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24 Avenue des Landais F-63177 Aubiere Cedex, (UMR 6533 du CNRS-IN2P3 associée à l’Université Blaise Pascal),

e-mail: monteil@in2p3.fr, niess@in2p3.fr
h Laboratoire d’Annecy-Le-Vieux de Physique des Particules, 9 Chemin de Bellevue, BP 110,

F-74941 Annecy-le-Vieux Cedex, France,
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We perform model-independent statistical analyses of three scenarios accommodating New Physics
(NP) in ∆F = 2 flavour-changing neutral current amplitudes. In a scenario in which NP in Bd−Bd

mixing and Bs−Bs mixing is uncorrelated, we find the parameter point representing the Standard-
Model disfavoured by 2.7 standard deviations. However, recent LHCb data on Bs neutral-meson
mixing forbid a good accommodation of the DØ data on the semileptonic CP asymmetry ASL. We
introduce a fourth scenario with NP in both Md,s

12 and Γd,s12 , which can accommodate all data. We
discuss the viability of this possibility and emphasise the importance of separate measurements of
the CP asymmetries in semileptonic Bd and Bs decays. All results have been obtained with the
CKMfitter analysis package, featuring the frequentist statistical approach and using Rfit to handle
theoretical uncertainties.

PACS numbers: 12.15.Hh,12.15.Ji, 12.60.Fr,13.20.-v,13.38.Dg

Flavour physics looks back to a quarter-century of pre-
cision studies at the B-factories with a parallel theoretical
effort addressing the Standard Model (SM) predictions
for the measured quantities [1]. With the parameters
of the Cabibbo-Kobayashi-Maskawa (CKM) matrix [2]
overconstrained by many measurements one can predict
yet unmeasured quantities [3]. Still, the global fit to the
CKM unitarity triangle reveals some discrepancies with
the SM, driven by a conflict between B(B → τν) and
sin(2β) measured from Bd → J/ΨK [4, 5]. Furthermore,
in May 2010 the DØ experiment reported a deviation of
the semileptonic CP asymmetry (dimuon asymmetry) in
Bd,s decays from its SM prediction [6, 7] by 3.2σ [8].
In June 2011 this discrepancy has increased to 3.9 σ [9].
In summer 2010 the data could be interpreted in well-
motivated scenarios with New Physics (NP) in B−B
mixing amplitudes [4]. In this letter we present novel
analyses which include the new data of 2011, in particu-
lar from the LHCb experiment.

Bq−Bq (q = d, s) oscillations involve the off-diagonal
elements M q

12 and Γq12 of the 2×2 mass and decay matri-
ces, respectively. One can fix the three physical quanti-
ties |M q

12|, |Γ
q
12| and φq = arg(−M q

12/Γ
q
12) from the mass

difference ∆Mq ≃ 2|M q
12| among the eigenstates, their

width difference ∆Γq ≃ 2 |Γq12| cosφq and the semilep-
tonic CP asymmetry

aq
SL

= Im
Γq12
M q

12

=
|Γq12|

|M q
12|

sinφq =
∆Γq
∆Mq

tanφq. (1)

M q
12 is especially sensitive to NP. Therefore the two com-

plex parameters ∆s and ∆d, defined as

M q
12≡M

SM,q
12 · ∆q , ∆q ≡ |∆q|e

iφ∆

q , q = d, s, (2)

can differ substantially from the SM value ∆s = ∆d =
1. Importantly, the NP phases φ∆

d,s do not only affect

ad,s
SL

, but also shift the CP phases extracted from the
mixing-induced CP asymmetries in Bd → J/ΨK and
Bs → J/Ψφ to 2β + φ∆

d and 2βs − φ∆
s , respectively. In

summer 2010 the CDF and DØ analyses of Bs → J/Ψφ
pointed towards a large negative value of φ∆

s , while si-
multaneously being consistent with the SM due to large
errors. With a large φ∆

s < 0 we could accommodate DØ’s
large negative value for the semileptonic CP asymmetry
reading ASL = 0.6adSL +0.4asSL in terms of the individual
semileptonic CP asymmetries in the Bd and Bs systems.
Moreover, the discrepancy between B(B → τν) and the
mixing-induced CP asymmetry in Bd → J/ΨK deter-

mining 2φψKd ≡ 2β + φ∆
d can be removed with φ∆

d < 0.
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The allowed range for φ∆
d implies a contribution to ASL

with the right (i.e. negative) sign. In our 2010 analysis
in Ref. [4] we have determined the preferred ranges for
∆s and ∆d in a simultaneous fit to the CKM parame-
ters in three generic scenarios in which NP is confined to
∆F = 2 flavour-changing neutral currents. In our Sce-
nario I we have treated ∆s, ∆d (and three more parame-
ters related to K−K mixing) independently, correspond-
ing to NP with arbitrary flavour structure. Scenario II
implements minimal-flavour violation (MFV) with small
bottom Yukawa coupling entailing real ∆s = ∆d. Sce-
nario III covers MFV models in which ∆s = ∆d is allowed
to be complex. In Ref. [4] we have found an excellent fit
in Sc. I (and a good fit in Sc. 3) with all discrepancies re-
lieved through ∆d,s 6= 1, while the fit has returned K−K
mixing essentially SM-like.

The recent LHCb measurement of the CP phase φψφs
from Amix

CP (Bs → J/Ψφ) does not permit large deviations
of φ∆

s from zero anymore. This trend was also confirmed
by the latest CDF results [10]. The current situation
with the phase 2φψφs ≡ 2βs − φ∆

s and ASL is as follows:

−2φψφs = −43.5◦
+21.8◦

−20.6◦ ± 1.2◦ DØ [11]

−59.6◦ ≤ −2φψφs ≤ −2.3◦ CDF [10]

−2φψφs = 8.6◦ ± 10.3◦ ± 3.4◦ LHCb J/ψφ [12]

−2φψφs = −25.2 ± 25.2 ± 1.2 LHCb J/ψf0 [13]

ASL = (−7.87 ± 1.72 ± 0.93) · 10−3 DØ [9] (3)

Here 2βs = 2 arg(−VtsV
∗

tb/(VcsV
∗

cb)) ≃ 2.2◦.

From this discussion, there is a conflict between LHCb
data on Bs → J/ψφ and the DØ measurement of ASL

which we cannot fully resolve in our Scenarios I, II and
III. We therefore discuss a fourth scenario which also per-
mits NP in the decay matrices Γs12 or Γd12.

RESULTS FOR SCENARIOS I, II AND III

In Tab. I we summarise the changes in the inputs
compared to Tabs. 1–7 of Ref. [4]. Following Ref. [3]
we have included Kℓ3, Kℓ2, πℓ2 (and the related τ de-
cays) for |Vud| and |Vus|. Concerning the measurements
of (φs,Γs) from Bs → J/ψφ, we have combined the
CDF and LHCb results by taking the product of their
2D profile-likelihoods [10, 12]. Unfortunately, we could
not obtain the corresponding likelihood from DØ. The
impact of this omission is mild due to the smaller uncer-
tainties of the CDF and LHCb results. We have nei-
ther used the LHCb result on Bs → J/ψf0 as only
φs (not the 2D likelihood) was provided in Ref. [13].
But we have included the flavour-specific Bs lifetime
τFSBs

[14] providing an independent constraint on ∆Γs.
We analyse the DØ measurement of ASL with the pro-
duction fractions at 1.8-2 TeV according to Ref. [14]:

Observable Value and uncertainties Ref.

B(K → eνe) (1.584 ± 0.020) × 10−5 [15]

B(K → µνµ) 0.6347 ± 0.0018 [16]

B(τ → Kντ ) 0.00696 ± 0.00023 [16]

B(K→ µνµ)/B(K→ πνµ) 1.3344 ± 0.0041 [16]

B(τ → Kντ )/B(τ → πντ ) (6.53 ± 0.11) · 10−2 [17]

γ 68+10
−11

◦

[18]

∆md 0.507 ± 0.004ps−1 [15]

∆ms 17.731 ± 0.045ps−1 [22, 23]

ASL (−74 ± 19) × 10−4 [9]

φψφs vs. ∆Γs see text [10, 12]

Theoretical Parameter Value and uncertainties Ref.

bBBs 1.291 ± 0.025 ± 0.035 [18]

fBs/fBd
1.235 ± 0.008 ± 0.033 [18]

BBs/BBd
1.024 ± 0.013 ± 0.015 [18]

B̂K (0.732 ± 0.004 ± 0.036) [18]

fK 156.3 ± 0.3 ± 1.9MeV [18]

fK/fπ 1.1985 ± 0.0013 ± 0.0095 [18]

αs(MZ) 0.1184 ± 0 ± 0.0007 [15]

TABLE I. Experimental and theoretical inputs inputs added
or modified compared to Ref. [4] and used in our fits.

fs = 0.111±0.014 and fd = 0.339±0.031, corresponding
to ASL = (0.532 ± 0.039)adSL + (0.468± 0.039)asSL.

We summarise our results in Tabs. II and III and in
Fig. 1 (Sc. I) as well as Fig. 2 (Sc. III). Even in Sc. I
our fit to the data is significantly worse than in 2010 [4]:
While φ∆

d < 0 alleviates the discrepancy of ASL with the
SM, the LHCb result on φψφs prevents larger contribu-
tions from the Bs system to ASL. In Sc. I, we find pull
values for ASL and φ∆

s − 2βs of 2.9 σ and 2.7 σ respec-
tively (compared to 1.2 σ and 0.5 σ in Ref. [4]). We do
not quote pull values for ∆md,s in Sc. I, as these observ-
ables are not constrained once their experimental mea-
surement is removed. As before, two distinct solutions
exist for ∆s with a slight preference for Re ∆s < 0, owing
to sin(φ∆

s ) < 0 preferred by ASL and sin(φ∆
s − 2βs) ≥ 0

favoured by Amix
CP (Bs → J/Ψφ). (We have not included

the recent LHCb determination of ∆Γs > 0 [24] entailing
Re ∆s > 0). Tab. IV lists the p-values for various SM
hypotheses within our NP Scenarios (more information
can be found in Ref. [18]).

NEW PHYSICS IN Γs

12 OR Γd

12

Several authors have discussed the possibility of a siz-
able new CP-violating contribution to Γs12 to explain the
DØ measurement of ASL [19] by postulating new Bs de-
cay channels with large branching fraction. In such mod-
els also the width difference ∆Γs typically deviates from
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FIG. 1. Complex parameters ∆d (up) and ∆s (down) in Sce-
nario I. Here αexp ≡ α − φ∆

d /2. The coloured areas represent
regions with CL < 68.3 % for the individual constraints. The
red area shows the region with CL < 68.3 % for the combined
fit, with the two additional contours delimiting the regions
with CL < 95.45 % and CL < 99.73 %. The p-value for the
2D SM hypothesis ∆d = 1 (∆s = 1) is 3.2 σ (0.8 σ).

the SM prediction in Ref. [7, 20, 21]. Γs12 is dominated by
the CKM-favoured tree-level decay b → cc̄s. Any com-
petitive new decay mode will lower the total Bs width,
which LHCb finds as Γs = 0.657± 0.009± 0.008 [12], im-
plying Γs/Γd = 0.998 ± 0.014 ± 0.012 in excellent agree-
ment with the SM expectation 0 ≤ Γs/Γd − 1 ≤ 4 · 10−4

[21]. The new interaction will open new b → s decay
modes affecting precisely measured inclusive Bd and B+

quantities [4]. Furthermore, decays mediated by a new
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FIG. 2. Constraint on the complex parameter ∆ ≡ ∆d = ∆s

from the fit in Scenario III with same conventions as in fig. 1.
The p-value for the 2D SM hypothesis ∆ = 1 is 2.7 σ.
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FIG. 3. Constraints on Im δd, Im δs in Scenario IV. The 1D
68%CL intervals are Im δd = 0.92+1.11

−0.69 , Im δs = 1.2+1.6
−1.0. The

p-value for the 2D SM hypothesis Im δd = 0.097, Im δs =
−0.0059 is 3.2 σ.

particle with mass M > MW will add a term of or-
der M4

W /M
4 to Γs12/Γ

SM,s
12 , while ∆s normally receives

a larger contribution of order M2
W /M

2. In models in-
volving a fermion pair (f, f) in the final state, e.g. those
with an enhanced Bs → ττ decay [19], one can solve this
problem through chirality suppression. The extra contri-
bution toM s

12 is down by another factor ofm2
f/M

2, while

that to Γs12 is affected by the milder factor of m2
f/m

2
b .

Quantities like Γd,s will not be chirality suppressed.



4

Quantity 1σ 3σ

Re(∆d) 0.757+0.132
−0.083 0.76+0.61

−0.18

Im(∆d) −0.181+0.053
−0.045 −0.18+0.17

−0.20

|∆d| 0.778+0.136
−0.090 0.78+0.63

−0.19

Re(∆s) −0.895+0.082
−0.120 −0.89+0.21

−0.45

or 0.895+0.020
−0.018 0.89+0.43

−0.19

Im(∆s) −0.04+0.17
−0.17 −0.04+0.57

−0.54

|∆s| 0.895+0.120
−0.079 0.89+0.45

−0.14

φ∆
d + 2β [deg] (!) 17.+13.

−11. 17.+40.
−51.

φ∆
s − 2βs [deg] (!) −123.9+9.0

−13.6 −124.+26.
−70.8

or −61.8+13.4
−8.9 −62.+70.

−26.

ASL [10−4] (!) −15.5+14.3
−5.9 −15.+33.

−20.

ASL [10−4] −20.6+5.7
−6.5 −21.+22.

−24.

asSL − adSL [10−4] 33.+12.
−13. 33.+44.

−55.

adSL [10−4] (!) −35.8+6.9
−4.6 −36.+27.

−14.

asSL [10−4] (!) −3.+11.
−13. −3.+41.

−50.

∆Γd[ps−1] 0.00505+0.00084
−0.00129 0.0051+0.0023

−0.0033

∆Γs[ps−1] (!) −0.169+0.080
−0.023 −0.169+0.113

−0.041

or 0.168+0.041
−0.112

∆Γs[ps−1] −0.104+0.020
−0.025 −0.104+0.046

−0.075

or 0.1030+0.0058
−0.0043 0.103+0.071

−0.044

B → τν [10−4] (!) 1.471+0.075
−0.261 1.47+0.23

−0.90

B → τν [10−4] 1.482+0.073
−0.120 1.48+0.23

−0.59

TABLE II. CL intervals for the results of the fits in Scenario I.
The notation (!) means that the fit output represents the indi-
rect constraint with the corresponding direct input removed.

Phenomenologically it is much easier to postulate NP
in Γd12 rather than Γs12, because Γd12 is constituted by
Cabibbo-suppressed decay modes like b→ ccd. Also here
chirality suppression is welcome to avoid problems with
Md

12, but inclusive decay observables like the semilep-
tonic branching fraction or the unmeasured ∆Γd pose no
danger. Clearly, testing this hypothesis calls for a bet-
ter measurement of adSL. We have studied a Scenario IV

including the possibility of NP in Γd,s12 . We stress that
Sc. IV permits NP in the |∆F | = 1 transitions contribut-
ing to Γq12, but not in other |∆F | = 1 quantities entering
our fits, such as B(B → τν). Further no new CP phase
in b→ ccs, which would change φ∆

d,s, is considered. Such
a phase might further increase the hadronic uncertainty
from penguin pollution, which is not an issue in the SM
at the current levels of experimental precision.

Handy new parameters are

δq =
Γq12/M

q
12

Re (ΓSM,q
12 /MSM,q

12 )
, q = d, s, (4)

Re δq, Im δq amount to (∆Γq/∆Mq)/(∆ΓSM
q /∆MSM

q )

Quantity Deviation wrt
SM Sc. I Sc. II Sc. III

φ∆
d + 2β 2.7 σ 2.0 σ 2.6 σ 0.1 σ

φ∆
s − 2βs 1.0 σ 2.7 σ 1.0 σ 2.2 σ

|ǫK | 0.0 σ - 0.5 σ -

∆md 1.0 σ - 1.0 σ 0.8 σ

∆ms 0.0 σ - 0.4 σ 1.2 σ

ASL 3.7 σ 2.9 σ 3.7 σ 2.8 σ

adSL 0.9 σ 0.2 σ 0.8 σ 0.4 σ

asSL 0.2 σ 0.2 σ 0.2 σ 0.1 σ

∆Γs 0.0 σ 0.7 σ 0.1 σ 1.1 σ

B(B → τν) 2.8 σ 0.7 σ 2.6 σ 1.1 σ

B(B → τν), ASL 4.6 σ 2.6 σ 4.1 σ 3.0 σ

φ∆
s − 2βs, ASL 3.4 σ 2.5 σ 3.4 σ 3.1 σ

B(B → τν), φ∆
s − 2βs, ASL 4.1 σ 2.2 σ 4.1 σ 2.9 σ

TABLE III. Pull values for selected parameters and observ-
ables in SM and Scenarios I, II, III, in terms of the number of
equivalent standard deviations between the direct measure-
ment and the full indirect fit predictions.

Hypothesis Sc. I Sc. II Sc. III
Im∆d = 0 3.2σ 2.9σ
Im∆s = 0 0.2σ
∆d = 1 3.2σ 1.3σ 2.7σ
∆s = 1 0.8σ
Im∆d = Im∆s = 0 2.8σ
∆d = ∆s = 1 2.7σ

TABLE IV. p-values for various Standard Model hypotheses
in the framework of three NP Scenarios considered. These
numbers are computed from the χ2 difference with and with-
out the hypothesis constraint, interpreted with the appropri-
ate number of degrees of freedom.

and −aqSL/(∆ΓSM
q /∆MSM

q ), respectively. The best fit

values of the SM predictions are δSM
s = 1 − 0.0059 i and

δSM
d = 1. + 0.097 i. Re δd is experimentally only weakly

constrained. We illustrate the correlation between Im δd
and Im δs in Fig. 3, relegating correlations of Re δs with
Im δd,s to Ref. [18]). The p-value of the SM hypothesis
∆d = ∆s = 1, δd,s = δSM

d,s is 2.8 σ.

We stress that too large values for |δs−δ
SM
s | are in con-

flict with other observables as explained in the previous
paragraph. We have also studied Scenario IV without NP
in the Bs sector (∆s = 1 and δs = δs,SM). It could accom-
modate the main anomalies by improving the fit by 3.5σ,
but with large contributions to Γd12: Im δd = 1.48+0.92

−0.65.
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CONCLUSIONS

We have performed new global fits to flavour physics
data in scenarios with generic NP in the Bd−Bd and
Bs−Bs mixing amplitudes, as defined in Ref. [4]. Our
results represent the status of the end of the year 2011.
Unlike in summer 2010 the two complex NP parameters
∆d and ∆s (parametrising NP in Md,s

12 ) are not suffi-
cient to absorb all discrepancies with the SM, namely the
DØ measurement of ASL and the inconsistency between
B(B → τν) and Amix

CP (Bd → J/ΨK). Still in Scenario
I, which fits ∆d and ∆s independently, we find the SM
point ∆d = ∆s = 1 disfavoured by 2.7 σ; this value was
3.6 σ in our 2010 analysis [4] We notice that data still al-
low sizeable NP contributions in both Bd and Bs sectors
up to 30-40% at the 3 σ level. The preference of Sc. I
over the SM mainly stems from the fact that B(B → τν)
favours φ∆

d < 0 which alleviates the problem with ASL.

In order to fully reconcile ASL with φψφs we have ex-
tended our study to a Scenario IV, which permits NP
in both Md,s

12 and Γd,s12 . While this scenario can accom-
modate all data, it is difficult to find realistic models in
which the preferred NP contributions to Γs12 (composed
of Cabibbo-favoured tree-level decays) comply with other
measurements. There are fewer phenomenological con-
straints on the Cabibbo-suppressed quantity Γd12; a pos-
sible conflict withMd

12 can be circumvented with chirality
suppression. NP in Md

12 and Γd12 with the Bs system es-
sentially SM-like appears thus as an interesting possibil-
ity, requiring only a mild statistical upward fluctuation in
the DØ data on ASL. Clearly, independent measurements
of adSL, asSL and/or asSL − adSL are necessary to determine
whether scenarios with NP in Γd12 and/or Γs12 are a viable
explanation of discrepancies in ∆F = 2 observables with
respect to the Standard Model.

We thank the CDF and LHCb collaborations for pro-
viding us with the 2D profile likelihood functions needed
for our analyses. A.L. is supported by DFG through
a Heisenberg fellowship. U.N. acknowledges support by
BMBF through grant 05H09VKF.
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