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Abstract

Likelihood ratio tests are a widely used method in global analyses in particle
physics. The computation of the statistical significance (p-value) of these tests
is usually done with a simple formula that relies on Wilks’ theorem. There are,
however, many realistic situations where Wilks’ theorem does not apply. In par-
ticular, no simple formula exists for the comparison of models that are not nested,
in the sense that one model can be obtained from the other by fixing some of its
parameters. In this paper I present methods for efficient numerical computations
of p-values, which work for both nested and non-nested models and do not rely on
additional approximations. These methods have been implemented in a publicly
available C++ framework for maximum likelihood fits called myFitter and have
recently been applied in a global analysis of the Standard Model with a fourth
generation of fermions.
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1 Introduction

Even though the LHC experiments have, so far, not found any clear signs for physics
beyond the Standard Model (SM) they already put strong constraints on the favourite
SM extensions of many theorists. For example, the SM with a (perturbative) sequential
fourth generation of fermions (SM4) has recently been excluded at the 5σ level by a
combination of Higgs and electroweak precision data [1] (see also [2, 3]). Other models
with additional fermions or even some constrained versions of Supersymmetry may
follow soon.

In this situation some thoughts should be spent on the methods and criteria by which
we decide if a certain model is ruled out. A well-established technique in (frequentist)
statistical analyses is the method of likelihood ratio tests. (For an introduction see e.g.
[4] or the statistics chapter of [5].) In this method two models are compared with a test
statistic constructed from the ratio of their likelihood functions. Wilks’ theorem states
that under certain assumptions the test statistic is distributed according to the well-
known χ2-distribution [6]. In this case the relation between the likelihood values at the
best fit points and the statistical significance (p-value) of the corresponding hypothesis
test is described by the normalised lower incomplete gamma function.

There are, however, also many realistic scenarios where Wilks’ theorem does not hold
and the probability density function of the test statistic is not known analytically. One
example is the case of likelihood ratio tests where the two models to be compared are
not nested, meaning that one model can not be obtained from the other by fixing some
of its parameters. This problem was encountered in the above-mentioned analyses of
the Standard Model (SM) with a fourth generation of fermions [1–3]. In these analyses
it is not possible to regard the SM with three fermion generations as a limiting case of
the SM with four generations due to non-decoupling contributions of chiral fermions in
electroweak precision observables and Higgs production and decay rates. Another case
where analytical formulae for p-values are not reliable is the situation where some of
the parameters of a model are bounded, in the sense that they are only allowed to float
within a certain range. Most notably, this applies to analyses where systematic errors
are treated within the RFit scheme [7], i.e. by introducing so-called nuisance parameters
with a limited range.

When analytic formulae fail one has to resort to numerical methods, and the com-
putation of p-values is no exception. The brute-force method is to generate a large
sample of random toy measurements distributed according to the prediction of the null
hypothesis. For each toy measurement the value of the test statistic is computed and
compared to the value obtained from the actual data. With a large enough sample
we can then estimate the probability that the value of the test statistic is larger than
a certain number, usually chosen to be the value of the test statistic obtained from
the observed data. This probability is called statistical significance or p-value of the
test. Unfortunately, the computational cost of the required numerical simulations can
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be rather high, especially when the p-value is small. In this paper I discuss some meth-
ods for improving the efficiency of numerical computations of p-values. These methods
have been applied in [1, 3], where, based on the constraints from Higgs searches and
electroweak precision observables, likelihood ratio tests comparing the SM with three
and four fermion generations were performed. The methods are also implemented in a
publicly available code called myFitter, which I present in this paper.

The paper is organised as follows: in Sec. 2 I describe the general mathematical
setup and the definitions of the test statistics for nested and non-nested models. In
Sec. 3 I sketch the derivation of Wilks’ theorem and discuss its range of applicability. In
Sec. 4 I explain the strategy for improving the efficiency of numerical computations of
p-values. The myFitter framework and the implementation of the methods from Sec. 4
are discussed in Sec. 5. Performance tests of the myFitter code are presented in Sec. 6.
I conclude in Sec. 7.

2 General Setup

Let X = (X1, . . . , Xn) be a set of experimental observables. In frequentist statistics
we regard observables as random variables distributed according to some probability
density function (PDF). A statistical model with free parameters ξ = (ξ1, . . . , ξk) is
therefore described by a function f(x, ξ), which must be a PDF for any fixed value of
ξ and considered as a function of x only:∫

dnx f(x, ξ) = 1 . (1)

The problem of statistical inference is to draw conclusions about the parameters ξ from
a given set of measurements x of the observables X.

In global analyses like [1–3] the observables come from many different collider exper-
iments and the parameters ξ to be determined are the fundamental parameters of some
theory of particle physics (the SM or extensions thereof). In this situation the function
f usually does not depend on the parameters ξ directly. For example, a cross section σ
is measured by counting the number N of events that pass certain cuts and dividing by
the integrated luminosity L and the selection efficiency ε. If the theory is realised with
parameters ξ we denote the predicted value of the cross section as σ̃(ξ). The integrated
luminosity and selection efficiency are usually constants which, to a good approxima-
tion, do not depend on the theory parameters. Since N follows a Poisson distribution
with mean value Lεσ̃(ξ) the distribution of the measured value of the cross section,
σ = N/(Lε), depends on ξ only trough the predicted cross section σ̃(ξ).

These considerations motivate us to write the function f in the following way:

f(x, ξ) = exp[−1
2
D(x̃(ξ),x)] , (2)
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where x̃(ξ) are the “predicted” values of the observables and D is a function which we
shall call the input function. The goal of this re-writing is to cleanly separate information
about the theoretical model from information about the experimental uncertainties: the
theory is described by the function x̃, which maps parameters to observables, and the
experimental uncertainties are described by the function D(x̃,x), which is −2 times the
logarithm of the probability density for measuring values x if the “true” values are x̃.
For example, in many situations the experimental errors are Gaussian, independent of
the true values x̃ and described by a covariance matrix V . In this case we have

D(x̃,x) = (x̃− x)TV −1(x̃− x) + n ln(2π) , (3)

which, if substituted in (2), gives the usual expression for a correlated Gaussian proba-
bility density with central value x̃(ξ). Up to a constant term, D(x̃(ξ),x) is simply the
χ2-value associated with the parameters ξ, input data x and covariance matrix V .

For the methods presented in this paper, the exact definition of the functions x̃ and
D is not important, as long as D has the following properties:

1. For any given x̃ the input function D must satisfy the normalisation condition∫
S

dnx e−
1
2
D(x̃,x) = 1 . (4)

2. For any given x, and considered as a function of x̃, the input function D(x̃,x)
must be bounded from below and have its unique absolute minimum at x̃ = x.

3. For any given x̃, and considered as a function of x, the input function D(x̃,x)
must be bounded from below and have its unique absolute minimum at x = x̃.

The first property guarantees that (1) is satisfied. The second property guarantees that,
if parameters ξ̂ exist with x̃(ξ̂) = x, the maximum likelihood estimate of the parameters
is indeed ξ̂. The third property can be regarded as a definition of the term “predicted
value”: if the theory is realised with some parameters ξ, the most likely outcome of a
measurement of the observables x should be x = x̃(ξ).

Note that, without any modifications to the model, the third property does not
hold in the presence of systematic errors, since a systematic error is an offset between
the true value of an observable and its most likely measured value. This offset is the
same each time the measurement is performed and does therefore not average out when
the measurement is repeated many times. This results in a difference between x and
the maximum of the distribution of the random variables X. The central idea of the
RFit method [7] is that systematic errors should not be treated as errors at all, but
as unknown theory parameters, so-called nuisance parameters, that may vary within a
certain range. In a way, the presence of a systematic error means that theorists and
experimentalists are simply not talking about the same quantity. Since the difference
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between the two quantities can neither be modeled nor measured it has to be treated as
an additional model parameter, but with a limited range of possible values. Thus, the
third assumption does hold if systematic errors are treated within the RFit scheme, i.e.
by introducing a nuisance parameter for each source of systematic errors.

The results of hypothesis tests for a certain theoretical model should not depend
on the way we parametrise the model. To make this parametrisation-independence
manifest it is convenient to define the theory manifold as the image of the function x̃:

M = {x̃(ξ) | ξ ∈ Ω} , (5)

where Ω ⊂ Rk is the parameter space (i.e. the set of allowed parameter values) of
the model. Different parametrisations of the same model are represented by different
functions x̃ and parameter spaces Ω, but always have the same theory manifold.

The general procedure for a likelihood ratio test (LRT) with nested models may now
be described as follows: given certain experimental data x, we first maximise the PDF
f(x, ξ) with respect to the parameters ξ. This is equivalent to minimising the function
D(x̃,x) with respect to x̃ on the theory manifold M :

fmax(x) = exp[−1
2
Dmin(x)] with Dmin(x) = min{D(x̃,x) | x̃ ∈M} . (6)

Next, we consider a constrained version of the model, which is usually obtained from
the original model by fixing some of its parameters. However, with the notion of theory
manifolds at hand, we can be more general and simply require that the theory manifold
Mc of the constrained model is a subset of M :

Mc ⊂M . (7)

Maximising the likelihood for the constrained model we get

fmax
c (x) = exp[−1

2
Dmin
c (x)] with Dmin

c (x) = min{D(x̃,x) | x̃ ∈Mc} . (8)

Now we construct a test statistic S from the ratio of the two maximum likelihood values:

S(x) = −2 ln
fmax
c (x)

fmax(x)
= Dmin

c (x)−Dmin(x) . (9)

To perform the actual test, we choose a certain realisation of the constrained model
as null hypothesis. Let ξ0 be the corresponding parameters and x̃0 = x̃(ξ0). The
statistical significance, or p-value, of the test is obtained by considering an ensemble
of toy measurements x distributed according to the PDF f(x, ξ0) and computing the
probability that S(x) is larger than some threshold value S0:

p =

∫
dnx f(x, ξ0)θ(S(x)− S0) , (10)

where θ denotes the Heavyside step-function. If, in the real experiments, the data
x0 was measured, one typically takes the maximum likelihood estimates for x0 in
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the constrained model as null hypothesis, i.e. one chooses ξ0 so that x̃0 ∈ Mc and
D(x̃0,x0) = Dmin

c (x0). Then one performs the test with S0 = S(x0).

Note that the definition (10) is manifestly independent of the parametrisation of
the models: the factor f(x, ξ0) is fixed by the null hypothesis and the test statistic is
defined in terms of the functions Dmin and Dmin

c whose definitions (6) and (8) depend
on the manifolds M and Mc, but not on their parametrisation. This parametrisation-
independent language allows us to easily generalise the definition (10) for the case of
(a large class of) non-nested models. Consider two models with theory manifolds M1

and M2 such that M1 6⊂ M2 and M2 6⊂ M1. However, we assume that the relation
between the PDFs of the two models and their respective theory manifolds is still given
by (2) with the same input function D. This usually holds for global fits in particle
physics, where a model imposes certain relations between the predicted observables,
but the random distribution of the measured quantities is fixed by the predicted values,
irrespective of the model under consideration. In this case we can simply combine the
two theories into one by joining their theory manifolds,

M ≡M1 ∪M2 ⇒ M1,M2 ⊂M , (11)

and do a LRT as described above, with M as the full theory and either M1 or M2 as
the constrained theory. Let

Dmin
1 (x) = min{D(x̃,x) | x̃ ∈M1} , Dmin

2 (x) = min{D(x̃,x) | x̃ ∈M2} . (12)

Then the test statistic for testing M2 against M is

S2(x) =

{
Dmin

2 (x)−Dmin
1 (x) for Dmin

1 (x) < Dmin
2 (x)

0 otherwise
(13)

and the test statistic for testing M1 against M is obtained by exchanging Dmin
1 and

Dmin
2 . Assume without restriction that for the measured data x0 we have

Dmin
1 (x0) ≤ Dmin

2 (x0) . (14)

Then S1(x0) is zero and the LRT for M1 (using S1(x0) as threshold value for the test)
has a p-value of 1. So, only the LRT for the model which describes the data less well
(i.e. gives a bigger value for Dmin

i (x0)) can have a p-value smaller than one.

3 Analytical Formulae for p-values

In many cases the computation of p-values in LRTs is trivial due to a theorem by
Wilks [6]. It states that the test statistic S from (9) follows a χ2 distribution with
dim(M) − dim(Mc) degrees of freedom if the models are nested and the maximum
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likelihood estimates ξ̂(x) of the parameters ξ follow a Gaussian distribution. In this
case the p-value (10) is given by

p = 1− Pν/2(S0/2) , (15)

where ν = dim(M) − dim(Mc) is the difference of dimensions of the theory manifolds
(usually equal to the number of parameters that were fixed) and P denotes the nor-
malised lower incomplete Gamma function.

In global analyses in particle physics Wilks’ theorem is commonly used, but the
validity of its underlying assumptions are rarely discussed. For PDFs of the form (2)
the requirements for Wilks’ theorem translate to certain assumptions about the function
D and the theory manifolds M and Mc. These assumptions are:

Gaussianity. The function D(x̃,x) only depends on the difference x̃ − x and is
quadratic in this difference.

Linearity. The theory manifolds M and Mc are hyperplanes.

Nestedness. The constrained theory is a subset of the full theory: Mc ⊂M .

The first assumption, combined with the properties of D discussed in Sec. 2, implies
that D is of the form (3), i.e. that the experimental errors are Gaussian. The second
assumption is invalid if experimental errors are large, so that the curvature of the theory
manifolds can not be neglected. It also fails if some parameters of the model have upper
or lower bounds, so that the corresponding manifold does not extend to infinity. The
last assumption is invalid if none of the two models to be compared can be considered
as a special case of the other model.

The derivation of Wilks’ theorem from the assumptions above will be instructive for
our discussion of numerical methods in the next section, so I will briefly sketch it here.
The first step is to perform an affine-linear coordinate transformation in the space of
observables, which maps x̃0 (the predicted observables under the null hypothesis) to the
origin and changes the PDF to an n-dimensional normal distribution. In other words,
we introduce new coordinates y ≡ y(x), so that y(x̃0) = 0 and

f(x, ξ0) =
1

(2π)n/2
e−‖y‖

2/2 ⇒ D(x̃0,x) = ‖y‖2 + n ln(2π) , (16)

The linear part of this transformation is easily constructed by diagonalising the matrix
V from (3) and then scaling the new coordinates appropriately. We see that, up to
a constant term, the function D is simply the squared euclidean norm of the vector y
(denoted as ‖y‖2). Let M ′ and M ′

c denote the images of M and Mc under the coordinate
transformation y. Since M and Mc both contain x̃0, the hyperplanes M ′ and M ′

c both
contain the origin and are therefore linear subspaces. Consequently, the functions Dmin
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Figure 1: Derivation of Wilks’ theorem. The blue colour indicates the probability density
in the transformed space of observables y. It is an n-dimensional normal distribution. The θ
function in (10) vanishes in the region between the planes indicated by the thin dashed lines.

and Dmin
c (see Eq. 6 and 8) are simply the squared euclidean length of the component of y

perpendicular to M ′ and M ′
c, respectively. For n = 3, dim(M) = 2 and dim(Mc) = 1 the

situation is depicted in Fig. 1. We may write the vector y as a sum of three orthogonal
vectors y1, y2 and y3 with y1 ∈M ′

c and y2 ∈M . The test statistic S is then:

S(x) = ‖y2 + y3‖2 − ‖y3‖2 = ‖y2‖2 . (17)

In terms of the coordinates y the integral from (10) becomes

p =
1

(2π)n/2

∫
dny e−‖y‖

2/2θ(‖y2‖2 − S0) (18)

In other words, the p-value is the integral of an n-dimensional normal distribution in
the region outside an (infinitely long) “hyper-cylinder” defined by ‖y2‖2 > S0. In
Fig. 1, this “cylinder” is the region between the planes indicated by dashed lines. The
integral in (18) can easily be computed. The integrals over the components y1 and
y3 are just Gaussian integrals and give an overall factor of (2π)(n−ν)/2. Introducing
spherical coordinates in the ν-dimensional subspace corresponding to the component y2

and exploiting rotational symmetry immediately leads to (15).

4 Numerical Calculation of p-values

In the last section we have seen how Wilks’ theorem emerges from geometric arguments if
the models under consideration satisfy three assumptions, which we called gaussianity,
linearity and nestedness. In practice, these assumptions are rarely satisfied exactly.
Usually, they are only more or less valid approximations. If we do not want to rely on
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these approximations we have to resort to numerical integration methods to calculate
p-values. To make these methods efficient it is a good idea to take some or all of
the approximations as a starting point and optimise the numerical integration for the
case where they are valid. In the following, we will use Monte Carlo integration with
importance sampling to compute the integral (10), and construct sampling densities
which are optimal for models that satisfy gaussianity and linearity.

To compute the integral (10) with the importance sampling method, we generate a
large number N of sample points xi according to some sampling distribution ρ. The
integral (10) is then estimated as

p =
1

N

N∑
i=1

f(xi, ξ0)

ρ(xi)
θ(S(xi)− S0) . (19)

To reduce the statistical error of this estimate one has to choose the function ρ as similar
as possible to the integrand, so that the terms in the sum are (ideally) all of the same size.
A common approach (especially if f( · , ξ0) is a Gaussian distribution) is to choose ρ(x) ≈
f(x, ξ0) and let the numerics take care of the theta function in the integrand. For large
p-values this is a viable option, but if p is small most sample points give a contribution of
zero to the integrand and the numerical integration becomes very inefficient. (Remember
that each evaluation of the test statistic S(x) requires the computation of Dmin(x) and
Dmin
c (x) which, in general, has to be done by numerical minimisation.) For small p-

values, the efficiency of the integration can be significantly improved by choosing a
sampling density ρ which avoids the region where the theta function is zero (i.e. the
region between the dashed planes in Fig. 1). Knowledge about the geometric properties
of the theory manifolds can be used to construct such a sampling density. In the
numerical methods proposed in this paper, we assume gaussianity and linearity for
the purpose of constructing the sampling density, but make no approximations when
computing the p-value.

To see how this works, let us start with the case where the nestedness assumption
is still valid. For definiteness, we choose a parametrisation so that

M = {x̃(ξ) | ξ ∈ Ω} , Mc = {x̃(ξ) | ξ ∈ Ω ∧ ξ1, . . . , ξν = 0} . (20)

Let ξ0 denote again the parameters under the null hypothesis. Now we define the
hyperplanes H and Hc as tangent planes on M and Mc at the point x̃0 = x̃(ξ0):

H =

{
x̃0 + h h ∈ span

(
∂x̃(ξ)

∂ξ1

∣∣∣∣
ξ=ξ0

, . . . ,
∂x̃(ξ)

∂ξk

∣∣∣∣
ξ=ξ0

)}
,

Hc =

{
x̃0 + h h ∈ span

(
∂x̃(ξ)

∂ξν+1

∣∣∣∣
ξ=ξ0

, . . . ,
∂x̃(ξ)

∂ξk

∣∣∣∣
ξ=ξ0

)}
. (21)

By construction the function D(x̃0,x), considered as a function of x, has a minimum at
x = x̃0 (see Sec. 2). Consequently, we define the matrix V −1 as the Hessian matrix at
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that minimum:

(V −1)ij =
∂2D(x̃0,x)

∂xi∂xj

∣∣∣∣
x=x̃0

. (22)

As in the derivation of Wilks’ theorem, we now perform an affine-linear coordinate
transformation which maps x̃0 to zero and transforms V −1 to a unit matrix. To this
end, we define

yi ≡ yi(x) =
1

σi
[O(x− x̃0)]i (no sum over i) , (23)

where O is an orthogonal matrix chosen so that OV OT = diag(σ2
1, . . . , σ

2
n) with positive

eigenvalues σ2
1, . . . , σ

2
n. Let H ′ and H ′c denote the images of the hyperplanes H and

Hc, respectively, under this coordinate transformation. Since H and Hc contain x̃0, H
′

and H ′c must contain the origin and are therefore linear subspaces of Rn. Any vector y
may thus be decomposed into three orthogonal components y1, y2 and y3 with y1 ∈ H ′c
and y2 ∈ H (see Fig. 1). If the assumptions of gaussianity and linearity were satisfied
exactly, the theta function in (19) would vanish if and only if ‖y2‖2 < S0 and we
should not waste sample points on this region. If gaussianity and linearity are only
approximations, we should be more careful and use a sampling density ρ which is small,
but non-vanishing for ‖y2‖2 < S0. A choice which can still be sampled efficiently is

ρ(x) = Je−
1
2
‖y1‖2e−

1
2
‖y3‖2

{
a‖y2‖α , ‖y2‖2 < S0

be−
1
2
‖y2‖2 , ‖y2‖2 ≥ S0

, (24)

where J =
∏n

i=1 σi is the Jacobian of the coordinate transformation. The parameters
and a, b, α ≥ 0 may be tuned to improve the efficiency of the numerical integration
(subject, of course, to the constraint that the PDF ρ is properly normalised).

We see that the sampling density ρ factorises into three terms which only depend on
the components y1, y2 and y3, respectively. The task of generating points distributed
according to ρ thus reduces to the task of generating components y1, y2 and y3 dis-
tributed according to the respective factors. For y1 and y3 these factors are Gaussian,
so generating the components y1 and y3 is trivial. The generation of the component y2

requires special care.

Before we address this problem let us talk about the case of non-nested models.
Assume that we have two theory functions x̃1 ≡ x̃1(ξ) and x̃2 ≡ x̃2(η) with parameter
spaces Ω1 and Ω2, respectively, of arbitrary and possibly different dimension. Our
null hypothesis is that theory 2 is realised with parameters η0 ∈ Ω2. We therefore
approximate the theory manifold M2 by its tangent hyperplane H2 at x̃20 ≡ x̃2(η0).
Since M2 is no subset of M1 we have to approximate M1 by its tangent hyperplane
at some other parameters ξ0 ∈ Ω1. If η0 is the maximum likelihood estimate of some
measured data x0, i.e. η0 = η̂(x0), an obvious choice for ξ0 would be the maximum
likelihood estimate of x0 in theory 1, i.e. ξ0 = ξ̂(x0). In any case we define hyperplanes

9



Figure 2: Orthogonal decomposition of a three-dimensional sample space for non-nested
models. The tangent hyperplane H ′1 of model 1 is one-dimensional and the tangent hyperplane
H ′2 of model 2 is two-dimensional. The thin dashed line is the projection of H ′1 onto H ′2. The
blue colour indicates the probability density for the toy observable vector y.

H1 and H2 analogous to (21):

H1 =

{
x̃10 + h h ∈ span

(
∂x̃1(ξ)

∂ξ1

∣∣∣∣
ξ=ξ0

,
∂x̃1(ξ)

∂ξ2

∣∣∣∣
ξ=ξ0

, . . .

)}
,

H2 =

{
x̃20 + h h ∈ span

(
∂x̃2(η)

∂η1

∣∣∣∣
η=η0

,
∂x̃2(η)

∂η2

∣∣∣∣
η=η0

, . . .

)}
, (25)

with x̃10 = x̃1(ξ0) and x̃20 = x̃2(η0). We define the matrix V −1 as in (22) and construct
coordinates y ≡ y(x) according to (23), but with x̃0 replaced by x̃20. Let H ′1 and H ′2
be the images of H1 and H2, respectively, under the coordinate transformation y and
let ỹ10 = y(x̃10). The image of x̃20 under y is the origin. Since H2 contains x̃20 the
hyperplane H ′2 contains the origin and is thus a linear subspace of Rn. H ′1, on the other
hand, contains ỹ10 but not necessarily the origin, so it is not a linear subspace. For
n = 3, a two-dimensional H ′2 and a one-dimensional H ′1, this situation is depicted in
Fig. 2.

We see that for non-nested models the boundaries of the region with S(x) < S0 are
curved, even if a linear approximation is used for the theory manifolds. This makes it
harder to construct a sampling distribution which avoids this region. We shall try it
anyway: let H ′21 ⊂ H ′2 be the subspace obtained by shifting H1 by −ỹ10 (so that it
contains the origin) and projecting it onto H ′2. Furthermore, let H ′22 be the orthogonal
complement of H ′21 in H2. Finally, let H ′⊥ be the orthogonal complement of H ′2 in
Rn. The projection of H ′1 onto H ′22 is then a single point c, which can be obtained by
projecting ỹ10 onto H ′22. Any vector y can now be written as the sum of three orthogonal
components y1, y2 and y3 with y1 ∈ H ′21, y2 ∈ H ′22 and y3 ∈ H ′⊥. (See Fig. 2.) The
distance between y and H ′1 is larger than ‖c − y2‖ since projecting any vector on a
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lower-dimensional subspace reduces its length and the projection of any vector pointing
from y to H ′1 onto the subspace H ′22 is c− y2.

Now recall the test statistic S2 from (13), which we constructed to test theory 2
against the “union” of theories 1 and 2. In the approximation where the theory manifolds
M1 and M2 are equal to the hyperplanes H1 and H2 the functions Dmin

1 and Dmin
2 satisfy

Dmin
2 (x) = ‖y3‖2 + n ln(2π) , Dmin

1 (x) ≥ ‖c− y2‖2 + n ln(2π) . (26)

Thus, S2(x) < S0 holds if

‖y3‖2 < S0 + ‖c− y2‖2 . (27)

Note, however, that this condition is sufficient but not necessary. S2(x) must be smaller
than S0 in the region defined by (27), but it may also be smaller than S0 outside this
region. Nonetheless, a good choice for the sampling density ρ will be one which avoids
the region defined by (27). Analogous to (24), this density can be constructed as follows:

ρ(x) = Je−
1
2
‖y1‖2e−

1
2
‖y2‖2

{
a‖y3‖α , ‖y3‖2 < S0 + ‖c− y2‖2

be−
1
2
‖y3‖2 , ‖y3‖2 ≥ S0 + ‖c− y2‖2

, (28)

where J =
∏n

i=1 σi is again the Jacobian of the coordinate transformation y. After
requiring that ρ is properly normalised, there are still two free parameters which can
be tuned to improve the efficiency of the numerical integration. As in (24), the density
ρ factorises into three terms. The first two are Gaussian and only depend on the
components y1 and y2, respectively. Generating components y1 and y2 with the correct
statistical distribution is therefore trivial. A new complication in (28) is that the last
factor, i.e. the distribution of y3, now depends on y2. This simply means that we have
to generate a value for y2 before we generate y3.

The remaining problem is to generate a random vector z of some dimension m
distributed according to the PDF

ρ′(z) =

{
a‖z‖α , ‖z‖2 < ∆2

be−
1
2
‖z‖2 , ‖z‖2 ≥ ∆2

(29)

with some ∆ > 0. (In (24) we have z = y2, m = ν and ∆2 = S0 while in (28) we have
z = y3, m = dim(H ′⊥) and ∆2 = S0 + ‖c − y2‖2.) We first note that the PDF ρ′ is
rotationally invariant. The length r = ‖z‖ of the vector z is then distributed according
to a PDF

ρ̃′(r) =
2πm/2

Γ(m/2)
rm−1

{
arα , r2 < ∆2

be−
1
2
r2 , r2 ≥ ∆2

. (30)

We may write this as
ρ̃′(r) = fρ̃′<(r) + (1− f)ρ̃′>(r) (31)
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where f ∈ [0, 1] is a free parameter and

ρ̃′<(r) =
m+ α

∆m+α
θ(r)θ(∆− r) , ρ̃′>(r) =

rm−1e−
1
2
r2θ(r −∆)

2(m−2)/2Γ(m/2)(1− Pm/2(12∆2))
(32)

are PDFs normalised to 1. Here, Pm/2 is the normalised lower incomplete Gamma
function. Since ρ̃′< and ρ̃′> are normalised, the parameter f is just the fraction of
sample points that will be put in the “inner region” with r < ∆. For a given f , the
corresponding values of a and b are

a =
fΓ(m/2)(m+ α)

2πm/2∆m+α
, b =

1− f
(2π)m/2(1− Pm/2(12∆2))

. (33)

By integrating ρ̃′<, ρ̃′> and ρ̃′ from 0 to r we obtain the cumulative distribution functions
(CDFs)

CDFρ̃′<(r) =
rm+α

∆m+α
, CDFρ̃′>(r) =

Pm/2(
1
2
r2)− Pm/2(12∆2)

1− Pm/2(12∆2)

⇒ CDFρ̃′(r) =

{
f CDFρ̃′<(r) , r < ∆

f + (1− f) CDFρ̃′>(r) , r ≥ ∆
. (34)

To generate random variables r distributed according to ρ̃′ we need the inverse of CDFρ̃′ :

CDF−1ρ̃′<
(q) = ∆ q1/(m+α) , CDF−1ρ̃′>

(q) =
√

2P−1m/2

(
q + (1− q)Pm/2(12∆2)

)
⇒ CDF−1ρ̃′ (q) =

{
CDF−1ρ̃′<

( q
f
) , q < f

CDF−1ρ̃′>
( q−f
1−f ) , q ≥ f

, (35)

where P−1m/2 is the inverse of the normalised lower incomplete Gamma function. Random
vectors z distributed according to ρ may now be generated in the following way: First
generate a vector z′ according to a m-dimensional normal distribution. Then pick a
uniformly distributed random variable q ∈ [0, 1] and set r = CDF−1ρ̃′ (q). The variable r
is then distributed according to ρ̃′. The vector z with the correct random distribution
is z = (r/‖z′‖)z′.

5 Introducing myFitter

The ideas for the numerical computation of p-values outlined in the last section have
been implemented in a publicly available code called myFitter. The source code is
available at Hepforge [8]. Detailed documentation is included in the source distribution.
Here I just want to provide a brief description of the user interface and discuss some
details of the implementation.
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myFitter is a C++ class library and makes extensive use of inheritance and poly-
morphism to separate the tasks of fitting a model to experimental data and computing
p-values from the tasks of implementing the observables (as functions of the model’s pa-
rameters) or the input function D (as a function of the observables). The main classes
the user will have to deal with are:

Model This is the base class for all models implemented by the user. It essentially rep-
resents the theory function x̃ from earlier sections, i.e. the map from the model’s
parameter space to the space of observables. The base class provides function-
ality for storing “current” values of parameters, observables and derivatives of
observables with respect to the parameters, setting ranges in which parameters
are allowed to float or fixing them (so that they do not float at all). It can also ran-
domly sample the parameter space and build up a dictionary of parameter values
and the corresponding observable values. This dictionary can be used to find good
starting points for numerical minimisations of the input function. To implement
their own model, the user has to subclass Model and overload the method calc()

which computes the observables based on the current values of the parameters.
They may also overload the method calc deriv(), which calculates the deriva-
tives of all observables with respect to all parameters. The default implementation
uses simple numerical differentiation.

InputComponent This is the base class for objects that represent terms in the in-
put function D (see Sec. 2). Each input component represents the contribution
from one or more observables xi to the input function. To calculate the value
of the input function, the contributions of all InputComponent objects are added
up. This is done by another class, InputFunction, which acts as a container for
InputComponent objects. Derived classes of InputComponent must overload the
method calc(x̃,x), which takes two vectors as arguments (the first being the
“predicted” values of the observables and the second being the “measured” ones)
and returns the contribution of the term to the input function. Additionally, the
methods calc deriv() and get hessian() must be implemented, which calcu-
late the derivatives with respect to the x̃i and the Hessian matrix for the minimum
at x = x̃. Ready-to-use implementations for the most common input components
are also available. These classes are: GaussianIC (for single observables with
a Gaussian and possibly systematic errors), AsymmetricGaussianIC (for single
observables with asymmetric Gaussian error bars and possibly systematic errors)
and CorrelatedGaussianIC (for several observables with Gaussian errors and a
correlation matrix).

Fitter Objects of this type are responsible for fitting the parameters of mod-
els (represented by Model objects) to experimental data (represented by an
InputFunction object) and for computing p-values by numerical integration.
Each Fitter object contains an InputFunction object which is accessible through
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the input function() method and must be “filled” with InputComponent ob-
jects before any fits can be done. Once the input function is initialised, fits can
be performed with the local fit() and global fit() methods. As arguments,
these methods take the Model object to be fitted and (optionally) a vector of cen-
tral values for the observables. If no central values are given, the defaults from
the input function() are used. The difference between these methods is that
local fit() uses the current values of the model parameters as starting point
for the minimisation of the input function, while global fit() uses the dictio-
nary created by a previous call to the model’s scan() method. The p-values for
likelihood ratio tests of nested and non-nested models can be calculated with the
methods calc nested lrt pvalue() and calc lrt pvalue(), respectively. As
arguments, these two methods take the models to be compared. Note that, for
calc nested lrt pvale() to work, the second model must be a restricted ver-
sion of the first, i.e. a copy of the first object with some additional parameters
fixed. In addition to these methods, the Fitter class contains numerous options
and flags that control the accuracy and various other aspects of the minimisation
and integration routines. These options are described in the package documenta-
tion. Most notably, the p-value integrations can be parallelised without additional
programming efforts by the user.

Both, for the case of nested and non-nested models, the efficiency of the integration
can be improved further by adaptive integration techniques, where the shape of the
sampling density ρ is tuned during the actual integration. For the adaptation, the
implementation in myFitter uses the OmniComp/Dvegas package [9] by Nikolas Kauer,
which implements the VEGAS algorithm [10] and was developed in the context of [11,
12]. Thanks to OmniComp, parallelised integration is fully supported.

To maximise the likelihood function, myFitter uses a custom implementation of the
BFGS method for numerical optimisation [13–16]. The optimisation terminates success-
fully when the length of the gradient of the likelihood function drops below a certain
value configurable by the user. Other optimization algorithms can be implemented by
subclassing the Minimizer class and assigning an instance of this class to the Fitter

object via the Fitter::minimizer() method. The problem of minimising a function
of bounded parameters (i.e. of parameters that have an upper or lower limit) is solved
in the usual way by smoothly and invertably mapping the real axis R to the allowed
range of the parameter. Internally, myFitter does this with the function

g : (−∞,∞)→ (0,∞), x 7→ f(x) =
1

2
(x+

√
x2 + 1) . (36)

6 Performance Tests

The performance of the myFitter method for the numerical integration of Eq. 10 was
compared with more generic methods in three tests using simple toy models. All al-
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ternative methods use the coordinate transformation (23) to transform the PDF f to
a normal distribution. The simplest method, referred to as no adaptation in the fol-
lowing, just uses importance sampling with a normal distribution as sampling density.
The other two methods map the integration volume (i.e. the Rn) to the unit hypercube
[0, 1]n by using

ti =
1

2
Erf

yi√
2

+
1

2
, i = 1, . . . , n (37)

as integration variables and use the VEGAS algorithm [10] to perform the integration
over the variables ti. The VEGAS algorithm is most efficient when the features of the
integrand are aligned with the coordinate axes. In one variant, called aligned VEGAS in
the following, we perform a rotation which aligns the tangent hyperplanes of the theory
manifolds with the coordinate axes before mapping to the unit cube. This usually leads
to an integrand whose features are aligned with the coordinate axes. In a second variant,
which we call misaligned VEGAS, we choose the rotation so that the theory manifolds
are not aligned with the coordinate axes. The misaligned VEGAS method is the best
possible method when no information about the theory manifolds can be used.

In the first test we study the performance of the four integration methods in the
context of a model with a curved theory manifold. To this end we consider a model
with seven observables x1, . . . , x7 and four parameters ξ1, . . . , ξ4. The theory function x̃
is given by

x̃(ξ) = (ξ1, ξ2, ξ3, ξ4, 0, 0,−(ξ21 + ξ22 + ξ23 + ξ24)λ) . (38)

where λ is a fixed number which controls the curvature of the theory manifold. As input
function we use the expression (3) for Gaussian errors with a unit covariance matrix:

D(x̃,x) =
7∑
i=1

(x̃i − xi)2 + 7 ln(2π) . (39)

The constrained version of this model is defined by fixing ξ2 to zero and ξ1 to some
other value r. The test statistic S is then defined according to (9). We take x0 =
(0, 0, 0, 0, 1, 1, 1) as the actually measured data and perform the test with S0 = S(x0).
Different choices for r lead to different values of S0 and thus to different p-values.

For two values of λ, the value of r was varied to obtain p-values roughly corresponding
to 2, 3, 4 and 5 standard deviations. The p-value was then computed numerically
with myFitter and the three alternative methods to a relative precision of 1%. The
number of integrand evaluations needed by each method are summarised in Tab. 1.
The p-values obtained by applying Wilks theorem are also shown. We see that adaptive
methods always lead to a significant speedup and that the myFitter method performs
best in all cases. For three standard deviations or less the two VEGAS methods still
compete rather well with myFitter. At four standard deviations myFitter is faster than
the VEGAS methods by a factor of 3 for large curvature and a factor of 10 for small
curvature. At five standard deviations only myFitter is able to compute the p-value with
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aligned misaligned no
λ p-value p-value myFitter VEGAS VEGAS adaptation

(Wilks) [103] [103] [103] [103]

0.1 5.1 · 10−2 5.6 · 10−2 40 60 90 200
2.9 · 10−3 3.3 · 10−3 150 240 360 –
6.1 · 10−5 8.1 · 10−5 210 2100 3000 –
5.4 · 10−7 7.3 · 10−7 270 – – –

1.0 5.2 · 10−2 8.8 · 10−2 50 60 70 200
3.0 · 10−3 5.8 · 10−3 180 210 210 –
8.2 · 10−5 20.1 · 10−5 700 2100 1800 –
8.1 · 10−7 29.7 · 10−7 6000 – – –

Table 1: Results of the test with a curved theory manifold. The curvature is controlled
by λ (see Eq. 38). The parameter ξ1 was fixed to different values in the constrained model,
leading to the p-values shown in the second column (which roughly correspond to 2, 3, 4 and 5
standard deviations). The p-values obtained by applying Wilks theorem is shown in the third
column. The numbers in the last four columns are the number of integrand evaluations needed
by the four different integration methods to compute the p-value with a relative accuracy of
1%. In the empty cells, the integration was aborted after a number of evaluations which was
a factor of 10 larger than the evaluations needed by slowest of the other methods.

a reasonable number of evaluations. The main reason for the poor performance of the
VEGAS methods at small p-values is the fact that they require a large number of initial
evaluations to find any points in the integration region which give a nonzero contribution
to the integrand. The myFitter method converges faster because it “knows”, to a certain
approximation, where the integrand is nonzero.

The second test compares the performance of the four integration methods in the
case of models with bounded parameters. To this end, we use the theory function (38)
with λ = 0 and the input function (39). In the constrained version of the model, the
parameters ξ1 and ξ2 are still fixed to r and 0, respectively. We assume again that
x0 = (0, 0, 0, 0, 1, 1, 1) is the actually measured data, perform the fit with S0 = S(x0)
and vary r to change the p-value. However, in the full model the parameter ξ2 is
now restricted to the interval [−0.25, 0.25]. Thus, the “effective” number of degrees of
freedom of the LRT is somewhere between one and two. Consequently, we expect the
p-value to lie somewhere between the results obtained from Wilks theorem with one and
two degrees of freedom.

Different p-values roughly corresponding to 2, 3, 4 and 5 standard deviations were
again computed with the four integration methods to a relative precision of 1%. The
required number of integrand evaluations are shown in Tab. 2. Again the myFitter
method performs best in all cases. The ‘misaligned VEGAS’ and ‘no adaptation’ meth-
ods are significantly slower even for large p-values. The performance of the ‘aligned
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aligned misaligned no
p-value p-value myFitter VEGAS VEGAS adaptation

(Wilks) [103] [103] [103] [103]

4.4 · 10−2 11.0 · 10−2 30 30 110 240
2.8 · 10−3 9.5 · 10−3 30 50 460 4100
6.3 · 10−5 27.4 · 10−5 30 1500 5100 –
5.4 · 10−7 29.0 · 10−7 40 – – –

Table 2: Results of test with bounded parameters (see text). The parameter ξ1 was fixed
to different values in the constrained model, leading to the p-values shown in the first column
(which roughly correspond to 2, 3, 4 and 5 standard deviations). The p-values obtained by
applying Wilks theorem (with two degrees of freedom) is shown in the second column. The
numbers in the last four columns are the number of integrand evaluations needed by the four
different integration methods to compute the p-value with a relative accuracy of 1%. In the
empty cells, the integration was aborted after a number of evaluations which was a factor of
10 larger than the evaluations needed by slowest of the other methods.

VEGAS’ method is comparable at first, but drops significantly between 3 and 4 stan-
dard deviations. The reason is the same as in the previous test: for small p-values
VEGAS needs a large number of initial evaluations in order to find enough points with
a nonzero integrand value. Again, only myFitter is capable of computing p-values at
the 5σ level.

The final test is concerned with the case of non-nested models. The input function
(for both models) is again given by (39). The first model has two parameters ξ1, ξ2 and
the theory function x̃1 is defined by

x̃1(ξ) = (ξ1, ξ2, 0, 0, ξ1, ξ2, 0) . (40)

The theory function x̃2 of the second model is the same as x̃ from (38) with λ = 0.
Obviously, neither theory manifold contains the other as a subset, so this is an example
of non-nested models. We assume the actually measured data to be

x0 = (r, r, 1, 0, r, r, 1) (41)

with r > 0. For sufficiently large values of r the maximum likelihood value of model 1
at x0 is larger than that of model 2 and we have the interesting situation that the model
with less parameters fits the measured data better than the model with more parameters.
In this situation Wilks’ theorem is clearly not applicable, so we will concentrate on this
case. We perform a LRT which compares model 2 with the ‘union’ of models 1 and 2,
using the test statistic S2 from (13) and S0 = S2(x0).

As before, several LRTs were performed with different values of r leading to p-values
roughly corresponding to 2, 3, 4 and 5 standard deviations. The p-values were again
computed with the four integration methods to a relative precision of 1%, and the
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aligned misaligned no
p-value p-value myFitter VEGAS VEGAS adaptation

(Wilks) [103] [103] [103] [103]

5.0 · 10−2 50.3 · 10−2 50 70 100 200
2.7 · 10−3 44.6 · 10−3 60 210 270 4000
6.7 · 10−5 147.0 · 10−5 70 330 540 –
5.7 · 10−7 157.3 · 10−7 80 – – –

Table 3: Results of test for non-nested models. The p-values in the first column were obtained
by numerical integration with different values for r (see text). The p-values in the second
column were computed by applying Wilks’ theorem with two degrees of freedom. The numbers
in the last four columns are the number of integrand evaluations needed by the four different
integration methods to compute the p-value with a relative accuracy of 1%. In the empty
cells, the integration was aborted after a number of evaluations which was a factor of 10 larger
than the evaluations needed by slowest of the other methods.

required number of integrand evaluations are shown in Tab. 3. The p-values obtained
by applying Wilks’ theorem with two degrees of freedom are also shown for illustration.
We see that Wilks’ theorem is clearly not applicable here. As in the previous tests, the
myFitter method is consistently faster than the other methods and significantly faster
for small p-values.

7 Conclusions

Likelihood ratio tests are a popular tool in global analyses of models in particle physics.
For a correct statistical interpretation of the data, reliable methods for the computation
of p-values in likelihood ratio tests are needed. There are many realistic situations
where Wilks’ theorem does not apply and the distribution of the test statistic is not
known analytically. These include likelihood ratio tests of non-nested models or models
with parameters that are only allowed to float in a finite range. Real-world examples
of the former case are the global analyses [1, 3] of the Standard Model with a fourth
generation of fermions where the models being compared are not nested due to the non-
decoupling nature of the additional fermions. The latter case includes models where
systematic errors are treated within the RFit scheme. In these situations one has to
resort to numerical methods. Monte Carlo integration can be used to compute p-values
numerically, but the integration usually becomes very inefficient for small p-values.

In this paper I presented an efficient approach to the numerical computation of p-
values which is based on importance sampling and applies to a broad class of statistical
models. In global analyses in particle physics, the predictions of a theoretical model
can be described by a manifold in the space of observables. The PDF of the statistical
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model is then obtained by “smearing out” the theory manifold in a way determined
by the experimental uncertainties. The proposed methods use geometric information
about the theory manifolds to construct suitable sampling densities for the Monte Carlo
integration and substantially improve the performance of the numerical integration for
small p-values. These methods are implemented in a publicly available C++ framework
for likelihood ratio tests called myFitter.
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[7] A. Höcker, H. Lacker, S. Laplace, and F. Le Diberder, Eur.Phys.J. C21, 225 (2001),
arXiv:hep-ph/0104062 [hep-ph].

[8] http://myfitter.hepforge.org.

[9] http://dvegas.hepforge.org.

[10] G. P. Lepage, Journal of Computational Physics 27, 192 (1978), ISSN 0021-9991.

[11] N. Kauer and D. Zeppenfeld, Phys.Rev. D65, 014021 (2002), arXiv:hep-ph/0107181
[hep-ph].

[12] N. Kauer, Phys.Rev. D67, 054013 (2003), arXiv:hep-ph/0212091 [hep-ph].

19

http://dx.doi.org/10.1103/PhysRevLett.109.241802
http://arxiv.org/abs/1209.1101
http://dx.doi.org/10.1103/PhysRevD.86.013011
http://arxiv.org/abs/1204.3872
http://dx.doi.org/10.1103/PhysRevD.86.074014
http://arxiv.org/abs/1207.0438
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1007/s100520100729
http://arxiv.org/abs/hep-ph/0104062
http://myfitter.hepforge.org
http://dvegas.hepforge.org
http://dx.doi.org/DOI: 10.1016/0021-9991(78)90004-9
http://dx.doi.org/10.1103/PhysRevD.65.014021
http://arxiv.org/abs/hep-ph/0107181
http://arxiv.org/abs/hep-ph/0107181
http://dx.doi.org/10.1103/PhysRevD.67.054013
http://arxiv.org/abs/hep-ph/0212091


[13] C. G. Broyden, IMA J. Appl. Math. 6, 76 (1970).

[14] R. Fletcher, Comput. J. 13, 317 (1970).

[15] D. Goldfarb, Math. Comput. 24, 23 (1970).

[16] D. F. Shanno, Math. Comput. 24, 647 (1970).

20

http://dx.doi.org/10.1093/imamat/6.1.76
http://dx.doi.org/10.1093/comjnl/13.3.317
http://dx.doi.org/10.1090/S0025-5718-1970-0258249-6
http://dx.doi.org/10.1090/S0025-5718-1970-0274029-X

	1 Introduction
	2 General Setup
	3 Analytical Formulae for p-values
	4 Numerical Calculation of p-values
	5 Introducing myFitter
	6 Performance Tests
	7 Conclusions

