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Abstract

When performing asymptotic expansions using the strategy of expansion by
regions, it is a non-trivial task to find the relevant regions. The recently pub-
lished Mathematica code asy.m automates this task, but it has not been able
to detect potential regions in threshold expansions or Glauber regions. In this
work we present an algorithm and its implementation in the update asy2.m

which also reveals potential and Glauber regions automatically.

1 Introduction

If a given Feynman integral depends on kinematic invariants and masses which es-
sentially differ in scale, a natural idea is to expand it in ratios of small and large
parameters. As a result, the integral is written as a series of simpler quantities than
the original integral itself and it can be substituted by a sufficiently large number of
terms of such an expansion. For limits typical of Euclidean space (for example, the

ae-mail: jantzen@physik.rwth-aachen.de
be-mail: asmirnov80@gmail.com
ce-mail: smirnov@theory.sinp.msu.ru

1



off-shell large-momentum limit or the large-mass limit), one can write down the cor-
responding asymptotic expansion in terms of a sum over certain subgraphs of a given
graph [1–6]. This prescription of expansion by subgraphs has been mathematically
proven (see [4] and Appendix B.2 of [6]). Moreover, there is an automated tool [7, 8]
where such an expansion by subgraphs is implemented.

For limits typical of Minkowski space (i.e. which cannot be formulated in Euclidean
space) the universal strategy of expansion by regions [9–11,6] is available. It consists
of the following prescriptions:

• Divide the space of the loop momenta into various regions and, in every region,
expand the integrand in a Taylor series with respect to the parameters that are
considered small there.

• Integrate the integrand, expanded in the appropriate way in every region, over
the whole integration domain of the loop momenta.

• Set to zero any scaleless integral.

As shown in [11], this prescription can also be applied to parametric representations
of Feynman integrals, i.e. alpha parameters (or generalized Feynman parameters)
integrated from 0 to ∞, eventually restricted by a delta function. Then the regions
are specified by scaling relations between the parameters.

There is no mathematical proof that this prescription is correct in all situations.
But also no examples are known where a proper application of the expansion by re-
gions leads to wrong results. An indirect proof exists for limits typical of Euclidean
space because here the strategy of regions is equivalent to the mathematically proven
expansion by subgraphs. A systematic study of the expansion by regions was pre-
sented recently in [12]. There it was shown explicitly and illustrated using various
one-loop examples that one can start from a decomposition of a given integral into
non-intersecting domains and arrive at an expansion by regions in the above sense.
This requires certain conditions on the choice and completeness of the considered
regions which were derived in [12]. As pointed out there, the appearance of addi-
tional overlap contributions can be avoided by adequate choices of the regions and
regularization parameters.

While these findings provide some hints on the proper choice of the regions, it
remains a non-trivial task to actually reveal the typical regions for a given limit.
Usually, one starts from considering one-loop examples, checks the results against
known analytical results, then proceeds in two loops etc. One can also use the second
version [13] of the code FIESTA [14] to obtain numerically several first terms of a given
asymptotic expansion.

Recently an algorithm for an automatic search of regions was suggested and im-
plemented on a computer as the open source Mathematica code asy.m [15]. The
algorithm uses a geometric approach based on finding the convex hull of a set of
points determined from a parametric representation of the Feynman integral. In this
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way all possible sets of scalings for the (Feynman) parameters are found which lead to
non-vanishing (because non-scaleless) integrals. These regions may then be used to
expand the parametric integral, or they can be translated into regions for expanding
the integral in loop-momentum space.

This code works successfully for a large variety of limits, at least in cases where the
function F in the corresponding parametric representation which depends on kine-
matic invariants and masses is only composed of terms with the same sign. Moreover,
it was shown in [15] that in this case there are no regions except for the ones pro-
duced by the code (all others result in scaleless integrals). In particular, the code
asy.m works for Sudakov-type limits which are typical of Minkowski space. As it was
pointed out in [15] the code does not reveal potential regions in threshold expansions,
and similarly it fails to detect the so-called Glauber regions.

Our first goal in the present paper is to provide an algorithm and the correspond-
ing update asy2.m which automatically reveals potential regions. This is done in
Section 2. In Section 3 we consider the problem of revealing Glauber regions. Here
the situation is more complicated than for the potential regions, but the updated
code asy2.m is now also able to reveal Glauber regions automatically. In both Sec-
tions 2 and 3, we first formulate simple changes of variables and decompositions of a
given Feynman integral, using instructive one-loop examples, which lead to integrals
where asy2.m is able to detect the relevant regions corresponding to scalings of the
parameters. Then, for both cases, we explain how to use the new features of asy2.m
to perform these algorithmic steps automatically.

In the case of Section 3 with Glauber regions, the structure of the regions differs
depending on whether the expansion is performed in loop-momentum space or at the
level of the parametric integral. We show in Section 4 how to disentangle and match
the various regions arising in this problem using generic propagator powers, and how
asy2.m can be used to automate such an analysis.

A summary of the new features and the syntax of asy2.m (together with a down-
load link) is provided in Section 5. In Section 6 we conclude by discussing the math-
ematical problem of proving the expansion by regions for a simple example which is
not related to Feynman integrals, but where asy2.m works successfully.

2 Revealing potential contributions

Let us consider the one-loop propagator diagram with two massive lines in the thresh-
old limit, i.e. when y = m2 − q2/4 → 0 with q being the external momentum:

F (q2, m2) =

∫

ddk

(k2 −m2)
(

(k − q)2 −m2
) , (1)

where d = 4 − 2ε, and the usual +i0 is implied in all the propagators. Within the
strategy of expansion by regions, the hard and the potential regions give contributions
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to the expansion [9, 6]. The previous version of the code asy.m [15] reported only
about the hard region. The reason for this can be seen in the corresponding parametric
representation,

F (q2, y) = iπd/2 Γ(ε)

∫∫

(x1 + x2)
2ε−2 δ (x1 + x2 − 1) dx1dx2

[

q2

4
(x1 − x2)2 + y(x1 + x2)2 − i0

]ε , (2)

where the parameters xi are integrated from 0 to ∞ (restricted by the delta func-
tion). As it was pointed out in [15], it is the region where x1 ≈ x2 (more precisely
x1 − x2 ∼ y1/2) which causes problems. In other words, the polynomial in the square
brackets in (2) (considered at positive q2 and y) has terms of different sign, such that
cancellations occur because of the presence of the negative term −q2x1x2/2.

To reveal the missing potential contribution, let us perform a simple trick. We
decompose the integration domain into two subdomains, x1 ≤ x2 and x2 ≤ x1.
The two resulting integrals are equal to each other, but such an equality will not
generally take place for any integral. In the first domain we turn to new variables by
x1 = x′1/2, x2 = x′2 + x′1/2, remove the primes at xi and obtain the integral (again
from 0 to ∞ with the usual restrictions via the delta function)

iπd/2 Γ(ε)

2

∫∫

(x1 + x2)
2ε−2 δ (x1 + x2 − 1) dx1dx2

[

q2

4
x2

2 + y(x1 + x2)2 − i0
]ε . (3)

The goal of this trick was to make the line x1 = x2 (in the old variables) the border of
an integration domain which turned out to be (in the new variables) x2 = 0. Now we
can run the code asy2.m. Since this is a parametrical integral rather than a Feynman
integral we use the newly introduced command1 WilsonExpand[] for integrals where
all parameters are integrated from 0 to ∞:

WilsonExpand[q^2/4*x2^2 + y*(x1 + x2)^2, x1 + x2,

{x1, x2}, {q -> 1, y -> x}, Delta -> True]

The first two arguments of WilsonExpand[] are the polynomials F and U from the
parametric integral (3) as defined in [15]. The third argument is the list of integration
parameters, and the fourth argument specifies the scaling of the kinematic quantities
with respect to the small parameter which is labelled by the global symbol x. The
option Delta -> True tells WilsonExpand[] that, under the integration, the sum
over an arbitrary non-empty subset of the integration parameters is restricted to 1
by a delta function.

Note that WilsonExpand[] can only take into account such a delta function if
the specific choice of the sum over parameters in the argument of the delta function

1The name of the command refers to its application to parametric integrals contributing to Wilson
loops.
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is irrelevant. This is the case for the generalized Feynman-parameter integrals (2)
and (3), where we could e.g. replace δ(x1 +x2 − 1) by δ(x1 − 1) without changing the
value of the integral. But if a specific form of the delta function is assumed, e.g. by
replacing x1 + x2 → 1 under the integral, then the option Delta of WilsonExpand[]
does not apply (see Section 5 for details). Alternatively, WilsonExpand[] can be used
without the option Delta after eliminating one of the integrations, e.g. via δ(x1 − 1).

The output of WilsonExpand[] is a list of regions specified by the scaling of the
parameters xi. Here the result {{0, 0}, {0, 1/2}} reveals not only the hard region
with the scaling x1, x2 ∼ y0 but also the region x1 ∼ y0, x2 ∼ y1/2 which we qualify
as the potential region.

The contribution of the potential region can then be evaluated in terms of gamma
functions at general ε. Taking into account that we have two identical integrals after
our decomposition, we arrive at the following result for the potential contribution:

iπd/2 Γ(ε− 1/2)

√

πy

q2
y−ε (4)

in agreement with [6].
In fact, such a trick of making manifest squares of some linear combination of

the integration parameters was already used in the code FIESTA [14] in order to
evaluate numerically Feynman integrals at a threshold. Using the implementation of
this procedure in FIESTA it turned out to be possible to automate the above trick
for a general Feynman integral. In the present version asy2.m, the user may call the
command AlphaRepExpand[] with the additional option PreResolve enabled which
automatically looks for the change of variables described above:

AlphaRepExpand[{k}, {k^2 - m^2, (k - q)^2 - m^2},

{q^2 -> qq, m^2 -> qq/4 + y}, {qq -> 1, y -> x},

PreResolve -> True]

As in the previous version of asy.m, the arguments of AlphaRepExpand[] are the list
of loop momenta, the list of denominators of the loop integral, a list of replacements for
the kinematic quantities, and the list of scalings with respect to the small parameter x.
The output is a list of entries which indicate for each region the changes of variables,
the Jacobian of the integral transformation, and the scalings of the new variables:

{{{x[1] -> y[1] + y[2]/2, x[2] -> y[2]/2}, 2, {0, -1/2}},

{{x[1] -> y[1] + y[2]/2, x[2] -> y[2]/2}, 2, {0, 0}},

{{x[1] -> y[1]/2, x[2] -> y[1]/2 + y[2]}, 2, {0, 0}},

{{x[1] -> y[1]/2, x[2] -> y[1]/2 + y[2]}, 2, {0, 1/2}}}

Remember that a region remains invariant if all parameters are rescaled simultane-
ously, due to the homogeneity of the polynomials F and U . So the scaling {0,−1/2}
shown above is equivalent to {1/2, 0}, i.e. the first new parameter is suppressed by
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y1/2 with respect to the second one. For both parts of the integral decomposition the
hard and potential regions are found.

The preresolution algorithm implemented in asy2.m (and switched on with the
option PreResolve) tries to eliminate factorized combinations of terms in the function
F which potentially cancel each other, like (x1−x2)

2 in the example above. It checks
all pairs of variables (say, x and y) which are part of monomials with opposite sign.
For all those pairs the code tries to build a linear combination z of x and y such that in
the variables x and z or y and z this monomial disappears. The code checks whether
in the new variables the number of monomials with opposite sign decreases. For all
such pairs the code recursively repeats the initial procedure in the new variables.
As a result it creates a tree of possible bisections and corresponding replacements of
variables. A leaf of this tree is a set of sectors and functions such that one cannot
decrease the number of monomials with opposite sign any longer. Ideally it means
that all monomials now have the same sign. The code analyzes all leafs and chooses
one of those with the minimal number of opposite-sign monomials (or the minimal
number of sectors if the numbers of monomials with opposite sign coincide). After
finishing with the preresolution, the code performs the replacements and looks for
regions in all those sectors.

Note that the algorithm can only find the necessary variable transformations if it
is able to determine the relative signs of all terms in the polynomial F . As the signs
of symbols are unknown to asy2.m, the substitution rules of the third and fourth
arguments of AlphaRepExpand[] must replace all kinematic quantities by numbers
(integers or fractions of integers) or powers of the small parameter x.

We have checked that the updated version asy2.m works in various examples of the
threshold expansion (considered in [9,6]): a triangle, a box, the two-loop propagator
diagram (with the masses m,m,m,m, 0), a two-loop vertex diagram. Because of the
decomposition of a given integration domain into subdomains, the number of resulting
integrals for various regions increases a little bit. For example, the (hard-hard) region
for the two-loop propagator diagram is described by six integrals, the (potential-
ultrasoft) region is also described by six integrals, etc. However, the (potential-hard)
region is described by four integrals with some regions (with scalings composed of 1,
1/2 and 0), and four more integrals with a set of regions of a different type (composed
of 1 and 0).

Let us finally mention that the preresolution algorithm also works for threshold
expansions with unequal masses. Returning to the one-loop example (1), but now
with different masses m1 and m2 in the propagators and the expansion parameter
defined as y = (m1 +m2)

2/4 − q2/4 → 0, we call:

AlphaRepExpand[{k}, {k^2 - m1^2, (k - q)^2 - m2^2},

{q^2 -> (m1 + m2)^2 - 4*y},

{y -> x, m1 -> 2, m2 -> 3/2},

PreResolve -> True]
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Figure 1: One-loop five-point integral exhibiting a Glauber contribution.

We have set the values of the masses to different rational numbers, m1 → 2 and m2 →
3/2 (the actual values are irrelevant), thus permitting the preresolution algorithm to
know about their sign without assuming any equality or other relation between them.
The polynomial F in the parametric representation of the Feynman integral reads
F = (m1x1 −m2x2)

2 + 4yx1x2, and cancellations occur where m1x1 = m2x2. These
cancellations are automatically made explicit by adequate changes of variables. The
output

{{{x[1] -> y[1] + 3*y[2]/7, x[2] -> 4*y[2]/7}, 7/4, {0, -1/2}},

{{x[1] -> y[1] + 3*y[2]/7, x[2] -> 4*y[2]/7}, 7/4, {0, 0}},

{{x[1] -> 3*y[1]/7, x[2] -> 4*y[1]/7 + y[2]}, 7/3, {0, 0}},

{{x[1] -> 3*y[1]/7, x[2] -> 4*y[1]/7 + y[2]}, 7/3, {0, 1/2}}}

shows that asy2.m detects both regions. The variable transformations are always
normalized such that sums of the parameters (here x1 + x2) remain invariant.

So, we now have a manifestly Lorentz-invariant treatment of threshold expansion
and a code that automatically provides the set of relevant regions.

3 Revealing Glauber contributions

Let us consider the one-loop five-point integral in Fig. 1, where two initial-state par-
tons both perform a collinear splitting into two partons each with momenta p1, p2 and
q1, q2, respectively. While two partons, one of each pair, collide with a large centre-
of-mass energy Q =

√

(p2 + q2)2, the two remaining partons exchange a particle with
the small mass m. We will use the simplified kinematics p1 = p2 = p and q1 = q2 = q
with p2 = q2 = 0 and (p+ q)2 = 2p · q = Q2 in the limit m2/Q2 → 0:

F (Q2, m2) =

∫

ddk

(k2 −m2)(k2 − 2p · k)(k2 + 2p · k)(k2 − 2q · k)(k2 + 2q · k) . (5)
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Before we search for regions using asy.m, we notice that this five-point integral
is similar to the Sudakov form factor example treated in Section 6 of [12]. From
the viewpoint of the convergence of the expansions, the second and third propagators
of (5) are equivalent, and so are the fourth and fifth propagators. Effectively, the five-
point integral has only three different types of propagators which are equivalent to the
ones of the three-point integral in [12]. So the integral (5) can be expanded in loop-
momentum space employing the regions and convergence domains known from [12]
(and using generic propagator powers as analytic regulators where necessary):

• a hard region where k ∼ Q,

• a 1-collinear region where k2 ∼ p · k ∼ m2 and q · k ∼ Q2,

• a 2-collinear region where k2 ∼ q · k ∼ m2 and p · k ∼ Q2,

• a Glauber region where p·k ∼ q·k ∼ m2, and the components of k perpendicular
to the plane spanned by p, q scale as k⊥ ∼ m.

The collinear-plane region mentioned in [12] yields only scaleless contributions. But,
in contrast to the three-point integral, the five-point integral has a non-vanishing
Glauber contribution. The Glauber region even provides the leading contribution
scaling as (m2)−2−ε, whereas the collinear contributions start with (m2)−1−ε and the
hard contribution starts with (m2)0.

The five-point integral (5) can be represented in terms of an integral over Feynman
parameters,

F (Q2, m2) = −iπd/2 Γ(3 + ε)

×
∫

· · ·
∫

(x1 + . . .+ x5)
1+2ε δ (

∑

i xi − 1) dx1 · · ·dx5
[

x1(x1 + . . .+ x5)m2 + (x2 − x3)(x4 − x5)Q2 − i0
]3+ε , (6)

where one can choose the sum in the argument of the delta function in an appropriate
way, i.e. restrict only the sum over a subset of the parameters to 1 and extend the
integration over the rest of the parameters to the whole domain [0,∞).

Applying the strategy of expansion by regions in Feynman-parameter space and
trying to reveal regions relevant to the given limit m2/Q2 → 0 with the help of the
code asy.m [15], we call:

AlphaRepExpand[{k},

{k^2 - m^2, k^2 - 2*p*k, k^2 + 2*p*k, k^2 - 2*q*k, k^2 + 2*q*k},

{p^2 -> 0, q^2 -> 0, p*q -> Q^2/2},

{Q -> 1, m^2 -> x}]

The output states the following set of three regions:

{{0, 0, 0, 0, 0}, {0, 0, 0, 1, 1}, {0, 1, 1, 0, 0}}
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As before, the regions are specified by the scaling of the Feynman parameters in terms
of powers of the small parameter m2. For example, for the second region we have x1 ∼
x2 ∼ x3 ∼ (m2)0, x4 ∼ x5 ∼ (m2)1. The first region is hard; its contribution starts
with (m2)0. The second and third regions start with order (m2)−1−ε. They correspond
to the two collinear regions stated for the momentum-space expansion above. But
asy.m does not find anything corresponding to the Glauber region; in particular, none
of the regions found by asy.m provides the leading (m2)−2−ε contribution.

We notice that, as in the previous section about potential contributions, the poly-
nomial in the square brackets of (6) has terms of different sign. The missing Glauber
contribution stems from the parameter region where either (x2 − x3) ∼ (m2)1 or
(x4 − x5) ∼ (m2)1. So let us decompose the parametric integral into four parts cor-
responding to the domains where the two factors (x2 − x3) and (x4 − x5) are either
positive or negative and then introduce new variables in such a way that this product
takes the form ±x′2x′4. For example, in the domain x2 ≤ x3, x5 ≤ x4 we change the
variables by x2 = x′3/2, x3 = x′2 + x′3/2 and by x4 = x′4 + x′5/2, x5 = x′5/2, similarly
to our example in the previous section. However, in the threshold expansion the
cancelling terms appeared in squared form such that a transformation between one
pair of variables was sufficient. Here two separate factors involve cancellations, which
requires a twofold change of variables.

Removing the primes from the variables xi, the parametric integral reads

F (Q2, m2) = 2(I+ + I−) (7)

with

I± = −iπd/2 Γ(3 + ε)

4

×
∫

· · ·
∫

(x1 + x2 + x3 + x4 + x5)
1+2ε δ (x1 − 1) dx1 · · ·dx5

[x1(x1 + x2 + x3 + x4 + x5)m2 ± x2x4Q2 − i0]3+ε , (8)

where we have chosen the argument of the delta function as x1 − 1, so that we may
also write

I± = −iπd/2 Γ(3 + ε)

4

×
∫

∞

0

· · ·
∫

∞

0

(1 + x2 + x3 + x4 + x5)
1+2ε dx2 · · ·dx5

[(1 + x2 + x3 + x4 + x5)m2 ± x2x4Q2 − i0]3+ε . (9)

It is sufficient to consider the expansion of I+ and obtain a result for I− by analytically
continuing Q2 → −Q2 − i0, taking into account that the dependence on Q2 is power-
like.

Now we can apply asy2.m to the integral I+ using either the command

WilsonExpand[x1*(x1 + x2 + x3 + x4 + x5)*m^2 + x2*x4*Q^2,
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x1 + x2 + x3 + x4 + x5,

{x1, x2, x3, x4, x5},

{Q^2 -> 1, m^2 -> x}, Delta -> True]

for integrals (8) restricted by a delta function (see Section 5), yielding the output:

{{0, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 0, 1, 0}}

Or we use the command

WilsonExpand[(1 + x2 + x3 + x4 + x5)*m^2 + x2*x4*Q^2,

1 + x2 + x3 + x4 + x5,

{x2, x3, x4, x5},

{Q^2 -> 1, m^2 -> x}]

for integrals (9) over variables from 0 to ∞ without any restriction, and obtain the
output:

{{0, 0, 0, 0}, {1, 0, 0, 0}, {0, 0, 1, 0}}

The two results are equivalent, as x1 ∼ (m2)0 is implied in the second case. So we
obtain again three regions. We will see in a moment that this list of regions is indeed
correct and complete.

But first, let us emphasize that the new preresolution algorithm in asy2.m is
capable of performing the transformation of the integral from (6) to (8) automatically:

AlphaRepExpand[{k},

{k^2 - m^2, k^2 - 2*p*k, k^2 + 2*p*k, k^2 - 2*q*k, k^2 + 2*q*k},

{p^2 -> 0, q^2 -> 0, p*q -> Q^2/2},

{Q -> 1, m^2 -> x},

PreResolve -> True]

The output of this command lists four different variable transformations according
to the twofold decomposition described above. For each of the integrals over new
parameters, the regions {0, 0, 0, 0, 0}, {0, 1, 0, 0, 0} and {0, 0, 0, 1, 0} are found, up to
permutations in the order of the parameters from different changes of variables.

The evaluation of the contributions to each region, as found by WilsonExpand[]

or AlphaRepExpand[] (including the PreResolve option), is straightforward. The
first region is the hard one. The contributions of the second and third regions are
not individually regularized by dimensional regularization, as it often happens for
Sudakov-type limits. We use an auxiliary analytic regularization by introducing ad-
ditional powers xδ2

2 x
δ3
3 x

δ4
4 x

δ5
5 of the new variables into the integrand of (9), taking the

limit δ2, δ3, δ4, δ5 → 0 in the end. The leading-order (LO) contribution of the second
and third regions to the integral F (Q2, m2) reads

−iπd/2 iπΓ(ε)

2Q2(m2)2+ε
. (10)
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This agrees with the leading contribution of the Glauber region in the momentum-
space expansion.

We have found the leading Glauber contribution of order (m2)−2−ε. But we seem
to have lost the two collinear regions with the scalings {0, 0, 0, 1, 1} and {0, 1, 1, 0, 0}
found before the change of variables. In fact, we can evaluate the contributions
from these two regions by expanding the integral (9). The resulting integrals are
scaleless and regularized by the parameters δ3, δ5, so they vanish, and asy2.m is right
in omitting these two regions.

We are also able to solve the integral (9) including the auxiliary analytic regular-
ization factor xδ2

2 x
δ3
3 x

δ4
4 x

δ5
5 in terms of a onefold Mellin–Barnes representation:

I± = −iπd/2 Γ(1 + δ3)Γ(1 + δ5)

4

1

2πi

∫

dz (m2)z(±Q2 − i0)−3−ε−z

× Γ(−z)Γ(−2 − ε+ δ2 − z)Γ(−2 − ε+ δ4 − z)

× Γ(1 − δ2 − δ3 − δ4 − δ5 + z)Γ(3 + ε+ z)

Γ(−1 − 2ε− z)
. (11)

The asymptotic expansion of I± in the limit m2/Q2 → 0 is obtained by taking the
residues of the poles of the functions Γ(. . . − z). The poles of Γ(−z) correspond to
the hard region, while the poles of the two functions Γ(−2− ε+ δ2,4 − z) provide the
contributions of the second and third regions. So asy2.m has found all contributing
regions.

In the Mellin–Barnes integral (11) we can safely take the limit δ2, δ3, δ4, δ5 → 0,
add up I+ and I−, and arrive at the Mellin–Barnes representation

F (Q2, m2) = iπd/2 i

2

1

2πi

∫

dz (m2)z(Q2)−3−ε−zeiπ(ε+z)/2

× Γ(−z)Γ(−2 − ε− z)Γ
(

−1−ε−z
2

) Γ(1 + z)Γ
(

3+ε+z
2

)

Γ(−1 − 2ε− z)
. (12)

The LO contribution to F (Q2, m2) is obtained from the residue of the single pole at
z = −2 − ε, in agreement with (10). The next-to-leading-order (NLO) contribution
stems from the residue of the double pole at z = −1 − ε and reads

iπd/2 Γ(1 + ε)

(Q2)2(m2)1+ε

(

i
π

2
+ 2ψ(−ε) − ψ(1 + ε) + γE − ln

Q2

m2
− 1

)

. (13)

This agrees with the NLO contributions of the second and third regions.
At next-to-next-to-leading order (NNLO) there is a contribution from the residue

of the single pole at z = −ε which reads

− iπd/2 iπΓ(2 + ε)

4(Q2)3(m2)ε
(14)
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and agrees with the NNLO contributions of the second and third regions. The second
NNLO contribution comes from the residue of the single pole at z = 0. It is given by

− iπd/2 i e
iπε/2 Γ(−2 − ε)Γ

(

1+ε
2

)

Γ
(

1−ε
2

)

2(Q2)3+ε Γ(−1 − 2ε)
(15)

and agrees with the LO contribution of the hard region. So indeed all contributions
to the five-point integral up to NNLO are correctly reproduced by the contributions
of the three regions found by asy2.m after the decomposition of the integral and the
change of variables.

When revealing Glauber regions for a general diagram, the preresolution algorithm
of asy2.m tries to eliminate monomials with opposite sign in the polynomial F by
automatically separating the integration into domains and performing changes of
variables. If the option PreResolve is enabled for AlphaRepExpand[], the code warns
the user if the elimination of monomials with opposite sign has not been successful,
such that possibly not all regions are revealed. This is the case if some monomials of
opposite sign remain in the polynomial F after tries to eliminate them, or if symbols
with unknown signs are present in the polynomial. We are therefore convinced that
AlphaRepExpand[], with the preresolution enabled, either reveals all relevant regions
or issues a warning.

As for the threshold expansion of the previous section, asy2.m can also treat more
complicated kinematical situations, e.g. the five-point integral depicted in Fig. 1 with
p1 6= p2 and q1 6= q2 (retaining p1 ‖ p2 and q1 ‖ q2 such that pi · pj = qi · qj = 0 and
2pi · qj = PiQj with Pi, Qj > 0):

AlphaRepExpand[{k},

{k^2 - m^2, k^2 - 2*p1*k, k^2 + 2*p2*k,

k^2 - 2*q2*k, k^2 + 2*q1*k},

{p1^2 -> 0, p2^2 -> 0, p1*p2 -> 0,

q1^2 -> 0, q2^2 -> 0, q1*q2 -> 0,

p1*q1 -> P1*Q1/2, p1*q2 -> P1*Q2/2,

p2*q1 -> P2*Q1/2, p2*q2 -> P2*Q2/2},

{m^2 -> x, P1 -> 1, P2 -> 3, Q1 -> 2, Q2 -> 3/2},

PreResolve -> True]

All kinematic invariants are replaced by rational numbers in order to enable the
preresolution algorithm to work. The code correctly decomposes the integral into
four pieces and finds the three regions for each of them.

Let us finally discuss the reason why, besides the hard region which is always
present, the expansion in loop-momentum space requires two collinear regions and
one Glauber region, whereas the expansion of the parametric integrals (9) has two
regions providing the leading Glauber contribution and no further collinear regions.
In fact, the momentum-space expansion is also valid for loop integrals (5) where each
propagator is raised to an arbitrary, even non-integer power. For the decomposition

12



of the parametric integral and the change of variables, however, we have assumed the
specific form (5) with each propagator present exactly once. In this case, the loop
integrand can be expanded into partial fractions as follows:

1

(k2 −m2)(k2 − 2p · k)(k2 + 2p · k)(k2 − 2q · k)(k2 + 2q · k)

=
1

4(m2)2

(

1

k2 −m2
− 1

k2
− m2

(k2)2

)(

1

k2 − 2p · k +
1

k2 + 2p · k

)

×
(

1

k2 − 2q · k +
1

k2 + 2q · k

)

. (16)

Expanding this product of terms, one obtains twelve three-point integrals, which are
well known. Because they only depend on Q2 = 2p · q, we recognize from the last
two factors the structure F (Q2, m2) = 2(I+ + I−), where I+ and I− are related by
Q2 → −Q2 as before. The three-point integrals with the massless propagators 1/k2

or 1/(k2)2 only have a hard region. The massive three-point integral with propagator
1/(k2 −m2) is known to possess a hard and two collinear regions. Its LO and NLO
hard contributions are cancelled by the massless three-point integrals, such that the
uncancelled hard contributions start with (m2)2/(m2)2 = (m2)0, as for the five-point
integral. The LO collinear contributions of the three-point integrals, enhanced by the
1/(m2)2 prefactor, scale as (m2)−2−ε.

So, in the special case when all propagator powers are equal to 1, the five-point
integral reduces to a linear combination of three-point integrals revealing the same
structure of regions as found from the expansion of the parametric integral (9). This
picture changes when generic propagator powers are introduced as analytic regulators,
which is done in the next section.

4 Disentangling regions via propagator powers

In the previous section we have seen different patterns of regions arising when ex-
panding either in loop-momentum space or in parametric space. The individual con-
tributions can be disentangled more easily when the dependence on the propagator
powers is retained. Instead of (5), let us consider the integral

F (Q2, m2) =

∫

ddk

(k2 −m2)1+λ1(k2 − 2p · k)1+λ2(k2 + 2p · k)1+λ3

× 1

(k2 − 2q · k)1+λ4(k2 + 2q · k)1+λ5

, (17)

where the analytic regularization parameters λi make the propagator powers different
from the previous case. The asymptotic expansion in loop-momentum space yields
contributions from the four regions listed in the beginning of Section 3. The LO hard

13



contribution still scales as (m2)0, but now the LO 1-collinear contribution scales as
(m2)−1−ε−λ1−λ2−λ3, the LO 2-collinear contribution as (m2)−1−ε−λ1−λ4−λ5 and the LO
Glauber contribution as (m2)−2−ε−λ1−λ2−λ3−λ4−λ5 . So all regions are characterized by
a distinct scaling. When performing the expansion in parametric space for generic λi,
we are able to disentangle the contributions from each region and match them with
the regions obtained in loop-momentum space.

For generic λ1, . . . , λ5, the parametric integral corresponding to (6) reads

F (Q2, m2) = −iπd/2 e−iπ(λ1+...+λ5) Γ(3 + ε+ λ1 + . . .+ λ5)

Γ(1 + λ1) · · ·Γ(1 + λ5)

×
∫

· · ·
∫

xλ1

1 · · ·xλ5

5 (x1 + . . .+ x5)
1+2ε+λ1+...+λ5 δ (

∑

i xi − 1) dx1 · · ·dx5
[

x1(x1 + . . .+ x5)m2 + (x2 − x3)(x4 − x5)Q2 − i0
]3+ε+λ1+...+λ5

.

(18)

The change of variables performed in Section 3, e.g. x2 = x′2 + x′3/2, x3 = x′3/2 for
x2 ≥ x3, is complicated by the presence of the factors xλ2

2 x
λ3

3 x
λ4

4 x
λ5

5 , where parts of
the monomials will change into polynomials. If we want to keep the simple form
F (Q2, m2) = 2(I+ + I−) from the previous section, then we have to require λ3 = λ2

and λ5 = λ4. Under this restriction of the parameters λi, the parametric integrals
can be written as

I± = −iπd/2 e
−iπ(λ1+2λ2+2λ4)

41+λ2+λ4

Γ(3 + ε+ λ1 + 2λ2 + 2λ4)

Γ(1 + λ1)Γ2(1 + λ2)Γ2(1 + λ4)

×
∫

· · ·
∫

xλ1

1 (2x2 + x3)
λ2xλ2

3 (2x4 + x5)
λ4xλ4

5 (x1 + . . .+ x5)
1+2ε+λ1+2λ2+2λ4

[

x1(x1 + . . .+ x5)m2 ± x2x4Q2 − i0
]3+ε+λ1+2λ2+2λ4

× δ (x1 − 1) dx1 · · ·dx5 . (19)

In order to find the regions for the asymptotic expansion of (19), we have to provide
the additional polynomial factors (2x2 + x3) and (2x4 + x5) to WilsonExpand[].
We can do this by multiplying the new polynomials to the second argument of the
command:

WilsonExpand[x1*(x1 + x2 + x3 + x4 + x5)*m^2 + x2*x4*Q^2,

(x1 + x2 + x3 + x4 + x5)*(2*x2 + x3)*(2*x4 + x5),

{x1, x2, x3, x4, x5},

{Q^2 -> 1, m^2 -> x}, Delta -> True]

The output of this command reads:

{{0, 0, 0, 1, 0}, {0, 0, 0, 1, 1},

{0, 1, 0, 0, 0}, {0, 1, 1, 0, 0},

{0, 0, 0, 0, 0}}

14



In addition to the regions present in the analysis of Section 3, we retrieve the two
collinear regions with scalings {0, 0, 0, 1, 1} and {0, 1, 1, 0, 0}. The updated code
asy2.m is capable of taking into account generic propagator powers automatically
when told through the additional option GenericPowers:

AlphaRepExpand[{k},

{k^2 - m^2, k^2 - 2*p*k, k^2 + 2*p*k, k^2 - 2*q*k, k^2 + 2*q*k},

{p^2 -> 0, q^2 -> 0, p*q -> Q^2/2},

{Q -> 1, m^2 -> x},

PreResolve -> True, GenericPowers -> True]

When the option GenericPowers is enabled, the polynomial U obtained from the
loop integral is multiplied by the product of all Feynman parameters, x1x2 · · · , before
the changes of variables are performed. Some of these additional factors then turn
into polynomials through replacements in the preresolution algorithm, while others
remain monomials and are therefore irrelevant for the analysis of asy2.m. The call
of AlphaRepExpand[] stated above correctly yields all five regions for each of the
variable transformations.

For the evaluation of the Glauber contributions with scalings {0, 0, 0, 1, 0} and
{0, 1, 0, 0, 0}, an additional analytic regularization is needed, and we choose to mul-
tiply the integrand of (19) by xδ2

2 x
δ4
4 . (The parameters δ3, δ5 from Section 3 are not

needed here due to the presence of λ2, λ4.) The two Glauber contributions are indi-
vidually singular in the limit δ2, δ4 → 0, but this singularity cancels in the sum of the
two contributions.

The leading contribution to the integral F (Q2, m2) originates from the sum of the
LO Glauber contributions. It reads

− iπd/2 i e
−iπ(λ1+2λ2+2λ4) Γ

(

1
2

+ λ2

)

Γ
(

1
2

+ λ4

)

Γ(2 + ε+ λ1 + 2λ2 + 2λ4)

2Q2 (m2)2+ε+λ1+2λ2+2λ4 Γ(1 + λ1)Γ(1 + λ2)Γ(1 + λ4)Γ(1 − ε)

× Γ(−1 − ε− 2λ2 − 2λ4) . (20)

This agrees with the LO contribution from the one Glauber region in the momentum-
space expansion of (17) for λ3 = λ2 and λ5 = λ4. Here, in the expansion of the
parametric integrals, we have two regions producing the Glauber contribution. This
is possible because the contributions from both regions have the same scaling (for
δ2 = δ4 = 0), starting with (m2)−2−ε−λ1−2λ2−2λ4 . For λi = 0, the result (20) repro-
duces (10).

Among the NLO contributions to F (Q2, m2), we expect NLO Glauber contribu-
tions and LO collinear contributions. However, the NLO Glauber contributions vanish
exactly for general λ1, λ2 = λ3 and λ4 = λ5, due to non-trivial cancellations between
the pieces which contribute to the NLO expansion of (19) for either of the scalings
{0, 0, 0, 1, 0} and {0, 1, 0, 0, 0}. The same happens in loop-momentum space, where
the NLO Glauber contribution is proportional to (λ3−λ2)(λ5−λ4), thus vanishing in
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the case considered here. So the NLO contribution to F (Q2, m2) is made up entirely
from the LO collinear contributions. The 1-collinear region provides

− iπd/2 e
−iπ(λ1+2λ2+2λ4) eiπλ4 Γ(λ2 − λ4)Γ(1 − 2λ4)Γ(1 + ε+ λ1 + 2λ2)

2(Q2)2+2λ4 (m2)1+ε+λ1+2λ2 Γ(1 + λ1)Γ(1 + λ2)Γ(1 − λ4)

× Γ(−ε − 2λ2)

Γ(−ε − 2λ4)

1

1 + 2λ4
, (21)

in agreement with the momentum-space expansion. The 2-collinear contribution is
obtained from this by exchanging λ2 ↔ λ4. Adding the two collinear contributions
together and performing the limit λ1, λ2, λ4 → 0, the result (13) is reproduced.

Considering finally the NNLO contributions to F (Q2, m2), we expect NNLO
Glauber contributions, NLO collinear contributions and a LO hard contribution. But
here the NLO collinear contributions vanish exactly for λ3 = λ2 and λ5 = λ4, both in
loop-momentum space and when expanding the parametric integrals. So we are left
with the NNLO Glauber contributions yielding

− iπd/2 i e−iπ(λ1+2λ2+2λ4) Γ
(

λ2 − 1
2

)

Γ
(

λ4 − 1
2

)

Γ(ε+ λ1 + 2λ2 + 2λ4)

16(Q2)3 (m2)ε+λ1+2λ2+2λ4 Γ(1 + λ1)Γ(1 + λ2)Γ(1 + λ4)Γ(−1 − ε)

× Γ(1 − ε− 2λ2 − 2λ4) (22)

and the LO hard contribution,

iπd/2 i e−iπ(λ1+2λ2+2λ4) eiπ(ε+λ1+2λ2+2λ4)/2 Γ
(

−1−ε−λ1−2λ2

2

)

Γ
(

−1−ε−λ1−2λ4

2

)

2
√
π (2Q2)3+ε+λ1+2λ2+2λ4 Γ(1 + λ2)Γ(1 + λ4)Γ(−1 − 2ε− λ1 − 2λ2 − 2λ4)

× Γ
(

−2−ε−λ1−2λ2−2λ4

2

)

Γ
(

3+ε+λ1+2λ2+2λ4

2

)

, (23)

both consistent between the expansions of the loop integral and of the parametric
integrals. Setting all λi = 0 in (22) and (23), we recover the results from (14) and
(15), respectively.

We may also evaluate the parametric integral (19) in terms of a onefold Mellin–
Barnes representation:

I± = −iπd/2 e−iπ(λ1+2λ2+2λ4)

4π Γ(1 + λ1)Γ(1 + λ2)Γ(1 + λ4)

× 1

2πi

∫

dz (m2)z(±4Q2 − i0)−3−ε−λ1−2λ2−2λ4−z

× Γ(1 + λ1 + z)Γ(3 + ε+ λ1 + 2λ2 + 2λ4 + z)

× Γ(−z)Γ
(

−1−ε−λ1−2λ2−z
2

)

Γ
(

−1−ε−λ1−2λ4−z
2

)

Γ2
(

−2−ε−λ1−2λ2−2λ4−z
2

)

Γ(−1 − 2ε− λ1 − 2λ2 − 2λ4 − z)
. (24)

The relevant regions can easily be determined from the gamma functions in the nu-
merator of the last line. In particular, the squared gamma function indicates that
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the expansion of the parametric integrals I± requires two regions for the Glauber
contribution, both scaling as (m2)−2−ε−λ1−2λ2−2λ4 at leading order. When combining
F (Q2, m2) = 2(I+ + I−), one of these gamma functions is cancelled, and we obtain

F (Q2, m2) = iπd/2 i e−iπ(λ1+2λ2+2λ4)

2
√
π Γ(1 + λ1)Γ(1 + λ2)Γ(1 + λ4)

× 1

2πi

∫

dz (m2)z(2Q2)−3−ε−λ1−2λ2−2λ4−z eiπ(ε+λ1+2λ2+2λ4+z)/2

× Γ(1 + λ1 + z)Γ
(

3+ε+λ1+2λ2+2λ4+z
2

)

× Γ(−z)Γ
(

−1−ε−λ1−2λ2−z
2

)

Γ
(

−1−ε−λ1−2λ4−z
2

)

Γ
(

−2−ε−λ1−2λ2−2λ4−z
2

)

Γ(−1 − 2ε− λ1 − 2λ2 − 2λ4 − z)
.

(25)

From this representation the contributions to the asymptotic expansion in the limit
m2/Q2 → 0 can be extracted: The hard contributions stem from the residues of
the poles at z = n, the 1- and 2-collinear contributions from z = −1 + 2n − ε −
λ1 − 2λ2 and z = −1 + 2n − ε − λ1 − 2λ4, respectively, the Glauber contributions
from z = −2 + 2n − ε − λ1 − 2λ2 − 2λ4 (with n = 0, 1, 2, . . .). All LO, NLO and
NNLO contributions reported in (20)–(23) are confirmed by the corresponding residue
contributions from (25). In particular, the structure of the poles in (25) clearly shows
that the Glauber region does not contribute to the NLO result, and that the collinear
contributions are absent at NNLO, as obtained before.

The results reported in this section show that the use of generic propagator pow-
ers helps disentangling the Glauber and collinear regions from each other, making all
regions contribute in the same way to the asymptotic expansion in loop-momentum
space and to the expansion of the parametric integrals. Keeping the dependence of
the contributions and their scalings on the propagator powers also facilitates the iden-
tification of regions found by asy2.m in parametric space for a subsequent expansion
at the level of the loop integration.

5 Summary of asy2.m

The updated version of the code, asy2.m, can be downloaded from the known web
site [16], where further installation instructions are found. The Mathematica code is
loaded using <<asy2.m.

The main function AlphaRepExpand[] reveals regions for loop integrals:

AlphaRepExpand[{k1, k2, ...},

{(k1 + p1)^2 - m1^2, (k2 + p2)^2 - m2^2, ...},

{p1^2 -> Q1, p2^2 -> Q2, p1*p2 -> Q3, ...},

{m1^2 -> x, m2^2 -> x^2, Q1 -> 1, Q2 -> 3/2, ...},

options]
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The first argument is the list of loop momenta. The second argument lists the de-
nominators of the propagators. The third argument contains replacement rules for all
kinematic invariants. In particular, all external momenta appearing in the denomi-
nators must be replaced here, otherwise they are not identified correctly as vectors.
The fourth argument sets the scaling of the parameters by replacing all symbols with
powers of the expansion parameter, labelled by the global symbol x, and rational
numbers (integers or explicit fractions of integers).

The output is a list of regions, specified by the scaling (in powers of the expansion
parameter) of the Feynman parameters x1, x2, . . . corresponding to the propagators
in the order stated in the second argument. Possible options are:

• PreResolve -> True: Try to eliminate cancellations between terms in the para-
metric representation by decomposing the integral and performing changes of
variables. The code warns if this fails. The output contains, for each region,
the changes of variables, the Jacobian of the integral transformation and the
scalings of the new variables. Without this option, regions occurring at such
cancellations will not be revealed.

• GenericPowers -> True: Take into account generic (in particular non-integer)
powers of the propagators, e.g. when these powers are used as analytic regula-
tors. Without this option, the preresolution algorithm triggered by the option
PreResolve only finds all regions if the propagator powers are positive integers.

• Verbose -> True: Print verbose internal information.

• Scalar -> True: Permit more complex structures of the denominators by spec-
ifying scalar products of momenta via the function Scalar[k,p] instead of
simple products k*p or Scalar2[k] instead of k^2, e.g.:

AlphaRepExpand[{k},

{Scalar[k, k] - m^2, Scalar2[k - q] - m^2},

{Scalar2[q] -> qq, m^2 -> qq/4 + y}, {qq -> 1, y -> x},

PreResolve -> True, Scalar -> True]

For expanding more general integrals, which need not originate from Feynman
diagrams, the command WilsonExpand[] may be used:

WilsonExpand[F, U, {x1, x2, ...}, {... -> x, ...}, options]

Traditionally, the first two arguments are the polynomials F and U , respectively,
from the parametric representation of the Feynman integral. But, more generally,
WilsonExpand[] will reveal regions for integrals over parameters x1, x2, . . ., integrated
from 0 to ∞ each, where all non-trivial polynomials of the parameters xi occurring
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in the integrand are specified either in the first or the second argument. The third
argument of WilsonExpand[] is the list of integration parameters, and the fourth
argument specifies the scaling of all quantities with the expansion parameter x.

The output is a list of regions, specified by the scaling of the integration parameters
in powers of the expansion parameters. Possible options are:

• Delta -> True: Under the integral, the sum over an arbitrary non-empty sub-
set of the integration parameters is restricted to 1 via a delta function. The
specific choice of the sum in this delta function must be irrelevant for the inte-
gral, which is the case for the generalized Feynman representations used in this
paper.

• Verbose -> True: Print verbose internal information.

More generally, the option Delta of WilsonExpand[] works correctly for all integrals
of the form

∫

∞

0

· · ·
∫

∞

0

dx1 · · ·dxn δ

(

n
∑

i=1

aixi − 1

)

f(x1, . . . , xn) , (26)

where the linear combination in the argument of the delta function has no negative
and at least one positive coefficient (ai ≥ 0 ∀i and ∃ ai > 0), and where the function f
scales homogeneously with the parameters xi as

f(λx1, . . . , λxn) = λ−nf(x1, . . . , xn) ∀λ > 0 , (27)

the degree of homogeneity being equal to minus the number of integration parameters.
It can be shown that for such integrals (26) the specific choice of the coefficients ai is
irrelevant.2 All integrands of Feynman-parameter representations used in this paper
(without the additional analytic regularization factors xδi

i ) fulfill the homogeneity
condition (27).

6 Conclusion

We have presented an algorithm for finding potential regions and Glauber regions
when expanding loop integrals at the level of their parametric representations. The
necessary decompositions and variable transformations of the integral are automated
by the updated Mathematica code asy2.m. When the command AlphaRepExpand[]

2To see this, multiply the integrand of (26) by 1 in the form xj

∫

∞

0
dt e−txj , where xj is any of the

integration parameters. Then, inside the t-integration, transform the other integration variables as
xi → xi/t ∀i and use the homogeneity relation (27) with λ = 1/t. Finally evaluate the t-integration
first, yielding

∫

∞

0
dt δ(

∑n

i=1
aixi − t) = 1, independent of the coefficients ai, as long as the linear

combination is positive. The integral (26) is given by
∫

∞

0
· · ·
∫

∞

0
dx1 · · · dxn f(x1, . . . , xn)xj e−xj .
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is used with its option PreResolve enabled, we are convinced that it will either reveal
all relevant regions or issue a warning. In particular, regions corresponding to can-
cellations between large positive and negative terms in the parametric representation
of the loop integrals (such as potential and Glauber regions) will now be found.

Let us emphasize that to prove expansion by regions at least for some specific
limit typical of Minkowski space is a natural mathematical problem. Perhaps, this
problem is not specifically related to Feynman integrals. Let us present an example of
a one-dimensional parametric integral, without any relevance to Feynman integrals,
and show that expansion by regions works successfully. To do this, we will use asy2.m.

Let us consider the integral

F (t) =

∫

∞

0

(t+ u+ u2)λdu , (28)

with λ a complex parameter, in the limit t→ 0. We assume that λ is in the domain
Reλ < −1/2 in order to have an absolute convergence of the integral which then can
be continued analytically to the whole complex plane as an analytic function of λ.
Running

WilsonExpand[t + u + u^2, 1, {u}, {t -> x}]

we obtain the two regions {{1}, {0}}. The leading-order terms from each region can
be evaluated analytically in terms of gamma functions at general λ, with the results

tλ+1Γ(−λ− 1)

Γ(−λ)
(29)

and
Γ(−2λ− 1)Γ(λ+ 1)

Γ(−λ)
. (30)

They can be checked easily by deriving the onefold Mellin–Barnes representation

F (t) =
1

2πi

1

Γ(−λ)

∫

Γ(−z)Γ(λ− z + 1)Γ(−2λ+ 2z − 1)tzdz (31)

and evaluating the first terms of the asymptotic expansion in the limit t → 0 by
shifting the contour to the right and taking residues at the poles of the two gamma
functions in the integrand.
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