from the very beginning since some Feynman rules for vertices involving a background gauge
boson contain terms proportional to 1/& where & = 0 corresponds to Landau gauge. To
circumvent this problem we evaluate the bare integrals for arbitrary gauge parameters. In
the final result all inverse powers of &; cancel and thus the limit & = 0 can be taken at the
bare level.

C. Automated Calculation

Higher order calculations in the SM taking into account all contributions are quite in-
volved. Apart from the complicated loop integrals, there are many different Feynman rules
and plenty of Feynman diagrams which have to be considered. In our calculation we have
used a setup which to a large extend avoids manual interventions in order to keep the
error-proneness to a minimum.
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FIG. 2. Overview of our automated setup. Calling up the programs in the uppermost line de-

termines and evaluates a given process in a given model. The vertical workflow leads to the
implementation of a new model in the setup. The programs are discussed in more detail in the
text.

As far as the loop integrals are concerned we exploit the fact that the beta function in
the MS scheme is independent of the external momenta and the particle masses. Thus, we
can choose a convenient kinematical configuration which leads to simple loop integrals as
long as the infra-red structure is not modified. In our case we set all particle masses to
zero and only keep one external momentum different from zero. We have checked that no
infra-red divergences are introduced as we will discuss in detail in Section IV. In this way
all loop-integrals are mapped to massless two-point functions that up to three loops can be
computed with the help of the package MINCER [28].

As core of our setup we use a well-tested chain of programs that work hand-in-
hand: QGRAF [29] generates all contributing Feynman diagrams. The output is passed via
g2e [30, 31], which transforms Feynman diagrams into Feynman amplitudes, to exp [30, 31]
that generates FORM [32] code. The latter is processed by MINCER [28] and/or MATAD [33]
that compute the Feynman integrals and output the ¢ expansion of the result. The paral-
lelization of the latter part is straightforward as the evaluation of each Feynman diagram
corresponds to an independent calculation. We have also parallelized the part performed by
q2e and exp which is essential for our calculation since it may happen that a few times 10°
diagrams contribute at three-loop level to a single Green’s function. The described workflow
is illustrated on the top of Fig. 2.

In order to perform the calculation described in this paper we have extended the above
setup by the vertical program chain in Fig. 2. The core of the new part is the program
FeynArtsToQ2E which translates FeynArts [34] model files into model files processable by
QGRAF and g2e. In this way we can exploit the well-tested input files of FeynArts in our
effective and flexible setup based on QGRAF, q2e, exp and MINCER. This avoids the coding of
the Feynman rules by hand which for the SM would require a dedicated debugging process.

For the part of our calculation based on the BFG we have used the FeynArts model files
which come together with version 3.5. However, for Lorenz gauge in the unbroken phase
there is no publicly available FeynArts model. For this reason we have used the package
FeynRules [35] in order to generate such a file which is also indicated in Fig. 2.

Let us mention that FeynArtsToQ2E is not restricted to the SM but can process all model



files available for FeynArts.

D. Treatment of ;5

An important issue in multi-loop calculations is the definition of 5 away from d = 4
dimensions. A first possibility is the naive regularization that requires that 5 anti-commutes
with all other v-matrices. This approach has the advantage that its implementation is very
simple. However, it can lead to wrong results, especially for Feynman diagrams involving
several fermion loops. For example, the naive regularization of 75 leads to the problematic
result (see, e.g., Ref. [36])

tr(v#y" ") =0 (d#4). (12)

The limit of this expression for d — 4 does not agree with its value in the physical case,
when the regularization is turned off

tr(YHy Py ys) = —4ietP? (d = 4). (13)

Here the totally anti-symmetric Levi-Civita tensor is defined by €123 = 1.

It is therefore reassuring that one can show explicitly that in the computation via the
ghost-ghost-gauge boson vertex? all contributions stemming from this kind of traces vanish.
To prove this, we notice that this kind of traces can only lead to non-vanishing contributions
if there are at least two of them in a diagram. Only in this case the e-tensors originating
from Eq. (13) can be contracted, providing Lorentz structures that may contribute to the
renormalization constants. We observe that the fermion loops can only yield problematic
non-vanishing contributions if at least three lines are attached to them. Otherwise, there are
too few external momenta and too few open Lorentz indices available. A general three-loop
diagram with at least two closed fermion loops has the following form

NAAAAgAAAAA
\AY

AVAAAAAAAAAA
vvvvv;vvvv\

Here the solid lines represent fermions while the double lines can be either scalar bosons or
gauge bosons.

One can easily show that one cannot attach ghosts as external particles in the above dia-
gram, since there are no vertices involving ghosts and fermions. Thus, the ghost self-energy
and the ghost-ghost-gauge boson vertex do not contain diagrams of this type. Therefore, we
need to consider only diagrams with two external gauge bosons for the following discussion.
So the diagrams which still have to be discussed have the structure

A/AVAVAVAVAVAVAVAAA
VVVVVVVVVVV

2 We restrict the discussion in this Subsection to the ghost-ghost-gauge boson vertex. For all other vertices

without external fermions the reasoning is in complete analogy.
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There are three ways to replace the double lines:

The first diagram type cannot yield problematic contributions for the same reason as men-
tioned above. The second diagram type vanishes as the fermion traces involve exactly five
v-matrices, not counting -5 matrices. (Remember that we deal with diagrams in which all
the propagators are massless.) Finally, the third diagram type involves fermion loops with
three external gauge bosons. Such diagrams can indeed contain contributions originating
from traces of 75 and an even number of other y-matrices. However, the sum over all pos-
sible fermion species that can circulate in the loops, including also the diagrams in which
the fermions circle in opposite directions, vanishes.® This is of course a consequence of the
cancellation of the Adler-Bell-Jackiw anomaly [38, 39] within the SM, as required by gauge
invariance. Therefore, we are allowed to calculate the Feynman diagrams contributing to Z,,,
using a naive regularization prescription for 7;, in which the diagrams containing triangle
anomalies are set to zero from the very beginning, according to Eq. (12) .

As an additional check of the calculation we implemented also a “semi-naive” regulariza-
tion prescription for 5. Explicitly, we evaluate the expression tr(y*y”7”v%7s) by applying
the formal replacement

tr(v"97* 77 5) = —4ie"? 4+ O(e) . (14)
The tensor 77 has some similarities with the four-dimensional Levi-Civita tensor: (i) it is
completely antisymmetric in all indices; (i) when contracted with a second one of its kind
one obtains the following result

[

Ewypgf—fulylp/a/ = g[ll/ gllj, g[p), gz,]} s (15)

where the square brackets denote complete anti-symmetrization. When taking the limit
d — 4, é"r? converts into the four-dimensional Levi-Civita tensor and Egs. (14) and (15)
ensure that it provides the correct four-dimensional result.

At this point a comment on Egs. (14) is in order. It is straightforward to see that the
combination of this equation and the cyclic property of traces leads to an ambiguity of order
O(e). Therefore, we made sure that the terms that need to be treated in this way generate at
most simple poles in € and the above procedure can be applied directly without introducing
additional finite counterterms.

Let us stress again that we find the same result for the renormalization constants Z,,
both from the ghost—ghost—gauge boson vertex and by using other vertices and both by
applying the “naive” as well as the “semi-naive” scheme. These findings strongly support
the above reasoning.

E. Comparison of the methods

This Subsection is devoted to a brief comparison of the calculation via the Lorenz gauge
and the one involving the BFG. As has been mentioned before, in the BFG it is sufficient

3 The proof of this statement can be based only on considerations about group theoretic invariants. For
details see Chapter 20 of Ref. [37].
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Lorenz gauge BFG
# loops || 1 2 3 4 # loops 1 2 3 4
BB |[14] 410| 45926| 7111021 vBAB 13| 416| 61968|13 683693
WsWs  |17| 502| 55063| 8438172 vBZB  |113] 604[100952(23 640 897
99 9| 188| 17611| 2455714 ZBZB |20[1064|183 465|44 049 196
C4Cq 1| 12| 521 46390 WHBW—B|18]1438|252 162[42 423 978
cw,Cws || 2| 42| 2480 251200 gBgP 10| 186] 17494| 2775946

ot |[10| 429| 46418| 6918256
BBB ||34|2172(358 716(73 709 886
Wi WaWs |[34|2216]382 767|79 674 008
999 |21| 946]118086(20216 024
ooy || 2| 66| 4240 460389
ewew, Ws|| 2| 107| 10577| 1517631
¢~ Wy ||24|2353|387338| 77292 771

TABLE 1. The number of Feynman diagrams contributing to the Green’s functions evaluated in
this work. Left table: two- and three-point functions computed in Lorenz gauge; right table:
two-point functions computed in BFG. The superscript “B” denotes background fields. The first
column indicates the external legs of the Green’s function, the other columns show the number of
diagrams at the individual loop orders. Note that the BB B vertex is computed in order to have a
cross check as we will explain in Section IV.

to consider only the gauge boson propagators. This is advantageous as the use of Lorenz
gauge also requires the evaluation of three- (or four-) point functions and in most cases
it also demands the consideration of additional two-point functions apart from the gauge
boson ones. The disadvantages of the BFG are the increased number of vertices and the
more involved structure of the vertices containing a background field.

In Tab. I we list the number of diagrams for each Green’s function contributing to the one-,
two- and three-loop order. The number of diagrams computed in this work is obtained from
the sum of the numbers in these columns. For comparison we also provide the corresponding
number of diagrams which contribute to the four-loop order.

It is tempting to compare the number of contributing Feynman diagrams in Lorenz gauge
and in BFG which is, however, not straightforward since we use the former in the broken
and the latter in the unbroken phase. Nevertheless, one observes that in the case of 33 the
number of diagrams entering the BFG calculation is roughly the same as in case the gluon-
ghost vertex is used in Lorenz gauge, even up to four-loop order. All other vertices lead
to significantly more diagrams. In the case of (B, there are about three to four times more
diagrams to be considered in the BFG as compared to Lorenz gauge. Whereas at three-
loop order the difference between approximately 70000 and 250 000 diagrams is probably
not substantial it is striking at four-loop order where the number of Feynman diagrams
goes from about 10000000 (W5W5 , cw,cw, and cw, ey, W3 Green’s function) to 42000 000
(WHBW =B Green’s function) when switching from Lorenz gauge to BFG. Thus, starting
from four loops it is probably less attractive to use the BFG.

Let us add that the precise number of Feynman diagrams depends on the detailed setup
as, e.g., on the implementation of the four-particle vertices. Because of the colour structure
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we split in our calculation the four-gluon vertex into two cubic vertices by introducing non-
propagating auxiliary particles, whereas all other four-particle vertices are left untouched.

Let us finally mention that the CPU time for the evaluation of an individual diagram
ranges from less than a second to few minutes. For general gauge parameters it may take
up to the order of an hour. Thus the use of about 100 cores leads to a wall-clock time which
ranges from a few hours for a calculation in Feynman gauge up to about one day for general
gauge parameters. For the preparation of the FORM files using QGRAF, g2e and exp also a few
hours of CPU time are needed which is because of the large amount of Feynman diagrams.
The use of about 100 cores leads to a wall-clock time of a few minutes.

III. ANALYTICAL RESULTS

In this Section we present the analytical results for the beta functions. As mentioned
before, we are able to present the results involving all contributions of the SM Yukawa sector.
The SM Yukawa interactions are described by (see, e.g., Chapter 11 of Ref. [40])

Lyikawa = —QF Y eH*ult — QY HAY — LYY YHIT + hee. (16)

where YU'P'L are complex 3 x 3 matrices, i,j are generation labels, H denotes the Higgs
field and € is the 2 x 2 antisymmetric tensor. Q*, L’ are the left-handed quark and lepton
doublets, and u”, d%, % are the right-handed up- and down-type quark and lepton singlets,
respectively. The physical mass-eigenstates are obtained by diagonalizing YV'PX by six

. : U.D,L
unitary matrices V; x"" as follows

i
Ydiag

=V/y'vj', f=UD,L. (17)

As a result the charged-current W¥ couples to the physical quark states with couplings
parametrized by the Cabibbo-Kobayashi-Maskawa (CKM) matrix Vogy = VLUVLD f We
furthermore introduce the notation

7o Lyvyvt g Lyoynt p_ Lyryri (18)
47 47 47

In order to reconstruct the results for a general Yukawa sector, we multiplied each Feyn-
man diagram by a factor (ny)™, where m denotes the number of fermion loops involving
Yukawa couplings. After analyzing the structure of the diagrams that can arise, we could
establish the following set of replacements that have to be performed in order to take into

account a generalized Yukawa sector

npoy — trl, npap — trB,
npoe, — trl, nhaf — trT?,
nhag — trB2, npozoy — tr1'B,
npa? — trl? nia? — (tr7)?,
npap — (trB)?, nyai — (trL)?,
niatab — trT'trB, niataT — trT'trL,

n2opa, — trBtrL. (19)
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Of course, only traces over products of Yukawa matrices can occur because they arise from
closed fermion loops. Using Eqgs. (17) and (18) it is straightforward to see that in Eq. (19)
only traces of diagonal matrices have to be taken except for tr7'B which is given by

o a, 0 0 ag 0 0
trTB = tr 0 ac 0| Vexkm | 0 a5 O VéKM . (20)
0 0 o 0 0 o

The addition of a fourth generation of fermions to the SM particle content can be also
easily accounted for by this general notation. In this case, the Yukawa matrices become
4 x 4 dimensional. If we assume that the fourth generation is just a repetition of the existing
generation pattern but much heavier and if we neglect all SM Yukawa interactions, then the
explicit form of Yukawa matrices reads

B, = (03“’ 0 ) . with F=T,B,L. (21)
0 ap

Here T" and B stand for the up- and down-type heavy quarks, and L for the heavy charged
leptons, while ar denotes the corresponding Yukawa couplings as defined in Eq. (3). Since
in our calculation no Yukawa couplings for neutrinos have been introduced we cannot in-
corporate heavy neutrinos. This would require a dedicated calculation which, however, does
not pose any principle problem.

We are now in the position to present the results for the beta functions of the gauge
couplings which are given by

2
oy |2 1bng
ﬁl_—(47r)2{5+ 3 }

o? {18041 18y 34trT

~ A 760&1 ]_20(2 ].760[3
- — 2trB — 6trL
@P 25 5 5 Il T R A T ]}

o2 (48902 7830y . 340102 N 540\ N 18X 36A2 2827 trT
(47)* | 2000 200 80 25 5 5 200
ATlaotrT  116astrT  1267aitrB 1311agtrB  68astrB 25294 trL

8 5 200 40 5 200
1629c0trL  183trB2  51(trB)?  157trBtrl  261trL?  99(trL)?
— + + + + +
40 20 10 5 20 10
3trT’B 339tr7T?  177trTtrB 199trTtrL  303(trT)?
+ + + +
2 20 5 5 10
I 232&% _ Toy oy n 166&% _ 548 a3 _ davgory n 1100a§
75 25 15 225 5 9
8362 4402  1936a2
2 1 2 3
- - - 22
+”G[ 135 15 135 ” (22)

2
a; 86 16nG}
= —- =
/82 (47‘(‘)2{ 3 3
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. . ) 4 196
— 6trT — 6trB — 2trL + ng % + 30‘2 + 16043} }

N a3 {6&1  518ay
(4m)> L 5
2 2 2 A T
o5 [163c7  5H6lajas  667111a; — 6ag A : co 993y trT
- Bagh — 1202 — 22177
(47T)4{ 100 40 132 5 P 10
729ytrT . 5330qtrB 729astrB . 5lagtrL
_ P95l g g 233008 TasttB oo L Slaitr
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and
a2 16n
By = 32{—44+ 3G}

R R 2201 304a
3 1 3
— 408ci5 — 8trT — 8trBB 6
+(47r)3{ a3 r r —|—nG[ 5 + 6y + 3 }}

2 1010 trT B 93aytrT _ 1600gt:T — 89a,trB B 93aytrB

ag
(47)* 10 2 10 5

— 160astr B + 18trB? + 42(trB)? + 14trBtrL — 12trT B + 18trT? + 84trT'tr B
+ 14trTtr L + 42(trT)2
1302 ayap 24103 308aais 20132&%}

- 28
+nG[ 30 10 6 a5 st

=

{ — 571403 —

(24)

) 24203 2203 260003
+ng| — - — .
¢ 135 3 27

In the above formulas ng denotes the number of fermion generations. It is obtained by
labeling the closed quark and lepton loops present in the diagrams.

To obtain the results for the three-loop gauge beta functions, one also needs the one-loop
beta functions of the Yukawa couplings, cf. Eq. (6). They can be found in the literature,
of course. Nevertheless we decided to re-calculate them as an additional check of our setup.
For completeness, we present the analytical two-loop expressions which read

. . .17
ﬁat = — 6% + (40[732 {—60[5 —+ 60[15 -+ 4trL —+ 12trB + 12trT" — 3041 — 90[2 — 320[3}
ar [9a2  9ajay ,  T6ajasz 1616032 11607
— —35 36 —
Ty { 50 5 T I "o |75

2

320 ., 393 225
+aj + 9&3} +oqz g SO 2edat

50 + 144a30 — 485\(1,5 — 4804?
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Toqo 99 x 1500,  1dapo,
210 b + 42 b + 16azap — 1logoy — ag 21 22 — 9oy00,
+ daga, — 9043}, (25)
ap ap ~ ~ ~
Boy = — 2 4 B {6ab — 6oy + 4trl + 12t B + 12607 — oy — 9ay — 32a3}
" (4m)
a, [—2902 2Taja ,  124a;a3 161602
— —35 — 436 —
Ty { 50 5 ERETERA
—4a? 32002 < 9loyay 990y 2370
+’ng|: 4514—404;—1- 93:|—|—24)\2—|— 20 + 1 —|—1604304t—043—|—270
225 . 15010, 15000,
% + 144030 — 48 \ay, — 11oay — 48045 + O;& O;& + Sayar,
— Yoy, — 9a3} , (26)
and
o o . . .
Bo, = —€—+ 5 {6ozT + 4trL + 12trB + 12trT — 9oy — 9a2}
()
a, [bla?  2Tajas ) 4403 ) <o 1Taq0y
—35 4 24\ _—
+ (47r)3 { 50 5 a5 +ng 5 +4o5| + +
45 5 45
+ a2t + 80aizar; — 2704? + a;ab O;ab + 80aizay, + 6oy, — 27045
537, 1650, .
+ ;610‘ + =2 agha, - 2ajar — 2Masar 12a3} . (27)

The one-loop results have been expressed in terms of Yukawa matrices since these expres-
sions enter the three-loop beta functions. At two-loop order, however, we refrain from
reconstructing the general expression which would require an extension of the rules given in
Eq. (19).

Our independent calculation of the two-loop Yukawa beta functions is also interesting as
there is a discrepancy between [20] and [23] concerning the absence of terms proportional
to apoyA in Eqs. (25) and (26). We were able to confirm the results in Ref. [23].

In Appendices A and B we provide the results for the renormalization constants which
lead to the beta functions discussed in this Section.

IV. CHECKS

We successfully performed a number of consistency checks and compared our results with
those already available in the literature. We describe these checks in detail in this Section.

The consistency checks show that all computed renormalization constants are local, that
the renormalization constants of the gauge couplings are gauge parameter independent and
that the beta functions are finite. We also find that the beta functions calculated by con-
sidering different vertices in Lorenz gauge agree among themselves and with the results of
the computation in BFG.



16

In order to test that the program FeynArtsToQ2E correctly translates FeynArts model
files into model files for QGRAF/q2e, we reproduced the beta function for the Higgs self-
coupling to one-loop order and the beta functions for the top and bottom quark, and the tau
lepton Yukawa couplings to two-loop order (cf. previous Section). We have even considered
quantities within the Minimal Supersymmetric Standard Model, like the relation between the
squark masses within one generation, which is quite involved in case electroweak interactions
are kept non-zero. Furthermore, we find that the divergent loop corrections to the BBB
vertex vanish in the Lorenz gauge, as expected since for this vertex no renormalization is
required. We performed the latter check up to three-loop order.

Another check consists in verifying that in the vertex diagrams no infra-red divergences
are introduced although one external momentum is set to zero. We do not have to consider
two-point functions since they are infra-red safe. One can avoid infra-red divergences by
introducing a common mass for the internal particles. Afterwards, the resulting integrals
are evaluated in the limit ¢? > m? where ¢ is the non-vanishing external momentum of the
vertex diagrams. This is conveniently done by applying the rules of asymptotic expansion [41]
which are encoded in the program exp. The setup described in Section II C is particularly
useful for this test since exp takes over the task of generating FORM code for all relevant
sub-diagrams which can be up to 35 for some of the diagrams; this makes the calculation
significantly more complex. In our case the asymptotic expansion either leads to massless
two-point functions or massive vacuum integrals or a combination of both. The former are
computed with the help of the package MINCER, for the latter the package MATAD is used. As
a result one obtains a series in m?/q* where the coefficients contain numbers and In(m?/¢?)
terms. For our purpose it is sufficient to restrict ourselves to the term (m?/¢*)° and check
that no logarithms appear in the final result. With this method we have explicitly checked
that the W1W,W3 and three-gluon vertices are free from infra-red divergences. Since the
results for the gauge coupling renormalization constants agree with the ones obtained from
the other vertices also the latter are infra-red safe.

Let us finally comment on the comparison of our findings with the literature. We have
successfully compared our results for the two-loop gauge beta functions with [9] and the
two-loop Yukawa beta functions with [23]. Even partial results for the three-loop gauge
beta functions were available in the literature [16]. That paper comprises all hitherto known
three-loop corrections in a general quantum field theory based on a single gauge group,
however, the presentation of the results relies on a quite intricate notation. Its specification
to the SM is straightforward, however, a bit tedious. For convenience, the translation rules
needed to specify the notation of [16] to ours is given in Appendix D.

After specifying the notation of Ref. [16] to ours we find complete agreement, taking into
account the following modifications in Eq. (33) of [16]:* The terms

7g*tr (YV?) tr (YPY°C(R))
12
g2 tr (Yo?) tr (YY) C(S)ca
_'_
12r
have to be “symmetrized”, so that they read

1 (_ gt (Yor?) tr (VPYOC(R))  TgPtr (VoY) tr (YbY“C(R))>

(28)

2 12r 12r

4 We want to thank the authors of [16] for pointing out the issue of symmetrization and for assistance in

deriving the translation rules.
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; (+ g2 tr (Y°Y?) tr (YY) C(S)ca B g tr (V*V7) tr (YY) C(S)ca> . (29)

Furthermore, one has to correct the obvious misprint

4 2V ayb 4 2vava
LSt (CRPYYY) LSt (C(R)*YY ).
12r 12r

(30)

V. NUMERICAL ANALYSIS

In this Section we discuss the numerical effect of the new contributions to the gauge
beta functions. We solve the corresponding renormalization group equations of the gauge
couplings numerically and take into account the contributions from the Yukawa couplings
and the Higgs self-coupling to two-loops. As boundary conditions we choose

ol (Myz) = 0.0169225 & 0.0000039 ,
ad™ (M) = 0.033735 & 0.000020,
o (M) = 0.1173 £ 0.00069 ,

al® (M) = 0.00002064 ,
oM (M) =8.077-107°,

AT\ =0.13, (31)

where the first six entries correspond to experimentally determined values while the value
for the Higgs coupling is determined assuming a Higgs boson with mass 125 GeV:

my 1252 GeV?
20° 9. (2. 174) GeV?

47 ~0.13. (32)

Note that the values in Eq. (31) are given in the full SM, the top quark being not integrated
out. For a description how these values are determined from the knowledge of their directly
measured counterparts [40], we refer to [40, 42].

It is noteworthy that for all three gauge couplings the sum of all three-loop terms involving
at least one of the couplings oy, o, or A leads to corrections which are less than 0.1% of the
difference between the two- and three-loop prediction.

In Fig. 3 the running of the couplings a;, as and ag, is shown from g = My up to high
energies. At this scale no difference between one, two and three loops is visible, all curves
lie on top of each other.

The differences between the loop orders can be seen in Fig. 4 which magnifies the in-
tersection point between oy and ay. There is a clear jump between the one- (dotted) and
two-loop (dashed) prediction. The difference between two and three loops (solid curves) is
significantly smaller which suggests that perturbation theory converges very well.

The experimental uncertainties for oy (Myz) and as(Myz) as given in Eq. (31) are reflected
by the bands around the three-loop results. Defining the difference between the two- and
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FIG. 3. The running of the gauge couplings at three loops. The curve with the smallest initial
value corresponds to o, the middle curve to ao, and the curve with the highest initial value to as.

three-loop result as theoretical uncertainty one observes that it is smaller than the experi-
mental one, however, of the same order of magnitude. Without the new three-loop calcu-
lation performed in this paper the theory uncertainty is much larger than the experimental
one.

Also in the case of ag perturbation theory seems to converge well. However, in contrast
to a; and as the experimental uncertainty turns out to be much larger than the theoretical
uncertainty. This is not surprising as the relative experimental uncertainty of as at the
electroweak scale is quite large compared to its electroweak counterparts. The relative
experimental and theoretical uncertainty of s is plotted as a function of the renormalization
scale in Fig. 5. Note that by construction we have that Acag/as|iheory @pproaches zero for
n— Mz.

Let us finally identify the numerically most important contributions. This is done by
running from g = My to u = 10'® GeV and by comparing the contribution of an individual
term to the total difference between the two- and three-loop prediction. Similar results are
also obtained for lower scales.

About 90% of the three-loop corrections to the running of the gauge couplings arises from
only a few terms. In the case of a; there is only one term which dominates, namely the one
of order aZa3. For ay one has a contribution of +56% from the O(a3a3) term, +13% from
order a3as and +37% from O(«j). All other terms contribute at most 5% and partly also
cancel each other. Except for the term of O(aj) all these terms are presented in this paper
for the first time.

The beta function (35 is dominated by the strong corrections, however, large cancellations
between the aj (+137%), ajay (+45%), aia? (+28%) and a3a (+17%) terms on the one
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FIG. 4. The running of the electroweak gauge couplings in the SM. The lines with positive slope
correspond to a, the lines with negative slope to aiy. The dotted, dashed and solid lines correspond
to one-, two- and three-loop precision, respectively. The bands around the three-loop curves
visualize the experimental uncertainty.

hand and the ajda; (—112%) and aZasa; (—16%) on the hand are observed. It is worth
noting that the four-loop term of order a® amounts to —58% of the difference between the

two- and three-loop predictions. This number has been obtained by adding the four-loop
QCD term [17, 18] to fs.

VI. CONCLUSIONS

In this paper we present three-loop results for renormalization constants that are used to
compute the three SM gauge coupling beta functions, taking into account all contributions.
We have checked that our expressions agree with all partial results present in the literature.
Furthermore the two-loop corrections to the Yukawa couplings have been computed. We
have performed the calculation using both Lorenz gauge within the unbroken phase of the
SM and BFG in the broken phase. Our final result is valid for a generic flavour structure
with an arbitrary CKM matrix. It is furthermore sufficiently general to consider a fourth
generation of quarks and leptons.

In order to perform the calculation in an automated way we have written an interface,
FeynArtsToQ2E, between the package FeynArts and our chain of programs (QGRAF, q2e,
exp, MATAD, MINCER) allowing to handle the O(10°) Feynman diagrams, which have to be
considered in the course of the calculation, in an effective way. Thus, we could perform
several checks involving various different Green’s functions. FeynArtsToQ2E is not limited
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FIG. 5. Comparison of the relative experimental and theoretical uncertainty of cg. The theoretical
uncertainty is given by the dashed line, the solid curve corresponds to the experimental one.

to the SM but can easily be used for extensions like supersymmetric models.
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Appendix A: Renormalization constants

In this Appendix we present analytical results for the renormalization constants Z,,, Z,,,
Za37 ZB7 ZW7 ZG7 ZH7 ZCw7 ZCG7 ZCCW7 ZCCG7 ZWWW7 ZGGG7 ZHHW7 where the definition
of Z,, is given in Eq. (5) and the field renormalization is defined through

Bbare — ZBB, Wbare — wa, Gbare — ZgG,

bare bare bare
ew = LewCw , i = Zeyla H = 7ZyH . (A1)

B, W, G, cyy and c¢ denote the gauge boson and ghost fields. The scalar field H is defined
in Eq. (D5). The renormalization constants for the three-particle vertices are also defined
in a multiplicative way.

Some of the results listed below contain the gauge parameters £, & and £o. They are
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conveniently defined via the corresponding gauge boson propagator which is given by

v —g" + (1 &x) TF
D' (q) =i = : (A2)

with X = B, W, G. Note that £&x = 1 corresponds to Feynman and £x = 0 to Landau
gauge. Our analytical results read

a;l(1 4n a 1| « dnaa 16nZa
Za1=1+—1—{—+ G}+ 1{ [—1+ Sl Gl}

L

dre |10~ 3 (4r)® L2 [100 15 9
191 9a, 17T trB 3trl 1901 30y 2204
- — — — n
e|100 20 20 4 4 “\30 "10 15
. o 1 a? ngai  8nial  64nlai
(47) L €3 [1000 ~ 25 15 27
1[210f 910y 430} 170907 . 5lantrT N 3dastr]  TogtrB
€2 1000 100 40 240 80 15 240
Santr B n 203tr B N 33a,trL N 9antrl  trB2 (trf?)2 5trBtrl
16 3 80 16 8 4 6
3trL?  (trL)? N 1rTB  17teT?  11teTtrB 31trTtrl  17(trT)?
8 4 20 40 10 30 20
g 7703 N 63ciay 31a2 N 2maz 24203 _ 3danteT 20qtrB santrl,
180 50 60 75 45 15 3
o (26607  dajag 203 1760na3 8843
ng +
135 5 15 45 135
116302 | 20laiay 340102 9o\ N 3ash  3X2 2827antrT 15TantrT
e | 8000 800 960 50 10 5 2400 32
29astr]  1267oqtrB  437agtrB 17astrB 843aqtrl  543astrL
15 2400 160 15 800 160
N 61tr B> N 17(trB)? N 157trBtrL n 87tr > n 33(trL)? N trT'B N 113tr7™
80 40 60 80 40 8 80
59trTtrB N 199trTtr L N 101(trT')?
20 60 40
el - 58a? _ Tanay N 83a3 1373 anag N 27503
225 300 90 675 15 27
20902 1la2 484402
2 1 2 3
- - - A3
+”G< 105 45 405 )H (43)
g 1 43  4ng Qv 1 [1849cs  172ngas 16n2Ga2
Ty =14 —=8 =2 — -
? +47T.5{ 6 + 3 } (47‘()2{62 [ 36 9 + 9
1[3a; 259y 3trT  3trB  trL o 490
- — — - ——+ng| —=+— o
€| 20 12 4 4 4 779\10 7 6 ’
ay [1[ 7950703 N 1849nca3  344nkas N 64nd.a3
(4m)® | € 216 9 9 27



22

1 o 43mas N 7795902 N 170 trT N 181yt - oeted t otrB
200 20 216 80 16 st 16
181a2trB 20etrB 4 3aqtrL N 181antrl  3trB2 3(trB)2 trBtrL
16 ’ 16 48 8 4 2
(trL)? n 3trT’B  3trT?  3uwTtrB trTtrl  3(trT)*  trL?
12 4 8 2 2 4 8
702 3lajay, 2200103 86awas 2203 . . 2autrL
- - - - — 2astrT — 2astrB —
- "G<100 30 108 3 g e el
2&1 iYene’ 68604% 1605003 80z§
G < B 2 T3 g
1 1630  18Tanay 66711103 N A . ad o 5930117 24305trT
4800 160 5184 10 2 480 32
7a3trT 533&1’51"3 243a2trB 7a3trB 17a1trﬁ 81a2trf/ . 19tr B2
3 480 32 3 32 32 16
N 15(trB)? N StrBtrL N 19trL? N 5(trL)? N ItrT' B N 19tr7* N 15trTtrB
8 4 48 24 8 16 4
5trTtrl  15(trT)? 702 13ajas 641202 ajas 130 12502
Tttt el e TTe s T3 T
1102 41502 4402
2 1 2 3
- - - A4
*”G< 135 81 27 )” (A4)

1 Ing Qg 1 88ngas  16nZos
Zoy =1+ —22{ —11 — 1213 — G
: +47re{ 3 }+(477)2{62|: s 3 T 9

1 ~ ~ 110[1 30&2 380[3
2| —5las — T — trB
+e{ Qs ML U +"G(60+4+ 3)“

as [ 1 ) , 176nZai  64nda’
2 | —1331 484 —
Ty { é3 { @ T 288naa 3 27
1 17a1trT 3a2trT 74a3trT altrB 3a2tr§ 74a3tr§
— 130902
+e2{ BT T T T3 T i T3
téQ . trBtrL o trT? - Tt .
B - 2 B - onPeB - Y (])?
1102 43&2 12103 33apa3 435402 Sagtrl  8astrB
1800 30 2 9 3 3
1102 a2 22a o 106402
2 1, % 1003 3
2
G< 135 R T )}
2857a3 B 10lagtrT 3lagtr?  40astr] 89a trB 3lagtrB  40astrB
120 8 3 120 8 3
3t32 7tf32 TtrBtrL . 3trT? .~ TtrTtrL trT)2
! (trB) i trTB+3r —|—7tthrB+7r t 7(tT)

5 T T 2 6 T 2



23

1302 o« 24102 7 7 503302
+nG<— L e L L L a?’)

360 120 72 135 3 27
121a2 11a2 65002
2 1 2 3
— — J— A
e < 810 18 81 )} } ’ (45)

100 20+20+4+4

(4m) €

ZB =1+ ﬂ 1{ 110 47;)'6'} 631 1{ _ 9061 90(2 17tI'T tI‘B 3tI'IA/

47 e

1901  3as 22a3
+"Gl_ 30 10 15 ]}
N o {i [ B 3a2 4303 B 2890 trT’ B 5lantrT B 3dastrT B atrB
(471')3 €2 1000 40 1200 80 15 48
B 3antr B B 203tr B B 9o trl B 9antrl  trB2 N (trB)2 N 5trBtrl N 3trl2
16 3 16 16 8 4 6 8
(trl)*  11uTB N 17trT? N 11trTtrB N 31trTtrL N 17(txrT)?
4 20 40 10 30 20

N 11a? N 3la3 N 24202 2 38a% 203  88a3
ng| — ng| — — —
“ 180 60 45 ¢ 135 15 135

1[_163a§ 261ays 340162 9aqh  Bah  3A

el 8000 800 960 50 10 5
2827citrT  157cntrT  29astr] 1267aitrB 437astrB  17astrB
+ + + + +
2400 32 15 2400 160 15
843aytrL  543aptrl  61trB®  17(trB)?  157trBtrl  87trL?
00 160 80 40 60 80
33(trL)?  wTB  113trT?  59trTtrB 199trTtrl  101(trT)?
40 2_ ' 80_ 20 60 2_ 40
58« Tajas 83« 13713 sz 27H«
+"G<2251+ 300 902+ 675 15 273>
20902 1la?2 48402
"é( 0 Tt 4053)”’ (A6)

1(2 4
ZW:H%_{E_E_&V}

4re | 6 3
(0%)] 1 25&2 8&1/{/0(2 2 45{/[/0(2
Shac T g - 2
+ (47?)2 { = { 1 5 + &pag +ng | 200 + 5
1] 3w 113, 36T 3trB  trl  1l&pas &
+ e[ 20 + 8 + 4 + 4 + 4 4 2

(03] 130[2
S -
)

a { 1 {152504% N 8nZ.al N 89¢&y a2 N 7€ a3

32
72 9 12 6 Swas




9 3 3
1[ o2 3ajay 2962902 1Tagtr] 2lagtrT

ne < 8603  10&wa3 45%,04%)]

L — — 20atrT
200 20 132 80 16 astr

aitrB 2lastrB . Bagtrl  TaotrL  3trB? 3(trB)?
_ _ — 2aatrB — _
16 16 astr 16 16 s
trBtrL  trl?  (trL)*> 3trTB  3trT?  3trTtrB trTtrl  3(trT)?
+ ==+ = + + + +
2 8 12 4 8 2 2 4
Bajag 27102 BaotrT  3astrB  astrL 53&4,a3  TEN Al
+ Ew - - - - + +
20 24 4 4 4 12 6
704% 100y 4273&% 22ai
J””‘G<_100Jr 0 108

ajay 4703 282, a3 9 207  118a3 8a?
et 9 — — —
+5W< T Tetes )T )T Ty T oy T g

€2

A

10
1{ 16302 1lajas 3C3a1a2+143537a§ (o2 ) a25\+ 2

€ 4800 32 10 1728 2 10 2
593a1trT 79a2trT 7a3trT 533a1tr§ 79a2tr§ 7a3trB 17a1trﬁ
+ + + + +
480 32 3 480 32 3 32
N T9astrLl 19trB*  15(trB)*>  5trBtrL  19trL?  5(trL)*  9tr'T'B

96 16 8 4 48 24 8
19tr7?  15trTtrB  5trltrl 15(trT)2
16 4 4 8

10502 1102 o2 TE3 a2
+£W<_ 2_2C3&§)+§12/{/(_ 42_C322)_ §g2

8
Ta? 8 4 7025002
+nG< a7 i 071e%) (3a0rp a5

103 320&20[3
- — 12¢302
15 15 5 T I 3

— 16<3042043 — Nag

9 3 135 27 27

1 117 51 9¢2
—Oég {— [ - a3 - gG’Oé?, + gGa?’ -+ nag (30[3 —+ 25@0[3)}

€2 8 8 4

1 531as -~ ~
trT 4 trB —
{+ 16 + trd +tr 16 2

o [1[120903 , dngad | 4236ead | 923  276ke]
(471')3 16 3 16 2 8

15¢qas
+ nG< — 22a§ — §2Ga3 — 3%0@)]

€3

1{ 795702 17oqtrT  3aotrl  25astr]  oqtrB 3axtrB 25astrB
| - _ _ _ _ _

€2 32 60 4 6 12 4 6

24

12503 N 8§Woz%) L2 (110@ N 18503 N 44&%)}} (A7)

995@0&3 _ 9&%0[3 Tn _ 110[1 _ 30&2 _ 610[3
“\ 60 4 6



25

A

tr B2 ., trBtrL T .o Tl .
+ r2 + (B 4+ 2 T B 4 o + 20Tt B 4 o (trT)?
eof - 128703  3aztrT  3ostrB . 1176202 . 633,02
“ 32 2 2 8 16
1la? 4303  1lajaz  9asaz 169103
* G<_ 1800 24 0 8 18
llogas  9asas 733 3¢ka3 ) 11la? a3 182a3
+§G( 0 s Tx )t )t T T3 T
1 {9965@% 8103 N 101y trT N 3lagtrT N 9lagtr]  89oqtrB  3lastrB
el 32 16 120 8 12 120 8
9lastrB  3trB>  7(trB)2  TtrBtrL . 3trT? . 7Tl
astrB  SwB’  T(B)  TwBulL o hp 3UTT o gy g TUTW
12 2 2 6
_T(T)? N £G< 150303 27@,&%) N fé( 29703 27§3a§) 6303
2 32 4 32 16 32
1304% o0y 241&% 322313 11313 2933
- - ~9
- "G< 360 120 72 2160 T G203
815502 , , , (12162 11a? 86002
- 22 6 A
5 + 22¢305 + 68coy | + ng 310 + 13 + 31 ; (A8)
a1l (3 fW
Zoy =14 —202 38
v T { 2 2 }
as [ 1 170 3&8 a 1{1790s  5Sngas  Ewan
+(4W)2{62[ R N R T 6 s
as [ 1[130903 N 8nZ.al N 17¢was a3 5ad
@npP e 72 9 24 16 16
14503 &3 1 [3an0n 2920903 20n%a3  3ootr?  3ootrB
4 . 2 2 2 c%2
e 8 6 J|Te|l 20 " Tses 2 4 4
aotrl, 376wl 136202 €303 ajay 153503 Ewal
— ) —
1 96 16 6 "9\T10 T Ties UMM T D
1 3300 3Gaiay 5912503  70n%ad  Gsad | 4lagtrT N 4lantrB
¢ 80 20 2592 81 4 16 16
AlagtrL 2903 9 9 ai  (Gad & al
TR +§W<— TR +&w R
3(110(2 2C30(10[2 45730[2 ]_50(20[3 7§Wo42
+ng<— 3 + 5 - 6482 —6C30z§— 9 +8C30z2a3+ 6 2 ;



26

€

Qs i l B 315a3 n 3ngas n 2752;&3 +1 285ai3 B Bngos n 9¢qas
@m’le| 32 2 32 el 32 4 32
2 2 92 2 2 9 3 9
a3 { 1 {8295043 N ng.o; N 3158gas;  243&La;  135&Laj

(4r)® | € a a

+ 128 3 128 128 128

14902 3¢qa? 1[ 155870} 10n%a2  3astrl  3astrB
\T TR T s =l a a a

2

€ 128 9 2 2
45¢qa3 3518403 9&3.a3 N nG(llalag N Yana N 159703 3§Ga§)]

32 128 16 40 8 48 16
+1{15817a§ 35nZa2  81(302 23a3trT+23a3trB

€ 192 27 32 8 8
15303 27(303 ) 2703 27303 278803
b6 < 5 s )T 32 3 64
330[10&3 11<30[10[3 1350[20&3 9C3(12043 6370&% 215@0&% 2
. . . 11
- "G< 32 10 2 2 36 s “as )|y

(A10)

Zy =1+

11(9%; Yoy
47 €

7 > 7 3¢pay 3&waz
— 4+ — = 3trT — 3trB — trL — —
20+ 1 3tr 3tr r 50 1 }

L1 2 1[990}  8lajay 17703  3agtrT  27aptrT © 120gtT — 39a,trB
(47)% L €2 | 800 80 32 40 8 40
27a2trB 4 120ntrB 4+ 27a1trﬁ 9a2trﬁ 9trB?  3trl? . 9WrTB  9trT?

8 astt 40 8 4 4 2 4
2704% 2T 9wagas 9a1trT 9a1trB 304{51"[2 95]250@
+§B<_ 00 80 8 20 T2 TT20 )T R
27 902 9antrT  9astrB  3antrL 216202
n EW( 2T (o n Qotr Qolr 4 Qolr ) + fWOéz

80 16 1 T 4 32

N 302 N 3a3

n —_— _—

“\10 " 2

1 { 930  27ayap | Blla3 o, 1TontrT  45ostrT . boqtrB

— — — 3)\? — 10astrT —

1600 160 64 16 16 astt 16

4500t B 10onteB 1500ttt 15autrL N 27tr B2 N otrl?  3tr7TB . 27trT2
16 3 16 16 8 8 4 8

3¢was 3403 a?  bal
2 TR
1 (1[42903 8912, 15930102 855503  93a2trT  9ayastrT
J— — + — —
(47)> L ¥ | 16000~ 3200 640 384 800 16
435a§trT ToqostrT

177&%51"3 99a1a2trB
32 5

800 80
435a%trB 17 astrB 339a%trL 270 ot L
32 5

€

+

+ 9a2a3trT — 760z§trT —

+ 9agastrB — T6astrB — 200 <0



145a%trﬁ 9trB* 9 tr B 9trTtrB?  9trBtrB%  3trLtrB?

18astrB? —
32 4 20 oot 4 4 4
3trL3 . 27ctrL?  3trTtrl?  3trBtrl?  trLtrL? N otr7?B  9tr7T?
4 20 4 4 4 4 4
_ 9o trT B 360 trT B -+ 9trT'trT'B n 9trBtrT' B n StrLtrT B n 9trT B?
20 ’ 2 2 2 4
9a1trT2 S o otrTtrT?  9trBtrT?  3trLtrl?
18 T — — —
T 4 4 4
v - 29703 243ciay  53lajai 6383 ,aias  9attrT  8lajastrT
b 16000 1600 640 640 800 160
B 9a1a3trT 117a%trB 81&1042’51"3 _ 9a1a3trB B 81a%trﬁ 27a1a2trﬁ
5 800 160 5 800 160
270 tr B2 n 9aqtrL?  2TaqtrT B n 27 trT?
80 80 40 80
e 8laZay  27Taja?  27aqanttT  27ajasttB agastrL
W\ 1600 320 80 80 80
297020y 8lajas 36743 9oy rptrT 27a§trT -
— — — -9 trT
* §W< 3200 320 128 T 160 32 2ttt
117(11&2’51"3 27&%’51"3 A 81a1a2trﬁ 904%’51"[: 27042’51"32
— — 9apastrB — —
160 32 160 32 16
QatrL?  27astrT B N 27 o trT?
16 8 16
e 8la3 N 8lalay,  276walay 2702t 27a%trB 9atrL
B\ 16000 3200 3200 800 800 800
e 1890102 6303 6302trT  63adtrB 2ladtrL) 96303 T7ENad
w 640 128 32 32 32 16000 128
Tad  27Ta3as  2Taya2 2630 aftrT 9, 1602trT  1102trB
— — — 3astrT AR ——
+"G< 010 @ 24 g 15
. 16a2trB o2trl - 902 902
— 3a2trB 3 L= a2trl A
e I T k] T Ty

9oy Has o (4o dad
WV(‘ 0w 8))tels Ty

1{ 9707  99ala;  4917ai0f 12109303  270fA  9ajand 903

2| 32000 1280 1280 2304 200 20 8
n 90415\2 n 90@5\2 o3 541aftrT 177a1a2trT 885a§trT alagtrT
20 4 1600 160 64 10
33apastrT 0. 2 <. - 191a%trB  5TajastrB  885a2trB

20T 1 198a2trT — ONArT —
g T Usash 600 160 64

490 agtrB 33a2a3trB
10 2

3a%trﬁ 45a1a2trﬁ
1600 32

+198a2trB — 9 *tr B —



28

_ 295a3trL 332tef 4 15trB°  123aqtrB?  117a5trB?
64 8 80 16
81trBtr B2 N 27tr Ltr B? N 5trL?  26lagtrL?  39qstrL?
8 8 8 80 16
27trTtrL?  27trBtrl?  9trLtrl?  15tr7? 43a0qt1TB
+ + + +
8 8 8 8 20
9o trT B .. 1ltrLtt'TB  297aqtrT?
——— +46astrT B — —
g ok 4 80
117astrT? . < o SLrTT? 27trLtrl?
- e 39astrT? + 18\ rT? + LNl
16 8 8
ey (2790411)’ N 8lafay  1533cia3  9wanas 94 a1a3  9arA? SladtrT

— 39astr B2 + 18 \tr B2

+ Gt L2

32000 3200 1280 40 320 20 + 320
2Tarastr]  3aqastrT  302trB 27TajastrB 3aqastrB - 9a2trL
+ 64 + 2 64 + 64 + 2 64
N 9oy gt B 81aytrB? B 27 trL? N 9a,trT B B 81a1trT2)
64 160 160 80 160
e (279a%a2 35la103 14103 N Iora \2 . 5lagantrT N 42302trT

6400 640 256 4 64 64
15a2a3trT . 150410@’51"3 . 423a§trf3 15a2a3trB n 45a1a2trﬁ . 141a§trﬁ
2 64 64 2 64 64
8lantrB?  27astrL? n 9artrT B 8lastrT?
32 32 16 32
ce (- 270103 N 189as3 N 9astrT N 9astrB  3astrL 338 a3
320 64 16 16 16 64
1163 219020 3903 324103 1lalas ) 11e2trT  3ateT
* "G<1200 TT0 R0 a2 TPt Ty 2
40a2trT  19a2trB 3a2trB 40a2trB 902trL  o2trl 3  3aqa3
_ Hastrl | Dajrb | Sagtrs.  40asth Do ML e (200 9010
3 30 2 3 10 2 80 16
302as 903 202 10a3
+§W(ﬁ—1—62))+né<—?l— 92)—3(11,045—3&204
1 {_ 41303 27Ca8  279a%ay  27(alas  Hlajas N 93102 7051903

¢ 6000 ' 2000 800 400 64 80 1728
6903 11703 N 27¢;03)  39a1an) N 9Gzaiand  39a3A N 9C302\

16 400 50 40 5 16 2
5283102trT  (zo2trT  3TlogontrT

28800 100 320

27C3a1a2trT 2433a§trT 63C3a§trT 2419a1a3trT 68C3a1a3trT
B 10 128 VR 180 B 5
N 1630z24agtrT  36CsapanteT — 910();§trT 455\;trT N 27a12((t)rT)2

— 301 A% — 150A% + 12X% +

+ 8¢saltrT +




29

N 27y (trT)? N 5479a%trB N 20¢s03trB  67layagtrB N 9z qotr B

4 28800 100 320 5
243302trB 63(;02trB  991ajastrB . 163as0strB
— —4 trB4+ ————
128 /T GaragteB + =
. 91002trB ~ 4BNrB 2TaqtrTtrB 27antrTtrB
— 36(3asa3trB — 70;3 d + 8C3a§trB + 5 d + &111;) d + a2 ; d
270, (trB)? N 2ay(trB)?  8517a2trL  117(s02trL  41lonantrl  18(saqastrL
20 4 3200 100 320 5)
81latrL  21(zaitrL . 15X\%trL . 9o trl'trL n 9aptrT'trL . 9o trBtrL
128 4 2 10 2 10
JootrBtrL  3oq(trL)?  3ao(trL)?  25trB3 L. 3030qtrB?  9(zontrB?
aotr Btr aq (trL) N ao(trL) 4 25t 3B+ aitrB* 9o tr
2 20 4 16 80 5)
2790, tr B2 ., bastrB? . .
% — 9CantrB? — 222 L 9utsastr B? — 15t B?
s .., 25trL? .o 33aytrl?  9Cantrl?  93aptrL?
— 18trBtrB? — 6trLtrB? + Sl Catr L + at + G tr ooty
80 5 16
25t

— 3C3a2tri2 — 5AtrL? — 6trTtrL? — 6trBtrL? — 2trLtrL? +

n 31a1trTB 8(3a1trTB n 21a2trTB

— 3C3trT3 m 3 3 — 19a3trTB + 16C3a3trTB
trLtrT B n 211a1trT2 n 3C3a1trT2
2 80 )
279y trT? o BagtrT? . - .
n 017261" —9CsantrT? — 0‘3; 1 24CsastrT? — 150172 — 1867 'trT™
ginge - WEwod o (3903 3God) 5ol
64 32 8 16
158af  19¢a?  3alay  9Gatas  3ana3  3(zaiai 2381ad
ng| — + — + — + -
225 25 40 25 10 5) 216
3302a3  44(0las  45asas 12702trT  2102trT
_ 15 3 1 1 o 2 12 2 1 2
G2 o0 T g 1 T1Femts gt Ty
N 32a3trT  3la2trB 2lastrB N 32a3trB 39attrL N TastrL N 17¢was
3 120 8 3 40 8 8
o8 3503 2Tl 2770
2 1 2 QY en
S - - - All
+”G< 27 27) 16 16 ]} (ALL)

1 1 ) 113
Zeow =1 — gWaQ——l— €Wa2{—[— 22 Swag} +€3[2+§WQ2}}

4 € (471—)2 € 4 4 2
Ewas [ 1 6la2 2nga?
g \E e s el el
1 [221a3  5ngad s 3&hal
- . 4
€2|: 24 5 T Awes Ty



Zeog=1—7 -

30

€

L[ _ 3703  Sngaj 136waj _ 5&aill (A12)
48 2 8 12

€

16 16

35@&31 5(;(13 l 27&3 4 9§Ga3 + 1 B 45&3 9§Ga3
2 4w € (47?)2 e2| 8 4

§Ga3{1[ 27903  3ngaz  81&gal 275%04%}

+ — —

(4m)® | € 16 2 8 8
1 [103503  15ngal N 27¢qal N 81&%a3
€2 32 4 2 32
1 180903 N d5ngai  351gay 45803 | (A13)
€ 64 8 64 32
1 (6%)) 8 4HG 3§W
edm (3 3 2
as [ 1 T&way 155
= | = 6as — 3as + 2
+ (4n)? { 2 [ Qs 1 + 2 +ng | 3o + 25w an
1] 3y 499,  3trT  3trB  trlL  33&was 36204
+ €|: 20 + 48 + 4 + 4 + 4 8 4
(03] 17042
e
rre 575
4o 1 7003 N 4nZ a3 n 59¢was  5EE.a3  35&0a3
TERGIEE 3 3 8 16
ol - 4303 13wai  5&ja3
3 2 2
1 @2 9ajan 2605702 17oqtrT  2TantrT . atrB
) - - - — 2a4trT —
= { 200 ' 40 432 80 16 st 16
27a,trB otr 3ontrl  astrL n 3tr B2 n 3(trB)? n trBtrL N trL>
16 ’ 16 16 8 4 2 8
(trL)?  3trT’B  3trT?  3trTtrB trTtrl  3(trT)?
- + + + +
12 4 8 2 2 4
9oy 16502 9agtrT  9astrB  3astrL 157¢3,03 178303
+ &w - - - - + +
40 32 8 8 8 16 8
702 3ajay 443303 2203
— 3
* "G( 00 " 20 108 0t
3o 212 202 12802 8o’
+§W( 50 T 22+3a2a3)+£§va§)+né(— 451— 272— 93
1] 1630F | llogoy  9Ganay N 31236102 3¢Gsa? oA aph e
€ 4800 160 20 5184 4 10 2

n 593a1trT _ 3a2trT n 7a3trT n 533a1trf3 3042’51"3 n 7a3trf3 n 1704{51"[2
480 32 3 480 32 3 32



31

aotrl  19trB%>  15(trB)?*  5trBtrl  19trl?  5(trl)®>  9trTB

32 16 8 4 48 24 8
19tr7?  15trTtrB 5trTtrl  15(trT)? ¢ 31503 30,02
16 4 4 8 W 16 372
33a2  3(al ST 7a? 10900 6(30nar
2 [ 2 963 ) Sw® 1 102 OGza g
+§W( 8 A ) 8 +”("(45 10 5
3757702 o 109a 12502
- WQ + 18G5 + 11153 62 ? — 24¢az03 — 2+ 4€W04§)
1102 62502 4402
2 1 2 3
Al4
+”G(135+ YT )” (Al4)

Q3 1 459&3 9§Ga3 135&%&3 9(13
. - s
{ [ 32 o Ty Trel Ty e

1 |:777043 ~ ~ 297&@0[3 27&%0&3 in ( 110[1 30&2 1070[3):| }
- acl —

60 4 12
3537602 1356302 945E3,02

m — —
+ 2ngaj + 128 128 128

117¢qa3  45¢4a3
)
1 28079a3 17ontrT  3aotrT  59astr]  oqtrB  3astrB - 59astrB
_{ 60 412 12412

trB trBtrL L T .. trTtrl .
(trB)? + 2 0T B+ e 4ot TteB 4+ 4 (T2

el - 6213  9ogtrT  9agtrB N 4185¢%a3 N 459203
32 4 4 128 64
e ( _ llaj | 4303 | 33aiag N 27anaz N 141012 N 9¢%a3

trT + trB — _
3o Tl 32 16

as [ 1[10863a3
(4r)® L | 128

+nG<—33a§—

+

€2

1800 * 24 80 16 144 4

33cia3  2Tasas 39303 ) 11a? a2 19702

N 1 [43973043 243(303 N 101, trT N 3laotrT N 113astrT  89aqtrB  3lastrB
€

192 32 120 8 24 + 120 + 8
113astrB  3trB2 trB)2  TtrBtrl . 3trl? .~ TtrTtrl
N 3agtrB- 3trB*  7(trB)®  TtrBtr —i—trTB—gr —7tthrB—7r rL
24 2 2
7(trT)? 450902  81(za2 5 891ai  81(3a2 18902
SN rey( -2 -
2 64 8 64 32 64
1302 o« 24102  10901aqa 33Ga1as 991ama 27
¥ ne 1+12_ 2+ 13 C313+ 203 (30ra0r3
360 120 72 4320 10 96 2




32

1439902 , , 12102 11a2 = 96503
L 33 Al5
s 9%e0s +33Gas | g | St St T ’ (A15)

1 1(9; 3ay 3pa;  Béwas
7Z 1+ 3L T2 30T — 3trB — trl — —
HHW +4we{20+ g o T eE TR T 4

1 19902 27 7702 3aitrT 9antrT . 39a4trB
+(4 )2{_{ & Gife L% omd + it +12a3trT—7&1r
v

800 80 32 40 8 40

9autr B 1%0te B+ 27aqtrL N Saotrl,  9trB?  3trl? N otr’B  9tr1?
astr — — —
’ 40 8 4 4 2 4

8
27041 9ovq vy 9a1trT 90z1trB 3a1tri 3w aqan
( O+20+20+20+16
9a1a2 15042 . 15atrT . 15aptrB . BaptrL . 9407 . 45512,1/043
16 4 4 4 800 32
(5 %)

1 l 930z1 27a 00 81704% 17a1trT 45a2trT
€

+ &w

+ ng

— + _ 3N\ — — 10astrT
1600 160 192 16 16

_ 5041’51"3 _ 45042’51"3 00utr 3 1504{51"[2 15a2trﬁ n 27tr B2 n 9tr 2
16 16 ’ 16 16 8 8
_ 3uTlB N 21rT?  23¢wai  TERa3 N nG( a? 50@)] }

4 8 8 16 4 12

L { 1 {42904? 20700y 69310} 1255103 9303trT  9ajagtrT
(4)°

16000+ 3200 640 1152 800 20

2702trT  TayastrT

B 17702trB N 9o atrB
32 5

800 40
27a§tr3+17a1a3trf3 339aftrﬁ 27a1a2trﬁ
32 5) 800 40

9a trl  9trB3  9aytrB?  27antrB? . 9trTtrB2
;2 ot 3 +18a3tr32—74
9trBtrB%  3trLtrB?  3trl3 27a1trﬁ2 9a2trﬁ2 3tr'tr L2
T 1 T 1 T 1 T tTws T
StrBtrl?  trltrl?  9trT?B  9trT3 9a1trTB 27a2trTB
T4 1 i T4 T T T i
9rTtrTB  9trBtrTB  3trLtrT’B  9trTB? 9a1trT2

— 9a2a3trT — 760z§trT —

— 9a2a3tr§ — 76a§tr§ —

— 36a3trT B + 5 + 5 + 5 T
27 auptrT? ~ o OtrTtrT?  9trBtrT?  3trLtrl?
———— + 18astrT™ — — —
g T iastr 4 4 4
el - 297&‘;’ _ 8104%042 231a1a§ 9a%trT _ 270ty
B 16000 1600 640 800 160

_ 9a1a3trT n 117aftrf3 27&1042’51"3 9a1a3trB 81a%trﬁ
5 800 160 5 800



33

9a1a2tri 27041t1"B2 n 9a1tri2 27a1trTB n 27a1trT2

160 80 80 40 80
Le 2703y B 9oy v _ 9agaptrT 9ajantrB 3ajastrL 2782 a0
Y\ 320 64 16 16 16 128
99(1%&2 27&104% 745&% 3a1a2trT 225a§trT -
— — — —15 tr’l’
* 5W< 640 64 381 T 3 32 aastt
n 39a;aatr B B 22505tr B B 15a2a3trB B 27a aptr L B T5astrL N 45042’51"32
32 32 32 32 16
15agtrL”  45a,t1TB N 450t , [ 8lad  27alay
16 8 16 B\ 16000 3200
B 2702trT B 2702trB B 9atrL _ %watay
800 800 800 640
e 8laja3 40503  135a3trT  13503trB  450jtrL
W 128 128 32 32 32
ohed  1956)0)
16000 128
g Tl n 9oty n 9 s B 317a3 B atrT n 16a2trT B 11la?trB
40 40 40 72 3 3 15
1604%’51"3 a%trﬁ 903 3oy 3aday  bas
R A U T A G I T

403 4ad
2 (=1, 2
+nG< 5 + 9 )}

1{ 97a% 63020 290lana? 1930578 270X\ 9anas)

€2

32000 6400 1280 6912 200 20

~ 903A N 9o A2 . 270\ U3 54102trT N 39a; aptrT N 149a2trT
8 20 4 1600 80 64
aqastr]  3asastrT .- <o, = 191a3trB  33ajantrB
— — 198astr T — 9N“trT
10 g sl = T 600 10
149a2trB ~ BaagtrB - 3azastrB n 1980z§tr§ oNtrf 3astrL
64 10 2 1600
14902trL ., - 15trB*  123aytrB?  99a,trB? Ly
———— — 3\*trL - - — 39astrB
192 Ty 80 8 Dt
< ~o o SltrBtrB?  27trLtrB? 5trL?  26lagtrLl?
+18)\trBZ+8 rBtrB” | 27trLtrB” | Strl”  26lontr
8 8 8 80
_ 33astrL? 4 6AteE? 4 27trTtrL?  27trBtrL?  9trLtrL?

8 + 8 + 8
15tr73 43a1trT§ 9a2trT§ . 81trTtrT? 27trLtrT?
46a3trT B
3 + 20 + 1 + 46a3tr + 3 + 3
11trLtrT B 297cqtrT?  99astrT™?
4 80 8

— 39a3trT2 + 18 tr1?




32000 3200 1280 20 320 64
3a1a3trT 3&%’51"3 n 27a1a2trB n 3a1a3trB 90@’51"12 n 90z1a2tr[:
2 64 64 2 64 64

s <279a‘;’ N 8laday, 817l 9o \2 51a%trT 27, uotrT

8laytrB®  27agtrl?  9aqtrTB  8lagtrT?  69&waiald  21€2,0103

160 160 + 80 160 160 320
93020y 6930102 651503 154202 8baqastrl  T77atrT
+ €W 142 o 1¢k9 + 2 + 2 + 1662 + 2
1280 640 768 4 64 64
n 25a2a3trT n 25&1042’51"3 n 777&%’51"3 25a2a3trB n 75a1a2trﬁ
2 64 64 2 64
259a3trL  13bastrB?  45aptrL? N 15a5t1rT B 135a2trT2)

64 32 32 16 32

63a102 47303  2102trT  21aitrB Tadtrl\ 2418303

+ 5‘24/ _ 1% 2 2 + 2 4 42 + Sl
320 64 16 16 16 192

e ( 11a? 69020y, 17ai03 412303  1ladas 11a2trT

1200 400 80 432 g tMmT g

_ agtrT _ 4002trT  19a2trB — altr - 4002trB _ 9aitrL _ astrL
3 30 3 10 3

308 a3 Sata, 1030 9 208 10a3
+£B<%+ 6 )T T as ) Tl T e

— 3a0 — 3&?041,}

6000 2000 800 400 320 80

1 l 41303 N 27¢0  279a%ay  27(30%q0 12310 3G
€

)

933073 73C;ad  117a2A . 27¢303) 39109 . 9Gsaiand  39a3)

5184 16 400 50 40 5 16
9Cza3\ <9 <o 3 5283104%51"T CgO(%EI'T 37l antrT
— 3,02 — 150902 + 12\ — —
+ “ QA LA T RR00 100 320
273 antrT  2761a2trT  63CadtrT  2419castrT 68(30 astrT
10 128 4 180 5
163asaistrT’ . 910a2trT - A5N T
% — 36C3&20[3t1'T — % + 8C30é§tI'T + 5 d
27, (trT)? N 270, (trT)? . 547902t B . 29¢;0%trB 67lajantrB
20 4 28800 100 320
9(3astrB 276104%’51"3 63C3a§trB 991 astr B A
— —4 trB3
Tt 128 1 T 180 Gt gtr
163asastr B . 91002trB . 45)\%rB
% — 36(3a0a3trB — it g + 8C3a§trB + Tr

27aytrTtrB 2TantrTtrB  27a4(trB)?  27as(trB)?  8517atrL
+ + + + +
10 2 20 4 3200




35

B 117¢;02tr L 411laqastrL B 18C30n antrL B 2761a2trL N 21¢302tr L

100 320 5 384 4
15\%trL n Yo trTtrL n 9o trTtrL n Yo trBtrL n YatrBtrL
2 10 2 10 2
3a1(2tgL)2 3a2(jlrL)2 N 2521;383 3¢ 3030;10tr32 B 9C3a;tr32
279aytr B2 ., bastrB? ) .
+ 01;61" — 9CantrB? — S Ll + 24(s3a5trB? — 15 trB?
L .. 25trL3 . trl?
18t BtrB? — 6tebtrB? 4+ 200 B 7330201"

9GaitrL? | 93aytrL? Prrd Btrl
+ Caontr Sontrl” _ 3(sagtrL? — SAtrL? — 6trT'trL* — 6trBtrL?

5 16
... 25trT o 3laytrTB  8Ca;trT B
— 2trLtrL? + i 3CstrT™ + i — G tr
40 5
21lantrTB L .
+ % — 19astrTB + 16¢astrT B
trLtrT B 211aqtrT?  3GoatrT?  279astrT? L
— 9CantrT
> T80 T 5 T 1g Gaaatr
5astrl? ) < . .
— a32r + 24CsastrT? — 15 trT? — 18trTtrT? — 6trLtrT>
927a3 3 9 83a3  5(3al 2963 s
+5W<_ o1 o)t T Ty ) TR
o 158a3  19¢3a3 _ 3adas  9(0dan  3ajal n (ool B 128503
“ 225 25 40 25 40 5 324
33acas  44(Galas 150303 1272trT 21a2trT
—9Caad — 1 143 2 A2 1 2
G — 5 2% I e D R
32a3trT N 3la2trB N 21a3trB N 32a3trB N 39a2trL N TastrL N 83¢was
3 120 8 3 40 8 24
7a3  35a3 277,02 27T’
2 1 2 t“p by
— — — — . A16
+nG< 27 8l ) 16 16 ]} (A16)

Note that in the results for Zy and Zggw there are terms which contain explicitly «,
and ay since we have not been able to reconstruct the corresponding expressions in terms of
B and T'. They drop out in the final result for Z,,.

Appendix B: Two-loop Yukawa coupling renormalization constants

This Subsection contains the two-loop results for the Yukawa coupling renormalization
constants defined through

P = Zgy0 (B1)

@
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with ¢ = ¢,b, 7. They read

Ty = 1+$%{ _% —9%2 —8a3+%—%+3trf+3trl§+tri}
N ﬁ{é [51160(4]% N 153;(4]1a2 N 33392043 N 340;1043 T 1800 4 7602 — 4598%1(1,5
B 2431%2(1,5  Bdaga, + 81404? _ 1178061% _ 81(11(250% _ 18aay + 45(:50% 9%0%
B 79010, B 270, _ Sasa 33, 10, 7043
40 ) 8 PR 4 4 4
+"G<_ lggl 5 T3 3)}
%ngg B 961100(2 _ 358a§ . 19;18&3 . 90z;a3 _ 202&% . 232 . 39?25%
2253(;2% + 18azay — 65\04,5 — 6a? + 7(1)[(1531) + 99;1;0% + 2aizap — 11(;150% — %g
2 2 2 2
15(1)zéozT N 15(112047 B 9(1;0@ N 5a§aT B 9;% N ”G<23gl N % N 409(13)} } (B2)
Zy = 1+ﬁ%{ —% —9%2 —8a3—%+%+3trf+3tré+trﬁ}
 18aay + 9(21? _ 27(1)zéozb _ 2431(22%  Sdanay + 45(24;0% 814042 _ 11&81047
2 2 2 2
B 2704820z7 _ Saga, + 15(1?&7 N 330:11,(17 N 7ZT N nG( B % B % B 163(13)}
1{_ 29&% B 2700y B 35&% 4 3lajas 4 9asaig B 202a§ 332 91l oy
€ 400 40 8 30 2 3 160
99;)422% + 2ai30 — %tz + 23:25% + 2253(;2% + 18aizay, — 65\04, — oy — 604?
15(11(15(17 N 15(112047 N 5(1;0@ B 9a§aT B 9;@ N nG( B gz_g N %5 N 409&%)} } . (B3)
Zo =1+ ﬁ%{ - 92‘1 - 922 + 33” +3trT+3trB+trﬁ}
N (471T)2 {612 [3%3% 81(;4(15042 N 3339;% B 32140(4)1(1,5 B 810;;% — 12ag0, + 450
2
B 570;31045, B 810;04, 1%y & 270;045, n 45;1) B 135%1047 B 135fgaT

5lage,  Bloga, 2502 3a2 303
+ +
4 4 4
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N 1 5;(;? N 27Zéa2 B 35;% iy 17;)2% N 45(1)zgat 4 10ag0; 2702
€
50116041, 45(132041, 1000y + 301041, B 2780z§ 53§(géaT n 165;22a7 _Gia.
M0, 2700, 3043 11a? o2

- 8b -5 +nG< 10%;)”. (B4)

Appendix C: Beta functions for aqep and sin? Oy

This Appendix contains explicit results up to three-loop order for the QED coupling aqrp
and the weak mixing angle. We refrain from providing expressions for the renormalization
constants but directly list the beta functions. They are obtained in a straightforward way
from Eq. (2) and are given by

3 _ OC(QQED _ o84 128ng O(QQED B 500()5QED 4aQED
GUED (4 9 (4m)> | 3sin®Oy  cos? Oy

5207 28trB . 208 416 320
2 190+ g | D 2QED @
3 3 3sin Oy 27 cos? Oy 9
(47r)4 4sin? Oy cos? Oy, 216sin* Oy, 72 cost Oy sin? Oy cos? Oy
i T57aqeottT  2303aqepttT 20003t 583aqeptrB  1433aqeptrB
4 sin? Gy, 36 cos? Oy 3 4 sin? Gy 36 cos? Oy,
152astrB  393aqeptrl  183aqeptrl  59trB? ., 202trBtrL
— — — 31(trB R
3 Asin? Oy Toos2 0y o OB/
53trL? . .. 85trT? .. 244trTtrL .
+ 22 L 19(teL)? + 1667 B + o 4+ 10470 B+~ 4 73(txT)?
n —
“19sin? Oy cos2 Oy, 27sin @y, 81cost Oy 3sin? Oy
584aqepas 1000002 ) 179208, 2288008, 352003 (1)
— n — — —
81 cos? Oy, 27 Yl 27sin*fy 729 cost Oy 81 ’
,dsin? Oy
Bein? 0y, = M T4z
QQED sin? Oy n 43 cos? Oy 20sin® Oy, 4cos Oy
= n —
A 6 6 “ 9 3
QQED QQED tan? Oy 259aqED cot? Oy B 17 sin? thrT
Ty {O‘QED * 2 * 6 6
3 cos? HWtrT 5 sin? thrB 3 cos? HWtrB 5 sin? HWtrI: cos? thrﬁ
—~ - —~ -
2 6 2 2 2
2 95 tan? 0 49 t26 44 sin? 0
4 ne |: OégED 4 OéQED27an w _ OJQED:))CO w X SlIl9 w Q3 4 C082 GW()(3:| }
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(47)* | 192sin® Oy, 576 cos? Oy 576 cos? Oy 1728 sin? Oy

3aQED tan2 QW;\ 3aQED COt2 GW;\

+ aQEDS\ + 5 5 — 3sin? HWS\Q + 3 cos? HWS\Q
881aQEDtrT 282TaqED tan? thrT n 729aqED cot? thrT 29 sin? QwagtrT
48 288 32 3
~ 389« EDtI‘B 1267()5QED tan2 HWtrB 7290[QED COt2 GWtré
7 cos® Oy astrT — Q -
oS fwaste 48 283 i 32
_ 17 sin2 HwagtrB 4 7C082 HWOz?,tl"B _ 2290[QEDU'L _ 281()5QED tan2 GWtrL
3 16 32
243aqep cot? Oy trL N 61sin’ Oy trB%2 57 cos? Oy trB? N 17sin? Oy (trB)?
32 16 16 8
45 cos? Oy (trB)?  157sin? OytrBtrL,  15cos? Oy trBtrL 87 sin? Oy trL?
- + - +
8 12 4 16
19 cos? OytrL?  33sin® Oy (trL)?  5cos? Oy (trL)?  5sin? Oy trT B
- + - +
16 8 8 8
27 cos? Oy trT B 113sin? Oy trT? 57 cos? OytrT?  59sin? Oy tr1'tr B
- + - +
8 16 16 4
45 cos? Oy trTtrB 199 sin? Oy trTtrl 15 cos? Oy trTtrL
a 4 * 12 a 4

101 sin? Oy (trT)% 45 cos? Oy (trT)? 12702,y 1190d6p
- n
8 8 “1 36 sin? Ow 108 cos? Oy,

B 2900{%2]3]) tan2 GW B 64120{%2]3]) COt2 9W _ QO[QEDO(3 B 1370[QED tan2 Hw()[g

81 cos? Oy, 27 sin? Oy 9 81
1375sin® Oyra3 125 cos? Oyral
— 13aqED cot? Oy as + S0 Twas o8 Twas
27 3
¢ 9sin? Oy 81 cos? Oy 729 cos? Oy 27 sin? Oy
484 sin® Oyl 44 cos? Oy a’
— 31 + 5 . (C2)

Appendix D: Comparison with Ref. [16]

In this Appendix we provide the explicit form of the expressions needed for the comparison
with Ref. [16]. In this paper two-component Weyl spinors were used. To make contact with
our convention based on four-component Dirac spinors we define

0n(2)

where ¢ and x are left-handed Weyl spinors and Wp denotes a Dirac spinor. Thus, the
Lagrange density of the SM can be expressed in terms of 45 Weyl spinors:

Xt gt » Xb gb » X7 s g’r » Xvr s Xe s gc » Xs» gsa X gua Xvwsr Xus guv Xd» gda Xe> §67 Xve - (DQ)
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For simplicity we have suppressed the SU(3) color indices for all quark spinors. Of course,
each quark spinor has to be understood as a triplet in color space. In this basis the Yukawa
matrices become 45 x 45 dimensional.

In the notation of [16] the part of the Lagrange density describing the Yukawa couplings
is given by

1 . _ .
=5 (Y6 + Yi6mii) |

where Y and Y are the (complex conjugated) Yukawa matrices, ¢¢ are real scalar fields,
" and 1* are (Hermitian conjugated) spinor fields. There are four real scalar fields in the
SM, which means that we have four Yukawa matrices. They are given by

O3x3  Ytllzxs O3x3  O3x3  O3x1 O3x1 O3x1 - --
Yellzxs O3x3  O3x3  0O3x3  O3x1 O3x1 O3x1 - --
O3x3  0O3x3  O3x3  wplzxz O3x1 O3x1 O3x1 - --
vl 1] Osx3 O3xz wwllaxs Osxz Osxa Ozxax Ozsxx ---
V2| Oixs Oixs Oixz Oixs 0y 0O
O1x3  0O1x3 O1x3 Oixg3 - 0 O
O1x3 0O1x3 O1x3 O1x3 O 0 0O
O3x3  O3x3 O3x3  Ypllzxg O3x1 O3x1 O3x1 - --
O3x3  0O3x3  —¥tllsxz 0O3x3  O3x1 O3x1 O3x1 - -
O3x3  —Wyellsxg  0O3x3  0O3x3  O3x1 O3x1 Ozx1 - --
V2 — 1 | wllaxz O3z O3x3  0O3x3  Osx1 Ozx1 O3x1 ---
V2| Oixz Oixs Oixs+ Oixa O 0 0
O1x3  Oixs Oi1x3 Oix3 0O 0  y,r
O1x3  Oixs Oi1x3 Oix3 0y O
O3x3  —1yellsxs  O3x3  O3x3  O3x1 O3x1 O3x1 - --
—1y; 33 O3x3 O3x3  03x3  0O3x1 O3x1 Ozx1 ---
03x3 03x3 O3x3  1ypllzxs O3x1 Ozx1 Ozxq -
V3 — 1 O3x3 Osxs  1yplaxs  Osxs  Osx1 Osx1 Ozxr -+
V2 O1x3 O1x3 Oix3 Oixs 0 iy, O
O1x3 O1x3 O1x3 Oixs 1y 0 0
O1><3 O1><3 O1><3 O1><3 O 0 0
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O3x3  0O3x3  O3x3  1ypllzxs O3x1 O3x1 Ozx1 -+~
O3x3  O3x3  1yillsxs  Osxs  Ozx1 O3x1 Ozx1 -+~
O3x3  1y¢llsxs  0O3x3  O3x3  O3x1 O3x1 Ozx1 -+~
pllzxs  O3x3  O3x3  O3x3  Ozx1 O3x1 O3x1 - -
O1><3 O1><3 O1><3 O1><3 0 0 0
O1x3 Oix3  Oix3  Oixg 0 0 1y,
O1x3 O1x3 O1x3 Oixg 0 iy, O

Y4=—

Sl -

In the above formulas, all matrix elements not explicitly given are zero. Y'/Y3 is the
Yukawa matrix of the real/the imaginary part of the isospin down component of the SM
Higgs doublet. Y?2/Y* is the Yukawa matrix of the real/the imaginary part of the isospin
up component of the SM Higgs doublet. So we have

1 2 s A4
n o) o

The part of the Lagrange density describing the Higgs self-interaction reads in the nota-
tion of Ref. [16]

1
— i Mabead" 0" 50" (D6)
In the SM we have

Aagaa = 6 X (47N),
)\aabb = )\abab = )\abba =2X (477—5‘) ((l 7& b)7
Aabed = 0 (otherwise) . (D7)

The expressions given above are generic for all three gauge groups. However, there are
some expressions which depend on the specific gauge group one wants to consider. The re-
mainder of this Section lists these expressions. For each of the three gauge groups, we give the
expressions for the generators in the representations of the scalar fields, S4, and of the Weyl
spinors, R, We also give expressions for the invariants T'(S), C(S), T(R),C(R),C(G),r,
all of which are symbols used in Ref. [16]. They are defined as

Tr (S457) = 64PT(S), SaeSer = C(S)av,
Tr (RAR?) = *PT(R), RM*RY = O(RY,
FACD pBOD _ §ABC/((3), oA =, (D8)

fABC are the structure constants of the respective gauge group. The indices A, B, C' take

values in the range 1,...,r, where r gives the dimension of the group.
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1. U(1)

For the case of U(1) gauge group, we have

0 010
1 0O 0 01
Sl =— D9
21-1 0 00" (D9)
0 —100
111 2 2 2111111 1 1
R!' = Di ey, [t D10
la’g(676767 37 37 37676767373737 277 27 )7 ( )

where the ellipsis is to be replaced twice by the first 15 entries. The derivation of S! is given
below. The entries in R! are the hypercharges Y of the respective spinors. They can be
derived by using the relation Y = ) — I3, where () corresponds to the electric charge and
I3 is the weak isospin. Furthermore, we have

T(S)=1, C(S) = iﬂm,
T(R) = 10, C(R) = (RY)?,
C(G) =0, r=1. (D11)

Let us now we show how to derive Eq. (D9). We want to find the U(1) representation
transforming the four real scalar fields of the Higgs doublet of the SM (see Eq. (D5). The
matrix S! is the generator of this transformation,

ol ®1 o3}

¢I2 — iws?t ¢2 — ]1 : S 1 O 2 ¢2 D 12
o, e b ( +iwS" 4+ O(w )) o | ( )
o ¢4 o

with w being the transformation parameter. In a next step we take advantage of the fact
that it is known how the SM Higgs doublet transforms in order to determine S'. As the SM
Higgs doublet has hypercharge 1/2, we have

1 ¢12+i¢l4 B b e
V2 (¢/1+i¢’3> ==

=

jw( 1 1 2 ip?
VH = <2“>ﬁ(§11123)

_ (1 L [¢?+i¢!

— [Il + iw <§]1) + O(wQ)] ﬁ (¢1 N igb3)

el (o
_H+w2\/§(_¢3+i¢l)+0(w2). (D13)

With the help of the last equation one can determine the transformation of the SM Higgs
doublet, like, e.g., ¢| = ¢ — Lp3 + O(w?). It is then straightforward to determine S by
inserting the equations found in this way in Eq. (D12).
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2. SU(2)
For the SU(2) group, we have
00 0 -1 0-10 0 0 01 0
gio {0010 ifro0 0| G ilooo-tf
2101 0 O 210 0 0 -1 21-100 0
10 0 O 0 010 0 100
and

o1 l3x3 Osxs 0750343 Os3x3 Osx1 Ogxr Oger - -
O3x3  0O3x3  03x3  03x3 O3x1 O3x1 O3x1 ---
051 3xs O3xs 05903x3 O3xs Osx1 Ogxr Osyq -
O3x3  0O3x3  03x3  0O3x3 O3x1 O3x1 O3x1 ---
Oixs  Oixs  Oixs  Oixs 03y 0 o0gy ---
O1><3 O1><3 O1><3 O1><3 0 0 0
Oix3  0Oixz3  Oixz  Oixs 014,2 0 Jﬁl

RA=1/2 (D15)

In the last equation ¢# are the Pauli matrices. Not all of the matrix elements left out in

R# vanish, but these elements play no role for the comparison of our results to [16]. The
derivation of the generators S4 proceeds in analogy to the derivation of S' explained in
the former Subsection. One merely has to substitute the generator of U(1), %]1, by the
generators of SU(2), 30, in Eq. (D13).

We furthermore have

T(S) =1, C(8) = s,
T<R> = 67 C<R> = gDiag (17 17 1707 07 07 17 17 1707 07 07 1707 17 M ') )
@) =2, r=3. (D16)

The ellipsis has to be replaced by the first entries twice.

3. SU®3)

In the SM the matrices S# vanish for the group SU(3). The matrices R4 are block-
diagonal and read

1
RA - 5 BIOCleag (AAv _(AA)Tv AA7 _(AA)T7 O’ 0’ O’ t ) ’ (D17)

The ellipsis has to be replaced twice by the former entries, which contain the Gell-Mann
matrices A4,
Finally, we have
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4 )
) C<R) = g BlockDiag (]112><127 03x3, L12x12, 03x3, L1ax12, 03><3) )
, r=2_8. (D18)

D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30 (1973) 1343.

H. D. Politzer, Phys. Rev. Lett. 30 (1973) 1346.

D. R. T. Jones, Nucl. Phys. B 75, 531 (1974).

O. V. Tarasov and A. A. Vladimirov, Sov. J. Nucl. Phys. 25 (1977) 585 [Yad. Fiz. 25 (1977)
1104].

5] W. E. Caswell, Phys. Rev. Lett. 33 (1974) 244.

EN{

W N = O

0

9
0

]
]
]
]
]

E. Egorian and O. V. Tarasov, Teor. Mat. Fiz. 41 (1979) 26 [Theor. Math. Phys. 41 (1979)
863).

D. R. T. Jones, Phys. Rev. D 25 (1982) 581.

M. S. Fischler and C. T. Hill, Nucl. Phys. B 193 (1981) 53.

M. E. Machacek and M. T. Vaughn, Nucl. Phys. B 222 (1983) 83.

I. Jack and H. Osborn, Nucl. Phys. B 249 (1985) 472.

T. Curtright, Phys. Rev. D 21 (1980) 1543.

D. R. T. Jones, Phys. Rev. D 22 (1980) 3140.

O. V. Tarasov, A. A. Vladimirov and A. Y. Zharkov, Phys. Lett. B 93 (1980) 429.

S. A. Larin and J. A. M. Vermaseren, Phys. Lett. B 303 (1993) 334 [hep-ph/9302208].

M. Steinhauser, Phys. Rev. D 59 (1999) 054005 [arXiv:hep-ph/9809507].

A. G. M. Pickering, J. A. Gracey and D. R. T. Jones, Phys. Lett. B 510 (2001) 347 [Phys.
Lett. B 512 (2001 ERRAT,B535,377.2002) 230] [arXiv:hep-ph/0104247].

T. van Ritbergen, J. A. M. Vermaseren and S. A. Larin, Phys. Lett. B 400 (1997) 379 [hep-
ph /9701390)].

M. Czakon, Nucl. Phys. B 710 (2005) 485 [arXiv:hep-ph/0411261].

M. Fischler and J. Oliensis, Phys. Lett. B 119 (1982) 385.

M. E. Machacek and M. T. Vaughn, Nucl. Phys. B 236 (1984) 221.

M. E. Machacek and M. T. Vaughn, Nucl. Phys. B 249 (1985) 70.

C. Ford, I. Jack and D. R. T. Jones, Nucl. Phys. B 387 (1992) 373 [Erratum-ibid. B 504
(1997) 551] [arXiv:hep-ph/0111190].

M. x. Luo and Y. Xiao, Phys. Rev. Lett. 90 (2003) 011601 [arXiv:hep-ph/0207271].

K. G. Chetyrkin and M. F. Zoller, JHEP 1206 (2012) 033 [arXiv:1205.2892 [hep-ph]].

L. N. Mihaila, J. Salomon and M. Steinhauser, Phys. Rev. Lett. 108 (2012) 151602
[arXiv:1201.5868 [hep-ph]].

L. F. Abbott, Nucl. Phys. B 185 (1981) 189.

A. Denner, G. Weiglein and S. Dittmaier, Nucl. Phys. B 440 (1995) 95 [hep-ph/9410338].

S. A. Larin, F. V. Tkachov and J. A. M. Vermaseren, preprint NIKHEF-H-91-18 (1991).

P. Nogueira, J. Comput. Phys. 105 (1993) 279.

R. Harlander, T. Seidensticker and M. Steinhauser, Phys. Lett. B 426 (1998) 125 [hep-
ph/9712228).

[31] T. Seidensticker, hep-ph/9905298.
[32] J. A. M. Vermaseren, arXiv:math-ph/0010025.



44

[33] M. Steinhauser, Comput. Phys. Commun. 134 (2001) 335 [arXiv:hep-ph/0009029].
[34] T. Hahn, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260].
[35] N. D. Christensen and C. Duhr, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194

hep ph]].

[36] J. C. Collins, “Renormalization,” Cambridge, Uk: Univ. Pr. ( 1984) 380p

[37] M. E. Peskin and D. V. Schroeder, Reading, USA: Addison-Wesley (1995) 842 p

[38] S. L. Adler, Phys. Rev. 177 (1969) 2426.

[39] J. S. Bell und R. Jackiw, Nuovo Cim. A 60 (1969) 47.

[40] K. Nakamura et al. [Particle Data Group Collaboration|, J. Phys. G G 37 (2010) 075021.
[41] V. A. Smirnov, “Applied asymptotic expansions in momenta and masses,” Springer Tracts

Mod. Phys. 177 (2002) 1
[42] W. Martens, L. Mihaila, J. Salomon und M. Steinhauser, Phys. Rev. D 82 (2010) 095013
[arXiv:1008.3070 [hep-ph]].



