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Abstract

We compute the three-loop QCD corrections to the decoupling constant for αs

which relates the Minimal Supersymmetric Standard Model to Quantum Chromo-
dynamics with five or six active flavours. The new results can be used to study
the stability of αs evaluated at a high scale from the knowledge of its value at MZ .
We furthermore derive a low-energy theorem which allows the calculation of the
coefficient function of the effective Higgs boson-gluon operator from the decoupling
constant. This constitutes the first independent check of the matching coefficient
to three loops.
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1 Introduction

The decoupling of particles with masses much heavier than the considered energy scale
has a long history [1]. It is tightly connected to the construction of an effective theory
containing only the light active degrees of freedom in the dynamical part of the Lagrange
density. Within the framework of QCD decoupling constants for the strong coupling
αs are known at two- [2–4], three [4] and even four-loop order [5, 6]. Recently also the
expression for the simultaneous decoupling of two heavy quarks has been computed at
the three-loop level [7].

Decoupling relations are also important in the context of supersymmetry where the Stan-
dard Model constitutes the effective theory. Two-loop corrections for a degenerate super-
symmetric mass spectrum are known from Ref. [8,9] and the general result can be found
in Ref. [10]. In this paper we compute the three-loop corrections for several different
assumptions on the masses of the MSSM.

There is an interesting connection between the decoupling constants and the effective
coupling of a CP neutral Higgs boson to gluons which is defined via the Lagrange density
(the superscript 0 marks bare quantities)

LY,eff = −φ0

v0
C0

1O0
1 + L(5)

QCD , (1)

with

O0
1 =

1

4
G0

µνG
0,µν . (2)

where φ is the Higgs field v is the vacuum expectation value and Gµν the field strength

tensor in QCD. L(5)
QCD is the QCD Lagrange density with five active flavours. The first

term in Eq. (1) describes the coupling of the Higgs boson to two, three and four gluons.

In Ref. [4] a low-energy theorem (LET) has been derived which connects C1 to the deriva-
tive of the decoupling constant for αs with respect to the top quark mass. As far as
supersymmetry is concerned a next-to-leading order (NLO) version of the LET has been
derived in Ref. [11] (see also Ref. [12]). In this way the NLO supersymmetric QCD
(SQCD) corrections to C1 obtained in Ref. [13] could be confirmed. We re-derive the
LET, apply it at three loops and thus obtain the coefficient function C1 which is needed
for NNLO prediction of Higgs boson production and decay within the MSSM. With our
calculation we confirm the result for C1 obtained in Ref. [14,15] by an explicit calculation
of the vertex diagrams.

The outline of this paper is as follows: In the next Section we describe the calculation of
the decoupling constant for αs to three loops and discuss the numerical influence in the
computation of αs(MGUT). Afterwards we derive in Section 3 an all-order low-energy-
theorem which we use to compute C1 to NNLO accuracy. We summarize and conclude
the paper in Section 4. In the Appendix we present a compact expression of the exact
two-loop result for the decoupling coefficient.
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2 Decoupling of heavy supersymmetric particles

In order to compute the decoupling effects of heavy particles from the running of αs

one can use the well-established formalism derived in Ref. [4]. It has been applied to
supersymmetry in Refs. [8–10] where two-loop corrections have been computed.

The starting point is the relation between the strong coupling in the full theory, which is
in our case the MSSM, respectively, SQCD, and the effective theory, QCD

α(QCD)
s (µ) = ζαs

(µ)α(SQCD)
s (µ) . (3)

At that point some comments are in order:

• α
(QCD)
s (µ) is defined in the five or six flavour theory, depending on whether the top

quark is integrated out together with the supersymmetric particles or not.

• α
(QCD)
s (µ) is defined in the MS scheme based on Dimensional Regularization

(DREG). α
(SQCD)
s (µ) is defined in the DR scheme since the supersymmetric the-

ory is regularized using Dimensional Reduction (DRED). DRED is implemented
with ε scalars, where the details can be found in Refs. [15, 16].

• ζαs
(µ) as introduced in Eq. (3) has two tasks: (i) it has to decouple the heavy

particles not present in the effective theory, and (ii) ζαs
(µ) has to ensure the change

of regularization from DRED to DREG. In principle the two tasks can be performed
in two steps as it has been proposed in Refs. [8–10]. However, it is more convenient to
choose the same renormalization scale for the decoupling and the change of scheme.
Calculations along these lines have also been performed in Ref. [14, 17].

• In principle each vertex containing αs can be used in order to compute ζαs
. It is,

however, convenient to use the gluon-ghost vertex in order to compute the decou-
pling constant via [4]

ζ0
αs

=

(

ζ̃0
1

ζ̃0
3

√

ζ0
3

)2

, (4)

where the superscript “0” marks bare quantities. ζ̃1, ζ̃3 and ζ3 are the decoupling
constants of the gluon-ghost vertex, ghost and gluon propagator, respectively. They
are obtained from the hard part of the corresponding Green’s function. The corre-
sponding formulae can be found in Ref. [4] where a derivation has been performed
in the framework of QCD. It can be taken over to SQCD without modifications.
The renormalized decoupling constant is obtained from

ζαs
=

Zαs

Zα′

s

ζ0
αs

. (5)

where Zαs
and Zα′

s
are the renormalization constants for αs in the full and effective

theory, respectively.
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• All occurring parameters are renormalized in the DR scheme, except the ε scalar
mass which is renormalized on-shell with the condition Mε = 0. The corresponding
counterterms can, e.g., be found in Ref. [18].

Assuming a strong hierarchy among the quarks one encounters in the case of QCD vac-
uum diagrams which contain only one mass scale. The occurring integrals can even be
computed up to four-loop order [5,6]. Two scales appear if two quarks are integrated out
simultaneously. This has been done in Ref. [7] to three-loop accuracy.

In the case of supersymmetry significantly more mass scales have to be considered. In our
approach we have the gluino and top squark masses (mg̃, mt̃1 , mt̃2) and a generic squark
mass mq̃ which we take as the average of the up, down, strange, charm and bottom
squarks. In addition there is the ε scalar (Mε) and the top quark (mt) mass. The latter
only appears if we match to five-flavour QCD since mt = 0 is chosen for the matching to
six-flavour QCD. Up to two loops ζαs

can nevertheless be computed exactly [10] taking
into account the dependence on all mass parameters. The analytical result can be found
in the Appendix. At three-loop order, however, approximations have to be adopted in
order to be able to compute the integrals. Motivated by scenarios which are currently
discussed in the literature we have chosen

(h1) mq̃ ≈ mt̃1 ≈ mt̃2 ≈ mg̃ ≫ mt ,

(h2) mq̃ ≈ mt̃2 ≈ mg̃ ≫ mt̃1 ≫ mt ,

(h3) mq̃ ≈ mt̃2 ≈ mg̃ ≫ mt̃1 ≈ mt , (6)

where in the case of “≫” an asymptotic expansion in the corresponding hierarchy is
performed. In the case of “≈” a naive Taylor expansion in the difference of the particle
masses is sufficient. For all hierarchies we assume that Mε is not zero but much smaller
than all other masses. In this way we ensure that the ε scalar is integrated out and not
present in the effective theory. Thus, in the latter dimensional regularization can be used.
In what follows the heavy mass scales for each hierarchy are also denoted by mSUSY in
case they are identified.

At three-loop order terms up to O(1/m10
SUSY) have been computed for (h1) and (h3) and

up to O(1/m6
t̃1
) and O(1/m6

SUSY) for (h2). For each mass difference at least four expansion

terms (i.e. terms including (m2
i −m2

j )
3) could be evaluated. It is either possible to expand

in the linear or the quadratic mass difference. Formally both choices are equivalent,
however, in practice it turns out that depending on the actual numerical values of the
parameters one can be significantly better behaved than the other. Similarly there is
a freedom to choose a mass parameter, mR, around which the expansion is performed.
mR should be of the order of the involved masses. Note that for (h1) and (h2) only one
reference mass mR is required whereas for (h3) one needs two as can be seen from Eq. (6).
Again there may be significant numerical differences and thus we adopt the following
choices when evaluating the three-loop corrections to the decoupling coefficient

(h1) mR = mt̃1 , mR = mt̃2 , mR = mg̃ , mR = mq̃ , mR =
mt̃1 + mt̃2 + 10mq̃ + mg̃

13
,
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(h2) mR = mt̃2 , mR = mg̃ , mR = mq̃ , mR =
mt̃2 + 10mq̃ + mg̃

12
,

(h3) mR1
= mt̃2 , mR1

= mg̃ , mR1
= mq̃ , mR1

=
mt̃2 + 10mq̃ + mg̃

12
,

mR2
= mt , mR2

= mt̃1 , mR2
=

mt + mt̃1

2
. (7)

In the following it is convenient to consider the perturbative expansion of ζαs
which we

define as

ζαs
(µ) = 1 +

α
(SQCD)
s

π
ζ (1)
αs

+

(

α
(SQCD)
s

π

)2

ζ (2)
αs

+

(

α
(SQCD)
s

π

)3

ζ (3)
αs

+ . . . , (8)

where the µ dependence of α
(SQCD)
s and ζ

(i)
αs

is suppressed on the right-hand side.

The general results are quite lengthy and will not be presented in this paper. However,
in order to get an impression of the results we present ζαs

for the hierarchy (h1) with a
degenerate supersymmetric mass spectrum which reads

ζ (1)
αs

= −1

4
− lS − lt

6
,

ζ (2)
αs

=
307

288
+

(

−77

72
+

7

3
lx

)

lt +
49

36
l2t −

25

36
lx + l2x + xtS

(

1

432
+

1

9
lt +

13

72
lx

)

+ x2
tS

(

− 1597

21600
+

61

720
lx

)

+ . . . ,

ζ (3)
αs

=
162443

62208
− 8509

3456
ζ(3) +

(

−27013

5184
+

2581

432
lx −

7

2
l2x

)

lt +

(

6361

1728
− 49

12
lx

)

l2t

− 343

216
l3t −

21583

5184
lx +

641

288
l2x − l3x + xtS

(

−90481643

3888000
+

47429

2304
ζ(3)

+

(

12163

21600
− 122

135
lx

)

lt −
79

216
l2t +

51353

86400
lx −

69

128
l2x

)

+ x2
tS

(

1542497350769

64012032000

− 2330095

110592
ζ(3) +

(

585083

12700800
− 26807

60480
lx

)

lt −
2

27
l2t +

3208403

3386880
lx −

104479

181440
l2x

)

+ . . . , (9)

where xtS = m2
t /m

2
SUSY, lt = ln(µ2/m2

t ), lS = ln(µ2/m2
SUSY) and lx = ln(xtS). The ellipses

denote terms of order x3
tS . The corresponding results where the matching is performed

to six-flavour QCD, i.e. where the top quark is not integrated out and thus treated as
massless in the loop integrals, reads

ζ (1)
αs

= −1

4
− lS ,

ζ (2)
αs

=
77

96
− 7

12
lS + l2S ,

5



ζ (3)
αs

= −11203

4608
− 1495

576
lS +

541

288
l2S − l3S +

4657

9216
ζ(3) . (10)

All analytical expressions corresponding to the hierarchies of Eq. (6) can be found in the
file decsusy3l.m obtained from [19].

Let us in the following test our approximation at two loops by comparing to the exact
result. For this purpose we adopt the following values for the input parameters

mt = 150 GeV , At = 100 GeV , MQ̃3
= 500 GeV , µSUSY = 100 GeV ,

tan β = 10 , MZ = 91.2 GeV , sin2 θW = 0.2233 . (11)

where At is the trilinear coupling, µSUSY is the Higgs-Higgsino bilinear coupling from the
super potential, tanβ is the ratio of the vacuum expectation values of the two Higgs
doublets, MZ is the Z boson mass, θW the weak mixing angle and MQ̃3

, a soft SUSY
breaking parameter for the squark doublet of the third family. Furthermore we set the
renormalization scale to µ = 500 GeV. These parameters can be used to compute mt̃1 ,
mt̃2 and θt as a function of the singlet soft SUSY breaking parameter of the top squark,
Mũ3,R (see, e.g., Ref. [20]) by diagonalizing the corresponding mass matrix. The result is
shown in Fig. 1(a). Furthermore we choose for simplicity mt̃2 = mq̃ = mg̃. This allows us

to consider in Fig. 1(b) both the exact result for ζ
(2)
αs

(solid line) and the approximations
(dahed lines) based on the hierarchies (h1), (h2) and (h3). The latter are obtained from
the (naive) averages over the various representations, i.e., the different choices of mR

according to Eq. (7). One observes that in the whole range of Mũ3,R at least one of the
hierarchies approximates the exact to a high degree, which provides the motivation to
proceed in a similar way at three loops.

Since at three-loop order the exact result is not known a criterion is needed in order to
select the best approximation among the various choices at hand. For this reason we
define

δapp =

∣

∣

∣

∣

∣

ζ
(2)
app − ζ

(2)
exact

ζ
(2)
exact

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

ζ
(3)c
app − ζ

(3)
app

ζ
(3)
app

∣

∣

∣

∣

∣

, (12)

where “app” marks an approximation result and the superscript “c” indicates that the
highest terms in the expansions are cut. For each set of input parameters we choose the
representation which leads to the minimal value of δapp. The first term on the right-hand
side of Eq. (12) guarantees that the approximation works well at two-loop order whereas
the second term assures the convergence of the expansion.

The three-loop result ζ
(3)
αs

is shown in Fig. 2 as a function of Mũ3,R. The notation for the
three hierarchies is as in Fig. 1. The thick lines are obtained using all available expansion
terms whereas for the thin curves the highest order is set to zero. Thus the difference
between the thick and the corresponding thin lines is a measure for the quality of the
convergence.

One observes a smiliar behaviour as at two-loop order: For small values of Mũ3,R, which
correspond to small values of mt̃1 , both (h2) and (h3) provide good approximations. With
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Figure 1: (a) mt̃1 , mt̃2 and θt obtained from the diagonalization of the top squark mass

matrix as a function of the soft SUSY breaking parameter Mũ3,R. (b) ζ
(2)
αs

as a function
of Mũ3,R using the parameters of Eq. (11). The exact result is shown as solid black line.

increasing Mũ3,R (h3) becomes worse whereas ζ
(3)
app and ζ

(3)c
app for (h2) are still practically

on top of each other. For values 300 GeV ∼< Mũ3,R ∼< 800 GeV the top squark masses are
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Figure 2: ζ
(3)
αs

as a function of Mũ3,R using the parameters of Eq. (11). Thick lines include
all available terms whereas for the thin lines the highest terms are cancelled.

relatively close to each other which is the region of validity for (h1). For higher values
one observes again a strong hierarchy between mt̃1 and mt̃2 and thus (h2) takes over. It
is interesting to note that for each value of Mũ3,R there is at least one hierarchy with a
small value of δapp and thus an expected good approximation to the unknown exact result.
Furthermore, the approximations show a significant overlap so that the whole range of
Mũ3,R is covered.

Let us in the following briefly discuss the numerical impact of the three-loop corrections
computed in this paper. In Figs. 3 we show the strong coupling at the GUT scale,
α

(SQCD)
s (MGUT) with MGUT = 2 · 1016 GeV as a function of the decoupling scale µdec

which is obtained by the following procedure. The starting point is α
(5),MS
s (MZ). In a

first step we run in the SM from µ = MZ to µ = µdec where the decoupling of the top
quark and the SUSY particles is performed simultaneously and α

(5)
s (µdec) is transformed

to α
(SQCD)
s (µdec). The use of the SQCD β function finally leads to α

(SQCD)
s (MGUT). The

thick lines in Fig. 3 correspond to this procedure, i.e., we use the following chain in order
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log10(µdec (GeV))

α s(
M

G
U

T
)

4 loops
3 loops

2 loops
1 loop

0.385

0.386

0.387

0.388

0.389

0.39

x 10
-1

2 3 4

Figure 3: α
(SQCD)
s (MGUT) as a function of µdec. Thick and thin lines correspond to the one-

and two-step scenario, respectively. Thin lines are only shown for three- and four-loop
running.

to arrive at α
(SQCD)
s (MGUT)

α(5),MS
s (MZ)

run.→ α(5),MS
s (µdec)

dec.→ α(SQCD)
s (µdec)

run.→ α(SQCD)
s (MGUT) . (13)

For a degenerate supersymmetric mass spectrum the decoupling constant can be found
in Eq. (9).

Alternatively, in order to obtain the thin lines we integrate out the top quark in a separate

step with µ = Mt (Mt is the on-shell top quark mass) and transform afterwards α
(6),MS
s

to α
(SQCD)
s (MGUT) in analogy to Eq. (13). Thus we have

α(5),MS
s (MZ)

run.→ α(5),MS
s (Mt)

dec.→ α(6),MS
s (Mt)

run.→ α(6),MS
s (µdec)

dec.→ α(SQCD)
s (µdec)

run.→ α(SQCD)
s (MGUT) . (14)

The decoupling constant needed for the transition from α
(6),MS
s to α

(SQCD)
s in the limit of

degenerate SUSY masses is given in Eq. (10).
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In order to obtain the numerical results in Fig. 3 we have used the measured result for
α

(5)
s (MZ) which reads [21]

α(5)
s (MZ) = 0.1184 ± 0.0007 , (15)

Furthermore we have adopted a mSUGRA scenario with

m0 = 700 GeV , m1/2 = 600 GeV , tan β = 10 , A0 = 0 , µSUSY > 0 . (16)

as input for softsusy [22] in order to compute the supersymmetric mass spectrum. Note
that there is only a weak dependence of the general features of our numerical result on
the particular spectrum. However, it is convenient to make use of a spectrum generator in
order to obtain directly the DR values for the masses at the scale µdec. To our knowledge
the running of the DR parameters is only implemented to two-loop accuracy which poses
a slight inconsistency in our analysis. However, this is only an minor effect and does not
influence the main conclusions. In order to get an impression about the numerical values
for the physical masses we show the DR results for a typical scale µdec = 1000 GeV

mt = 146.7 GeV , mt̃1 = 1022 GeV , mt̃2 = 1271 GeV ,

mq̃ = 1348 GeV , mg̃ = 1326 GeV , θt = 1.26 . (17)

At three-loop order the best appoximation is provided by the hierarchy (h1). In fact the
quantity δapp in Eq. (12) takes the value δapp = 0.002.

For consistency N -loop running has to be accompanied with N − 1-loop decoupling rela-
tions. Thus, we can show curves for N = 1, 2, 3 and 4 which corresponds to the (thick)
dotted, dash-dotted, dashed and solid line, respectively. Within QCD the beta function
is known to four-loop accuracy [23, 24], however, the supersymmetric analogue only to
three loops [16, 25, 26].1 As a consequence for the four-loop curve in Fig. 3 we only use
three-loop running above µdec.

µdec is an unphysical scale not predicted by theory. Thus, on general grounds, the depen-
dence on µdec has to diminish if higher order corrections are included. This is clearly visible
in Fig. 3 where the dotted, dash-dotted, dashed and solid lines correspond to one-, two-,
three- and four-loop running, respectively. Around the central scale of approximately
1000 GeV all loop orders lead to predictions which are quite close. However, a variation
of µdec leads to a relatively strong variation of the two-loop result which gets stabilized at
three-loops and which furthermore gets to a large extend µdec independent at four loops.
Actually, varying µdec between 100 GeV and 10 000 GeV changes α

(SQCD)
s (MGUT) by only

0.07%.

It is interesting to compare the variation of the individual curves with respect to µdec

with the experimental uncertainty induced from α
(5),MS
s (MZ) which is indicated by

the band around the four-loop curve. The two-loop prediction is inside the band for
300 GeV ∼< µdec ∼< 1800 GeV whereas the three-loop curve leaves the band only for

1The four-loop SQCD β function is not yet complete [27].
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µdec ∼> 13 000 GeV. It is also interesting to mention that all higher order corrections are
very small for µdec ≈ 650 GeV.

Note that often µdec = MZ is chosen for the matching between the SM and the MSSM.
This choice leads to strong deviation at two-loops. At three-loop order the results are
already quite stable which is further supported at four loops.

Let us finally remark on the step-by-step decoupling of the top quark and the supersym-
metric particles. The corresponding three- and four-loop results are shown as thin lines
in Fig. 3. One observes even flatter curves than for the one-step scenario, however, the
difference is numerically small and well within the uncertainty band. In this context we
want to stress the wide range of µdec which is considered in Fig. 3.

3 Low-energy theorem and Higgs-gluon coupling in

supersymmetric QCD

In Ref. [4] the following formula valid for all orders in perturbation theory has been derived
in the framework of QCD2

C1 = DQCD
h ln ζαs

(18)

where

DQCD
h = −mh

∂

∂mh
(19)

describes the derivative with respect to the heavy mass mh. Thus the N -loop corrections to
ζαs

immediately leads to N -loop corrections to C1. Since in Eq. (18) a logarithmic deriva-
tive is taken and furthermore the dependence of ζαs

on mh only occurs via ln(µ2/m2
h) even

the (N +1) corrections of C1 can be computed once the renormalization scale dependence
of ζαs

at (N + 1)-loop order is re-constructed with the help of the renormalization group
equations.

The LET of Eq. (18) can easily be extended to the case where more than one heavy quark
is present. This version has been used in Ref. [7] in order to derive C1 for theories with
several heavy quarks which couple in a Yukawa-like way to the Higgs boson.

The extension of Eq. (18) to NLO corrections in the framework of the MSSM has been
considered in Ref. [11]. Because of the different setup of our calculation, which is mainly
due to the ε scalars, we cannot take over the derivation of Ref. [11]. However, following the
same line of reasoning as in Ref. [4] we obtain a version of the LET which is appropriate
for the decoupling constants computed in the previous chapter. For this purpose it is
convenient to consider the bare decoupling constant (see Eq. (4)) expressed in terms of

2Note the different normalization of the operator O1 in Ref. [4].
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bare parameters. This leads to the LET in the form

C0
1 = D0

h ln ζ0
αs

. (20)

D0
h contains derivatives with respect to bare parameters (indicated by the superscript

“0”) and can be written as

D0
h = D0

t̃ + D0
q̃ + V 0

t

∂

∂m0
t

+
(

Λ0
ε

)2 ∂

∂ (m0
ε)

2 . (21)

Λε is the evanescent Higgs boson-ε scalar coupling which is best defined through the
corresponding part of the Lagrange density [14]

Lε = −1

2

(

M0
ε

)2
ε0,a

σ ε0,a
σ − φ0

v0

(

Λ0
ε

)2
ε0,a

σ ε0,a
σ . (22)

For convenience we have also displayed the mass term for the ε scalar.

The derivative operators in Eq. (21) are defined through3

Dt̃ = V t̃
11

∂

∂m2
t̃1

+ V t̃
22

∂

∂m2
t̃2

+
V t̃

12 + V t̃
21

2(m2
t̃1
− m2

t̃2
)

∂

∂θt
,

Dq̃ = V q̃
11

∂

∂m2
q̃1

+ V q̃
22

∂

∂m2
q̃2

+
V q̃

12 + V q̃
21

2(m2
q̃1
− m2

q̃2
)

∂

∂θq
,

where the prefactors in the top quark sector are obtained from the relations

Vt = −mt
cos α

sin β
,

V t̃
LL

= −2m2
t

cos α

sin β
+ M2

Z cos2 θW

(

1 − 1

3
tan2 θW

)

sin(α + β) ,

V t̃
RR

= −2m2
t

cos α

sin β
+

4

3
M2

Z sin2 θW sin(α + β) ,

V t̃
LR

= V t̃
RL

=
mt

sin β
(−µSUSY sin α − At cos α) ,

(

V t̃
11 V t̃

12

V t̃
21 V t̃

22

)

= R(θt)
†

(

V t̃
LL

V t̃
LR

V t̃
RL

V t̃
RR

)

R(θt) ,

with

R(θt) =

(

cos θt − sin θt

sin θt cos θt

)

.

All light quark masses are set to zero. Their averaged contribution is denoted by q and
thus we have

V q̃
LL

=
1

nl

(

nl + nt

2
V d̃

LL
+

nl − nt

2
V ũ

LL

)

,

3In order to keep the notation simple we omit the superscript “0” in these expressions.
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V q̃
RR

=
1

nl

(

nl + nt

2
V d̃

RR
+

nl − nt

2
V ũ

RR

)

,

V q̃
LR

= V q̃
RL

= 0 ,

V ũ
LL

= M2
Z cos2 θW

(

1 − 1

3
tan2 θW

)

sin(α + β) ,

V ũ
RR

=
4

3
M2

Z sin2 θW sin(α + β) ,

V d̃
LL

= M2
Z cos2 θW

(

−1 − 1

3
tan2 θW

)

sin(α + β) ,

V d̃
RR

= −2

3
M2

Z sin2 θW sin(α + β) ,

where “u” and “d” denote generic up- and down-type squarks, respectively, and the labels
nl = 5 and nt = 1 are kept arbitrary for convenience. V q̃

ij with i, j = 1, 2 are obtained in

analogy to V t̃
ij.

After applying D0
h to ζ0

αs
of Section 2 we obtain the coefficient function C1 expressed

in terms of bare parameters. Thus, in a next step one has to perform the parameter
renormalization.4 Furthermore, it is necessary to take into account the operator renor-
malization constant, often denoted by Z11 [14], to obtain a finite result for the coefficient
function which can then be compared to [14, 15].

An alternative version of the LET (compared to Eq. (20)) is obtained by exploiting the
fact that Zαs

and Zα′

s
are independent of the parameters occurring in D0

h. Thus we can
write

C1 = D0
h ln ζαs

, (23)

where it is still understood that C1 and ζαs
are expressed in terms of unrenormalized

parameters. After computing C1 with the help of Eq. (23) the parameters have to be
renormalized as before, however, the operator renormalization constant is not necessary
anymore.

A third version of the LET reads

C1 = Dh ln ζαs
. (24)

In this equation all quantities are expressed in terms of DR renormalized quantities and
αSQCD

s , except the evanescent couplings (Mε and Λε) which are renormalized to zero. It
is very convenient to use Eq. (24) since it directly leads to a finite result for C1. It is
worth noting that the computation of C1 from Eq. (24) avoids the introduction of the
evanescent coupling Λε. This can be understood by considering the renormalized version
of Dh in Eq. (21) where the last term vanishes due to the condition Λ2

ε = (Λ0
ε)

2−δΛ2
ε = 0.

4The details are described in Ref. [14, 15].
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Due to the derivatives in Eq. (21) the expansion depth available for ζαs
is reduced. Nev-

ertheless we can compare the results to the findings of Ref. [14, 15] where C1 has been
computed from vertex diagrams. For all three hierarchies we found complete agreement
for the first three terms in the mass difference, i.e. up to order (m2

i −m2
j )

2. Furthermore,
for (h1) [(h3)] terms up to 1/m6

SUSY [1/m4
SUSY] could be compared successfully and for

(h2) all terms including O(1/m4
t̃1
) and O(1/m4

SUSY) agree. Thus the calculation of the
decoupling constant together with the application of the LET provides an independent
confirmation of the Higgs-gluon coupling at three-loop order.

The LET in Eq. (20) differs from the one presented in [11] by the term involving Λ0
ε (see

Eq. (21)). Up to NLO it is possible to avoid such a contribution [11, 13], at three-loop
order, however, a renormalization of the Higgs boson-ε scalar coupling is mandatory (see
Ref. [14,15] for a detailed discussion) in case derivatives with respect to bare parameters
are taken.

4 Conclusions

In this paper we have computed the three-loop SQCD corrections to the decoupling con-
stant relating αs defined in full MSSM to the one defined in QCD. The occurring three-loop
integrals have been evaluated by applying expansions in various hierarchies and thus re-
sults are obtained which are valid in a large part of the parameter space. The decoupling
constant constitutes an important ingredient in the relation of αs(MZ) and αs(MGUT).
We have shown that the inclusion three-loop terms to the decoupling constant in combi-
nation with four-loop corrections to the β function leads to results for αs(MGUT) which
are practically independent of the decoupling scale µdec, where the effective theory is
matched to the full one, even when considering a variation of µdec by more than two
orders of magnitude.

A further interesting application of the decoupling constant is its relation to the effec-
tive Higgs-gluon coupling C1 which is obtained by simple derivatives with respect to the
involved parameters. This calculation constitutes an independent check of the results ob-
taines in Ref. [14,15] by an explicit calculation. In this paper we provide the corresponding
LET which contains all features also present at higher orders in perturbation theory. It is
valid to all orders in perturbation theory. We have checked that the renormalized version
(cf. Eq. (24)) works including three-loop SQCD corrections.
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Appendix: Exact one- and two-loop result for ζαs

In this Section we present the results for ζαs
up to two loops taking into account the exact

dependence on the occurring masses. All parameters are renormalized in the DR scheme
except Mε which is renormalized on-shell.

In contrast to Eq. (8) the coefficients of α
(5)
s defined through

ζαs
(µ) = 1 +

α
(5)
s

π
ζ̃ (1)
αs

+

(

α
(5)
s

π

)2

ζ̃ (2)
αs

+ . . . , (25)

is presented. The results read

ζ̃ (1)
αs

= −1

4

{

CA

[

1

3
+

2

3
lg̃

]

+ TF

[

Nt

(

1

3
lt̃1 +

1

3
lt̃2 +

4

3
lt

)

+
2Nq

3
lq̃

]

+ ǫ

[

TF

(

Nt

{

1

6
l2t̃1 +

1

6
l2t̃2 +

2

3
l2t + ζ2

}

+ Nq

{

+
1

3
l2q̃ +

1

3
ζ2

}

)

+ CA

(

1

3
Lǫ +

1

3
l2g̃ +

1

3
ζ2

)]}

,

ζ̃ (2)
αs

=
1

16

{

C2
A

[

− 7

36
− 2

3
lg̃

]

+ CATF

[

Nq

(

5

9
+

2m2
g̃

3Dq̃g̃

lg̃ −
2m2

g̃

3Dq̃g̃

lq̃

)

+ Nt

(

1 +
4N11 t̃1

3Dt̃1

+
4m2

g̃m
2
t̃1
m2

tN5 t̃1

D3
t̃1

Φ(mt, mt̃1 , mg̃)

− 2N3 t̃1

3D2
t̃1

lt̃1 +

[

− 8

3
+

16m2
g̃m

2
t̃1
N15 t̃1

D2
t̃1

− 2N21 t̃1

3Dt̃1

]

lt +

[

2m2
g̃N19 t̃1

3Dt̃1

−
8m2

g̃m
2
t̃1
N6 t̃1

D2
t̃1

]

lg̃

+ cθt
sθt

[

− 4mg̃mtN1 t̃N2 t̃

3Dt̃1Dt̃2

−
8mg̃m

2
t̃1
mtN1 t̃1

D3
t̃1

Φ(mt, mt̃1 , mg̃) +
8m2

t̃1
mtN7 t̃1

3D2
t̃1
mg̃

lt̃1

+

(

8mtN8 t̃1

3Dt̃1mg̃
−

16mg̃m
2
t̃1
mtN6 t̃1

D2
t̃1

)

lt −
[

8m3
g̃mt

3Dt̃1

+
16mg̃m

2
t̃1
mt

Dt̃1

+
32m3

g̃m
2
t̃1
m3

t

D2
t̃1

]

lg̃

]

)]

+ CFTF

[

Nq

(

13

6
− 2M2

ǫ

3m2
q̃

+
4m2

g̃

3m2
q̃

+
4m4

g̃lg̃

3m2
q̃Dq̃g̃

− 2lq̃ −
4m2

g̃lq̃

3Dq̃g̃

)

+ Nt

(

2

3
− 2M2

ǫ

3m2
t̃1

+
4m2

g̃

3m2
t̃1

+
4m2

t

3m2
t̃1

− 4m2
g̃N13 t̃1

3Dt̃1

−
8m4

g̃m
2
t̃1
m2

tN13 t̃1

D3
t̃1

Φ(mt, mt̃1 , mg̃)
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+

[

4m2
g̃m

2
t̃1

3Dt̃1

+
16m4

g̃m
2
t̃1
m2

t

D2
t̃1

− 5

3

]

lt̃1

− 5

3
lt̃2 +

[

2 +
4m2

g̃

3m2
t̃1

+
4m2

t

3m2
t̃1

+
8m4

g̃N12 t̃1

D2
t̃1

− 4m2
g̃N9 t̃1

3Dt̃1m
2
t̃1

]

lt

+

[

4m4
g̃N20 t̃1

3Dt̃1m
2
t̃1

− 8m4
g̃N11 t̃1

D2
t̃1

]

lg̃

+ sθt
cθt

[

16m3
g̃mt

3Dt̃1

− 8mg̃mt

3m2
t̃1

+
16m3

g̃m
2
t̃1
mtN14 t̃1

D3
t̃1

Φ(mt, mt̃1 , mg̃)

−
16mg̃m

2
t̃1
N10 t̃1

3D2
t̃1
mt

lt̃1 +

(

8mg̃mtN2 t̃1

3Dt̃1m
2
t̃1

− 8mg̃mt

3m2
t̃1

− 16m3
g̃mtN11 t̃1

D2
t̃1

)

lt

+

(

16m5
g̃mtN16 t̃1

D2
t̃1

+
8m3

g̃N1 t̃

3mtN18 t̃1N18 t̃2

− 8m3
g̃N4 t̃1

3Dt̃1m
2
t̃1
N18 t̃1

)

lg̃

]

+
(

s2
θt
− s4

θt

)

[

− 2N 2
1 t̃

3m2
t̃1
m2

t̃2

+

(

4

3
−

4m2
t̃1

3m2
t̃2

)

lt̃1

]

)]}

+

{

mt̃2 ↔ mt̃1

θt → −θt

}

, (26)

where CF = 4/3, CA = 3, TF = 1/2, Nt = 1, Nq = 5, ζn is the Riemann zeta function,
lx = ln(µ2/m2

x), Lǫ = ln(µ2/M2
ǫ ) and Mǫ is the ǫ scalar mass. Furthermore we have

Dt̃i =m4
g̃ +

(

m2
t̃i
− m2

t

)2

− 2m2
g̃

(

m2
t̃i

+ m2
t

)

,

Dq̃g̃ =m2
g̃ − m2

q̃ ,

N1 t̃ =m2
t̃1
− m2

t̃2
,

N2 t̃ =m4
g̃ + m2

t

(

m2
t̃2
− 3m2

t

)

− m2
g̃

(

m2
t̃1

+ m2
t̃2
− 2m2

t

)

+ m2
t̃1

(

m2
t̃2

+ m2
t

)

,

N1 t̃i =m6
g̃ −

(

m2
t̃i
− m2

t

)2 (

m2
t̃i

+ m2
t

)

− m4
g̃

(

3m2
t̃i

+ m2
t

)

+ m2
g̃

(

3m4
t̃i

+ m4
t

)

,

N2 t̃i =m4
g̃ − 2m4

t̃i
+ 2m2

t̃i
m2

t + m2
g̃

(

m2
t̃i
− m2

t

)

,

N3 t̃i =m8
g̃ − m6

g̃

(

3m2
t̃i

+ 4m2
t

)

+
(

−3m2
t̃i

+ m2
t

)(

−m2
t̃i
mt + m3

t

)2

+ m4
g̃

(

3m4
t̃i

+ 13m2
t̃i
m2

t + 6m4
t

)

− m2
g̃

(

m6
t̃i

+ 6m4
t̃i
m2

t + 5m2
t̃i
m4

t + 4m6
t

)

,

N4 t̃i =
(

m2
g̃ − 3m2

t̃i

)

mt

(

m2
g̃ + 3m2

t̃i
− m2

t

)

,

N5 t̃i =m4
g̃ − 2m2

g̃m
2
t̃i

+ m4
t̃i
− m4

t ,

N6 t̃i =m4
g̃ + m4

t̃i
− m2

t̃i
m2

t − m2
g̃

(

2m2
t̃i

+ 3m2
t

)

,

N7 t̃i =5m6
g̃ + 2

(

m2
t̃i
− m2

t

)3

− 2m4
g̃

(

4m2
t̃i

+ 3m2
t

)

+ m2
g̃

(

m4
t̃i
− 4m2

t̃i
m2

t + 3m4
t

)

,

N8 t̃i =m4
g̃ + 7m2

g̃m
2
t̃i
− 2m4

t̃i
+ 2m2

t̃i
m2

t ,

N9 t̃i =m4
g̃ + m4

t̃i
+ m2

g̃

(

4m2
t̃i
− m2

t

)

,
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N10 t̃i =m6
g̃ −

(

m2
t̃i
− m2

t

)3

+ m4
g̃

(

−3m2
t̃i

+ 2m2
t

)

+ m2
g̃

(

3m4
t̃i
− 5m2

t̃i
m2

t + 2m4
t

)

,

N11 t̃i =m4
g̃ + m4

t̃i
− m2

t̃i
m2

t − m2
g̃

(

2m2
t̃i

+ m2
t

)

,

N12 t̃i =m4
g̃ + m4

t̃i
− 3m2

t̃i
m2

t − m2
g̃

(

2m2
t̃i

+ m2
t

)

,

N13 t̃i =m2
g̃ − m2

t̃i
+ m2

t ,

N14 t̃i =m4
g̃ − 2m2

g̃m
2
t̃i

+
(

m2
t̃i
− m2

t

)2

,

N15 t̃i =m4
g̃ + m4

t̃i
− 2m2

t̃i
m2

t − 2m2
g̃

(

m2
t̃i

+ m2
t

)

,

N16 t̃i =m2
g̃ − m2

t̃i
− m2

t ,

N18 t̃i =m2
g̃ − m2

t̃i
,

N19 t̃i =m2
g̃ + 11m2

t̃i
+ m2

t ,

N20 t̃i =m2
g̃ + 4m2

t̃i
− m2

t ,

N21 t̃i =m4
g̃ + m2

t̃i

(

m2
t̃i

+ m2
t

)

+ m2
g̃

(

22m2
t̃i

+ m2
t

)

.

where following abbreviations have been introduced

λ(x, y) =
√

(1 − x − y)2 − 4xy ,

Cl2(x) =Im
[

Li2(e
ix)
]

,

Φ1(x, y) =λ−1(x, y)
{

2 ln
[

1
2(1 + x − y − λ(x, y))

]

ln
[

1
2 (1 − x + y − λ(x, y))

]

+ 1
3π2

− ln x ln y − 2Li2[
1
2(1 + x − y − λ(x, y))] − 2Li2[

1
2(1 − x + y − λ(x, y))]

}

,

Φ2(x, y) =
2

√

−λ2(x, y)

{

Cl2
(

2 arccos
−1 + x + y

2
√

xy

)

+ Cl2
(

2 arccos
1 + x − y

2
√

x

)

+ Cl2
(

2 arccos
1 − x + y

2
√

y

)

}

,

Φ(m1,m2,m3) =































m2
3λ

2
(

m2
1

m2
3

,
m2

2

m2
3

)

Φ2

(

m2
1

m2
3

,
m2

2

m2
3

)

Re
[

λ2
(

m2
1

m2
3

,
m2

2

m2
3

)]

< 0

m2
3λ

2
(

m2
1

m2
3

,
m2

2

m2
3

)

Φ1

(

m2
1

m2
3

,
m2

2

m2
3

)

m1 + m2 ≤ m3

m2
1λ

2
(

m2
2

m2
1

,
m2

3

m2
1

)

Φ1

(

m2
2

m2
1

,
m2

3

m2
1

)

m2 + m3 ≤ m1

m2
2λ

2
(

m2
1

m2
2

,
m2

3

m2
2

)

Φ1

(

m2
1

m2
2

,
m2

3

m2
2

)

m1 + m3 ≤ m2 .

The one-loop result agrees with Ref. [8]. The two-loop result has also been considered in Ref. [10],
however, no compact result has been presented. Furthermore, the decoupling has only been
considered within DRED, i.e., the transition from DREG to DRED has been performed in a
separate step.
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[6] K. G. Chetyrkin, J. H. Kühn and C. Sturm, Nucl. Phys. B 744 (2006) 121, arXiv:hep-
ph/0512060.

[7] A. G. Grozin, M. Hoeschele, J. Hoff and M. Steinhauser, JHEP 1109 (2011) 066
[arXiv:1107.5970 [hep-ph]].

[8] R. Harlander, L. Mihaila and M. Steinhauser, Phys. Rev. D 72 (2005) 095009 [hep-
ph/0509048].

[9] R. V. Harlander, L. Mihaila and M. Steinhauser, Phys. Rev. D 76 (2007) 055002
[arXiv:0706.2953 [hep-ph]].

[10] A. Bauer, L. Mihaila and J. Salomon, JHEP 0902 (2009) 037 [arXiv:0810.5101 [hep-
ph]].

[11] G. Degrassi and P. Slavich, Nucl. Phys. B 805 (2008) 267 [arXiv:0806.1495 [hep-ph]].

[12] L. Mihaila and C. Reisser, JHEP 1008 (2010) 021 [arXiv:1007.0693 [hep-ph]].

[13] R. V. Harlander and M. Steinhauser, JHEP 0409 (2004) 066 [arXiv:hep-ph/0409010].

[14] A. Pak, M. Steinhauser and N. Zerf, Eur. Phys. J. C 71 (2011) 1602 [arXiv:1012.0639
[hep-ph]].

[15] A. Pak, M. Steinhauser and N. Zerf, in preparation

[16] R. V. Harlander, L. Mihaila and M. Steinhauser, Eur. Phys. J. C 63 (2009) 383
[arXiv:0905.4807 [hep-ph]].

[17] A. V. Bednyakov, Int. J. Mod. Phys. A 22 (2007) 5245 [arXiv:0707.0650 [hep-ph]].

[18] T. Hermann, L. Mihaila and M. Steinhauser, Phys. Lett. B 703 (2011) 51
[arXiv:1106.1060 [hep-ph]].

18



[19] http://www-ttp.particle.uni-karlsruhe.de/Progdata/ttp12/ttp12-22/

[20] S. P. Martin, In Kane, G.L. (ed.): Perspectives on supersymmetry II [hep-
ph/9709356].

[21] K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010).

[22] B. C. Allanach, Comput. Phys. Commun. 143 (2002) 305 [arXiv:hep-ph/0104145].

[23] J. A. M. Vermaseren, S. A. Larin and T. van Ritbergen, Phys. Lett. B 405 (1997)
327, arXiv:hep-ph/9703284.

[24] M. Czakon, Nucl. Phys. B 710 (2005) 485, arXiv:hep-ph/0411261.

[25] I. Jack, D. R. T. Jones and C. G. North, Phys. Lett. B 386 (1996) 138 [hep-
ph/9606323].

[26] A. G. M. Pickering, J. A. Gracey and D. R. T. Jones, Phys. Lett. B 510 (2001) 347
[Phys. Lett. B 512 (2001) 230] [Erratum-ibid. B 535 (2002) 377] [hep-ph/0104247].

[27] I. Jack, D. R. T. Jones and C. G. North, Nucl. Phys. B 486 (1997) 479 [hep-
ph/9609325].

19


