
SFB/CPP-11-65 TTP11-30 CP3-Origins

Minimal Flavour Violation and
Neutrino Masses without R-parity

Giorgio Arcadi1, Luca Di Luzio2, Marco Nardecchia3

1SISSA and INFN, Sezione di Trieste, Via Bonomea 265, I-34136 Trieste, Italy
2Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT),

D-76128 Karlsruhe, Germany
3CP3-Origins and Danish Institute for Advanced Study (DIAS), University of Southern

Denmark, Campusvej 55, DK-5230, Odense M, Denmark

Abstract

We study the extension of the Minimal Flavour Violation (MFV) hypothesis

to the MSSM without R-parity. The novelty of our approach lies in the obser-

vation that supersymmetry enhances the global symmetry of the kinetic term

and in the fact that we consider as irreducible sources of the flavour symmetry

breaking all the couplings of the superpotential including the R-parity violat-

ing ones. If R-parity violation is responsible for neutrino masses, our setup

can be seen as an extension of MFV to the lepton sector. We analyze two

patterns based on the non-abelian flavour symmetries SU(3)4 ⊗ SU(4) and

SU(3)5. In the former case the total lepton number and the lepton flavour

number are broken together, while in the latter the lepton number can be bro-

ken independently by an abelian spurion, so that visible effects and peculiar

correlations can be envisaged in flavour changing charged lepton decays like

ℓi → ℓjγ.
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1 Introduction

The flavour problem can be viewed as the clash between the theoretical expectation of New

Physics (NP) at the TeV scale and the experimental observations in Flavour Changing

Neutral Current (FCNC) processes which severely constrain the scale ΛNP of the NP

beyond the 104 TeV domain (for a review see e.g. Ref. [1]). If we insist in keeping ΛNP ≈

TeV for naturalness, then we have to conclude that the flavour structure of the NP is

highly non-generic.

The Minimal Flavour Violation (MFV) hypothesis [2] is a powerful organizing principle

which states that the sources of flavour symmetry breaking of the NP are aligned to the

Standard Model (SM) Yukawas. This ansatz provides an automatic suppression of the NP

contribution to the flavour violating observables and thus a solution of the aforementioned

flavour problem (see for instance Ref. [3]).

If MFV is at play in the quark sector, it is reasonable then to assume it also for

leptons. However, the extension of MFV to the lepton sector is less straightforward, since

the mechanism itself generating neutrino masses is unknown and several scenarios can be

envisaged. Starting from Ref. [4] many formulations of Minimal Lepton Flavour Violation

(MLFV) have been proposed and analyzed [5, 6, 7, 8, 9, 10, 11].

In this work we consider another interesting possibility in the context of the Minimal

Supersymmetric SM (MSSM) without R-parity (for a review see e.g. Ref. [12]). Our

analysis is moved by two simple observations about the MSSM:

1. The largest group of unitary transformations commuting with the gauge group (and

with supersymmetry) is U(3)q̂ ⊗ U(3)ûc ⊗ U(3)d̂c ⊗ U(3)êc ⊗ U(4)L̂ ⊗ U(1)ĥu
.

The presence of the U(4)L̂ factor is due to the fact that the superfields ℓ̂ and ĥd

have the same quantum numbers, so that it is possible to rearrange them into a

4-dimensional flavour multiplet L̂.

2. The MSSM has already all the degrees of freedom sufficient to generate neutrino

masses and mixings through R-parity Violating (RPV) interactions [13], without

the need of any extra state.

Thus the aim of our work is twofold: we first generalize the MFV expansion of the

soft terms by including also the RPV couplings as the original sources of flavor breaking

and then we connect the RPV spurions with the neutrino sector observables, providing

an alternative scenario of MLFV.

Our approach towards the R-parity differs from that of Refs. [14, 15] in the fact that

we do not aim at an explanation of the smallness of the RPV couplings. We simply

treat them, in a more democratic way, on the same ground of all the other couplings of

the superpotential. Remarkably, the values of the RPV couplings needed in order to fit
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neutrino masses are of the same order of magnitude of the SM Yukawas of the first and

second families.

In the following we analyze two symmetry patterns based on the flavour symmetries

SU(3)4 ⊗ SU(4) and SU(3)5 ⊗ U(1)L ⊗ U(1)B. In order to exemplify the connection of

the RPV spurions with the neutrino observables we introduce a toy model in which only

µi and λ′i33 are switched on, though a similar analysis could be performed also in more

realistic RPV models of neutrino masses.

In the case of the former flavour symmetry the breaking scale of lepton number is

linked to that of lepton flavour violation (LFV), thus implying small effects in LFV

physics. On the other hand the latter flavour symmetry allows to break the lepton number

independently by means of an abelian spurion, so that visible effects are in principle

achievable. We finally study the correlations among the flavour changing charged lepton

decays ℓi → ℓjγ.

2 Minimal Flavour Violation without R-parity

The starting point of the MFV idea is based on the observation that the largest group of

unitary transformations commuting with the SM gauge group is

GSM
kin = U(3)q ⊗ U(3)uc ⊗ U(3)dc ⊗ U(3)ec ⊗ U(3)ℓ ⊗ U(1)h . (1)

This corresponds to the global symmetry of the gauge invariant kinetic term of the SM

fields

Φ = (qi, u
c
i , d

c
i , e

c
i , ℓi, h) , (2)

with i spanning over the three families. Notice that ℓi and h have the same gauge quantum

numbers and only the Lorentz structure prevents the global symmetry of the kinetic term

from being larger.

On the other hand the situation in the MSSM is qualitatively different since the super-

symmetrization of the SM spectrum restore the symmetry between scalars and fermions,

thus enhancing the global symmetry of the kinetic term.

In order to make apparent this enhancement it is useful to define a generalized lepton

multiplet L̂α = (ℓ̂i, ĥd) and rewrite the set of chiral superfields of the MSSM in the

following way

Φ̂ =
(

q̂i, û
c
i , d̂

c
i , ê

c
i , L̂α, ĥu

)

, (3)

where a second Higgs doublet is introduced in order to ensure anomaly cancellation. Then

the global symmetry of the kinetic term

∫

d4θ Φ̂†e2gV̂ Φ̂ (4)
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turns out to be

GMSSM
kin = U(3)q̂ ⊗ U(3)ûc ⊗ U(3)d̂c ⊗ U(3)êc ⊗ U(4)L̂ ⊗ U(1)ĥu

. (5)

Notice that this holds irrespectively of the fact that R-parity is or not an exact symmetry

of the full MSSM lagrangian.

After decomposing GMSSM
kin in abelian and non-abelian factors we can identify a linear

combination of the six U(1) generators with the generator of SM hypercharge. It is

possible then to define the generalized flavour group of the MSSM as

GF = SU(3)q̂ ⊗ SU(3)ûc ⊗ SU(3)d̂c ⊗ SU(3)êc ⊗ SU(4)L̂ , (6)

while the abelian factors can be rearranged in the following way

GA = U(1)ûc ⊗ U(1)d̂c ⊗ U(1)êc ⊗ U(1)L̂ ⊗ U(1)B , (7)

where B is the baryon number. GF and GA are explicitly broken by the most general

MSSM superpotential and soft lagrangian.

Since the MSSM has many sources of flavour violation it is useful to have a rationale

in order to select the origin of this breaking. Let us imagine that the flavour symmetry

is broken at the scale ΛF by some unknown mechanism. Then, if the breaking of SUSY

is due to a flavour universal mechanism (like in gauge mediation [16]) and the scale of

mediation M is smaller than ΛF , it is natural to expect that the soft terms feel the

breaking of flavour only through supersymmetric interactions.

Having in mind such a MFV framework we assume that the original source of flavour

violation is given by the the couplings of the most general MSSM superpotential

W = Y ij
U q̂iû

c
jĥu + Y αij

D L̂αq̂id̂
c
j + 1

2
Y αβi

E L̂αL̂β ê
c
i + µαĥuL̂α + 1

2
(λ

′′

)ijkûc
i d̂

c
jd̂

c
k , (8)

where the gauge structure has been omitted for simplicity. Notice also the antisymmetry

of the couplings Y αβi
E = −Y βαi

E and (λ
′′

)ijk = −(λ
′′

)ikj.

In order to formally restore the invariance with respect to the flavor group we treat

the couplings in Eq. (8) as spurions, with quantum numbers under GF :

YU ∼ (3̄, 3̄, 1, 1, 1) (9)

YD ∼ (3̄, 1, 3̄, 1, 4̄) (10)

YE ∼ (1, 1, 1, 3̄, 6) (11)

µ ∼ (1, 1, 1, 1, 4̄) (12)

λ
′′

∼ (1, 3̄, 3, 1, 1) , (13)

where our conventions are such that each chiral superfield in Φ̂ transforms according to

the fundamental representation of the relative group factor of GF .
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Following the MFV principle we can expand the soft terms (cf. Appendix A for the

notation) by means of the spurions in Eqs. (9)–(13)

(

m̃2
q

)i

j
= m̃2

(

cqδ
i
j + d1

q Y ik
U (Y ∗

U )jk + d2
q Y αik

D (Y ∗
D)αjk

)

(m̃2
uc)

i
j = m̃2

(

cucδi
j + d1

uc Y ki
U (Y ∗

U )kj + d2
uc(λ

′′

)ikl(λ
′′∗)jkl

)

(m̃2
dc)

i
j = m̃2

(

cdcδi
j + d2

dc Y αki
D (Y ∗

D)αkj + d2
dc(λ

′′

)kil(λ
′′∗)kjl

)

(m̃2
ec)

i
j = m̃2

(

cecδi
j + d1

ec Y αβi
E (Y ∗

E)αβj

)

(m̃2
L)

α
β = m̃2

(

cLδα
β + d1

L Y αγk
E (Y ∗

E)βγk + d2
L Y αkl

D (Y ∗
D)βkl + d3

L µαµ∗
β/|µ|

2
)

Bα = m̃2
(

cB µα/|µ| + d1
B Y αkl

D (Y ∗
D)βkl µ

β/|µ| + d2
B Y αβk

E (Y ∗
E)γβk µγ/|µ|

)

Aij
U = A

(

cAU
Y ij

U + d1
AU

Y kj
U (Y ∗

D)αkl Y
αil
D + d2

AU
Y ik

U (λ
′′∗)klm(λ

′′

)jlm

+d3
AU

Y ik
U (Y ∗

U )lk Y lj
U

)

Aαij
D = A

(

cAD
Y αij

D + d1
AD

Y αkj
D (Y ∗

U )kl Y
il
U + d2

AD
Y βij

D (Y ∗
E)βγk Y αγk

E

+d3
AD

Y αik
D (λ

′′∗)lkm(λ
′′

)ljm + d4
AD

Y αil
D (Y ∗

D)γkl(YD)γkj

+d5
AD

Y αkj
D (Y ∗

D)γkl(YD)γil + d6
AD

Y αkl
D (Y ∗

D)γkl(YD)γij

+d7
AD

Y βij
D µ∗

βµ
α/|µ|2

)

Aαβi
E = A

(

cAE
Y αβi

E + d1
AE

Y
[αγi
E (Y ∗

D)γkl Y
β]kl
D + d2

AE
Y αβk

E (Y ∗
E)γδk Y γδi

E

+d3
AE

Y
[αγk
E (Y ∗

E)γδk Y
β]δi
E + d4

AE
Y

[αγi
E µ∗

γµ
β]/|µ|2

)

Aijk

λ′′ = A
(

cA
λ
′′
(λ

′′

)ijk + d1
A

λ
′′
(λ

′′

)ljk(Y ∗
U )ml(YU)mi

+d2
A

λ
′′
(λ

′′

)i[jl(Y ∗
D)αml(YD)αmk]

+d3
A

λ
′′
(λ

′′

)i[jm(λ
′′∗)lnm(λ

′′

)lnk] + d4
A

λ
′′
(λ

′′

)imn(λ
′′∗)lmn(λ

′′

)ljk
)

,

(14)

where the expansion is truncated at the third order in the spurions. The squared brackets

stand for anti-symmetrization and we also defined |µ|2 ≡
∑

α=1,...,4 |µ
α|2.

In absence of R-parity all the neutral scalar components of L̂α and ĥu develop a VEV

in order to trigger the electroweak symmetry breaking SU(2)L ⊗ U(1)Y → U(1)Q. Given

the SU(4)L̂ symmetry it is always possible, without loss of generality, to redefine the L̂α

superfield in such a way that only the fourth component acquires a VEV. Then we define

operatively the Higgs in such a way that it corresponds to the component which develops

a VEV, ĥd ≡ L̂4, while the leptons do not, ℓ̂i ≡ L̂i.

Despite our notation makes explicit the underlying non-abelian flavour symmetry

SU(3)4 ⊗ SU(4), it is also useful to translate it into the more common SU(3)5 language.

This connection is provided in Appendix A. Then we can formally split the superpotential

in Eq. (8) in an RPC and an RPV term

WRPC = yij
U q̂iû

c
jĥu + yij

Dĥdq̂id̂
c
j + yij

E ĥdℓ̂iê
c
j + µ ĥuĥd , (15)

WRPV = µiĥuℓ̂i + 1
2
λijkℓ̂iℓ̂j ê

c
k + (λ

′

)ijkℓ̂iq̂j d̂
c
k + 1

2
(λ

′′

)ijkûc
i d̂

c
jd̂

c
k , (16)
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and similarly for the soft terms (cf. again Appendix A).

The MFV expansion in Eq. (14) can be easily decomposed in the SU(3)5 language by

means of the dictionary given in Eq. (49) of Appendix A

(

m̃2
q

)i

j
= m̃2

(

cqδ
i
j + d1

q(yUy†
U)i

j + d2
q

[

(yDy†
D)i

j + (λ′)likλ′∗
ljk

])

(m̃2
uc)

i
j = m̃2

(

cucδi
j + d1

uc(y
†
UyU)i

j + d2
uc(λ

′′

)ikl(λ
′′∗)jkl

)

(m̃2
dc)

i
j = m̃2

(

cdcδi
j + d1

dc

[

(y†
DyD)i

j + (λ′)lkiλ′∗
lkj

]

+ d2
dc(λ

′′

)kil(λ
′′∗)kjl

)

(m̃2
ec)

i
j = m̃2

(

cecδi
j + d1

ec

[

2(y†
EyE)i

j + λlkiλ∗
lkj

])

(m̃2
ℓ)

i
j = m̃2

(

cLδi
j + d1

L

[

(yEy†
E)i

j + λilkλ∗
jlk

]

+ d2
L(λ′)ilkλ′∗

jlk + d3
L µiµ∗

j/|µ|
2
)

(m̃2
d)

i
= m̃2

(

d1
Lλilk(y∗

E)lk + d2
L(λ′)ilk(y∗

D)lk + d3
L µiµ∗/|µ|2

)

m̃2
hd

= m̃2
(

cL + d1
L Tr(yEy†

E) + d2
L Tr(yDy†

D) + d3
L µ µ∗/|µ|2

)

b = m̃2 (cBµ/|µ|+ . . .)

bi = m̃2 (cBµi/|µ| + . . .)

aij
U = A

(

cAU
yij

U + . . .
)

aij
D = A

(

cAD
yij

D + . . .
)

aij
E = A

(

cAE
yij

E + . . .
)

(aλ)
ijk = A

(

cAE
λijk + . . .

)

(aλ
′ )ijk = A

(

cAD
(λ′)ijk + . . .

)

aijk

λ′′ = A
(

cA
λ
′′
(λ

′′

)ijk + . . .
)

,

(17)

where for simplicity we have truncated the expansion at the second order in the spurions.

If R-parity is an exact symmetry of the MSSM then neutrinos are massless and there

is no lepton flavor violation. Consequently the flavor violation in the lepton sector can

be linked to the amount of R-parity violation. For instance the RPV couplings in the

expansion of m̃2
ℓ in Eq. (17) are responsible for flavour violating mass insertions leading

to processes like ℓi → ℓjγ.

Though RPV can be the source of neutrino masses, the MFV expansion is meaningful

also in general, being potentially related to not yet measured RPV couplings. However in

the next sections we will focus our attention on the case where the neutrino masses are

generated by RPV couplings.

3 Neutrino Masses in supersymmetric MFV

In the previous section we formally restored the invariance under the flavour group GF

by promoting all the supersymmetric couplings in Eq. (8) to spurions. Here we want to

provide the link between these spurions and the physical observables. Our guideline is

to break the flavour group in a minimal way, namely we consider the minimal amount
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of flavour breaking which is able to reproduce the correct pattern of fermion masses and

mixings.

In the limit of massless neutrinos, the connection of the spurions with the flavour

structure of the charged fermions is straightforward. From the superpotential

W ⊃ Y ij
U q̂iû

c
jĥu + Y 4ij

D ĥdq̂id̂
c
j + Y 4ij

E ĥdℓ̂iê
c
j , (18)

we can identify the relevant flavour violating spurions in terms of known physical observ-

ables, up to the parameter tan β ≡ vu/vd. Indeed it is always possible to choose a basis

such that

Y ij
U = (V †m̂U )ij/vu , Y 4ij

D = m̂ij
D/vd , Y 4ij

E = m̂ij
E/vd , (19)

where V is the CKM matrix and m̂U , m̂D, m̂E are the diagonal charged-fermion masses.

On the other hand the experimental evidence of neutrino masses and mixings makes

clear that the flavour group must be further broken. The standard way to introduce

neutrino masses in the context of supersymmetric MFV is to extend the field content of

the MSSM by introducing three SM-singlet chiral superfields [14, 15] and thus applying

the seesaw mechanism [17].

Remarkably the MSSM without R-parity gives the possibility of generating neutrino

masses and mixings without the need of additional ingredients. This is the approach we

pursue in this work. As we are going to show soon, neutrino masses are fitted by moderate

small values of the R-parity violating couplings µi/µ, λ and λ′, of O(10−4) or even larger.

From this point of view the issue of the smallness of neutrino masses could be brought

back at the same conceptual level of understanding the flavour structure of the charged

fermions, featuring Yukawa couplings also of O(10−6) as in the case of the electron.

The formulae for the neutrino mass matrix in terms of the RPV couplings are collected

for completeness in Appendix C. The leading contributions can be schematically written

as

mν ∼

(

MZ

m̃

)2
µiµj

m̃
,

3 λ′2

8π2

m̂2
D

m̃
,

λ2

8π2

m̂2
E

m̃
, (20)

where for simplicity we set M1 ≈ M2 ≈ A ≈ µ ≡ m̃ and we neglected the flavour structure

of λ′ and λ.

For later convenience we split the neutrino mass matrix in a tree level and a one-loop

term

mν = m(tree)
ν + m(loop)

ν , (21)

whose diagonalization through the PMNS matrix Û yields

mν = Ûm̂νÛ
T , (22)

where m̂ν is the diagonal neutrino mass matrix.
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Finally we comment about the baryon number violating coupling λ′′. According to our

guideline at the beginning of this section, this coupling does not give any contribution to

the construction of fermion masses and mixings and thus should be absent as an irreducible

source of flavor breaking. However λ′′ can still be induced by the other spurions. If the

U(1) factors are part of the flavour symmetry that we want to formally restore, then

λ′′ cannot be generated by the baryon number conserving couplings YU , YE , YD and µ.

On the other hand if we consider only the non-abelian symmetry SU(3)4 ⊗ SU(4), the

coupling λ′′ can be induced in a holomorphic way [15]:

λ′′ ∼ YU(YD)2(YE)3 , (23)

where the proper contractions with the SU(3)q̂, SU(3)êc and SU(4)L̂ epsilon tensors

are understood. Actually, it turns out that the tensor structure forces the invariant to

span over RPV couplings and light generation Yukawas, thus providing an automatic

suppression of λ′′. Remarkably we are able to satisfy the bounds from proton decay

without invoking any ad hoc conservation or small breaking of the U(1)B symmetry, but

just requiring our minimality condition regarding the identification of the flavor spurions.

3.1 A toy model

When all the RPV spurions are switched on there is an overabundance of free parameters,

which cannot all be fixed by the constraints from the neutrino sector. According to our

minimality principle we are going to consider scenarios in which only a minimal number

of spurions are switched on in order to reproduce neutrino masses and mixings.

Let us illustrate with a toy model of neutrino masses how is it possible to link the

spurions with the neutrino observables. Our assumptions are the following:

1. m
(tree)
ν ≫ m

(loop)
ν

This readily implies a hierarchical neutrino spectrum. Indeed, in the limit in which

only the couplings µi are switched on the neutrino mass matrix has rank equal to

one, implying only one massive neutrino. Thus we can write

(m(tree)
ν )ij ≈ m3 Û i3Û j3 , (24)

where m3 has to satisfy m3 ≈
√

∆m2
atm = 4.9 · 10−2 eV. Taking M1 = M2 ≡ m̃ ≫

MZ in Eq. (59) of Appendix C, we get

µi

µ
= 2.4 · 10−5

(

m̃

1 TeV

)1/2(
tanβ

10

)

Û i3 . (25)

2. In order to complete the structure of neutrino mass matrix, we need another source

of flavor breaking from the trilinear couplings. Among these couplings we turn on,
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as an example, only λ′i33. Our assumption is that these couplings are completely

responsible for the second neutrino. This implies

(m(loop)
ν )ij ≈ m2 Û i2Û j2 , (26)

where m2 &
√

∆m2
sol = 8.7 · 10−3 eV. At the leading order in the MFV expansion

and taking cAD
= cdc = cq = 1 (cf. Eq. (63) in Appendix C), we get

(λ′)i33 = 3.3 · 10−5
( m2

8.7 · 10−3 eV

)1/2
(

m̃

1 TeV

)1/2(
tan β

10

)1/2

Û i2 . (27)

Once the relevant spurions are fixed in terms of the neutrino masses and mixings one can

use the MFV expansion in order to make predictions for LFV processes.

In order to properly determine LFV processes, one as to consider several kind of

contributions (see [18] for an example of computation). Since we are interested in an

order of magnitude estimate of the processes induced in our MLFV setup, we will just

focus on the effects induced by the non-diagonal entries in the sfermion mass matrices due

to the spurions. In this case the normalized branching ratios for the processes ℓi → ℓjγ

are given by [19]:
BR(ℓi → ℓj γ)

BR(ℓi → ℓjνiν̄j)
≈

α3

G2
F

δ2
ij

m̃4
tan2 β , (28)

where the flavour violating mass insertion δij can be expressed as combinations of neu-

trino masses and elements of the PMNS matrix, according to the MFV expansion. For

instance in our toy model where only the couplings µi and λ′i33 are switched on, δLL
ij reads

(cf. Eq. (17))

δLL
ij =

∆LL
ij

m̃2
ℓ

≈
1

cL

(

d2
L(λ′)i33λ′∗

j33 + d3
L

µiµ∗
j

|µ|2

)

, (29)

where ∆LL
ij is the flavour violating part of m̃2

ℓ . As it is evident from Eq. (29), the mass

insertions scale like the square of the RPV parameters. Given the following estimation of

the branching ratios in Eq. (28)

BR(ℓi → ℓj γ)

BR(ℓi → ℓjνiν̄j)
≈ 10−27

(

m̃

1TeV

)−4(
tan β

10

)2(
λ′

10−5

)4

, (30)

one concludes that it is not possible to accomplish observable rates, in view of the current

experimental bounds showed in Table 1.

Let us mention that rates of µ → e γ closer to the experimental sensitivity can be

obtained when neutrino masses are fitted by trilinears featuring first families indices, like

for instance λ′i11. In such a case the suppression due to the down-quark mass in the

expression of the neutrino mass matrix (cf. Eq. (63) in Appendix C) allows for larger

values of λ′i11 even of O(10−2). However such a large coupling may be in conflict with
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LFV process current bound

BR(µ → e γ) 2.4 × 10−12 [20]

BR(τ → e γ) 1.1 ×10−7 [21]

BR(τ → µ γ) 4.5 ×10−8 [22]

BR(µ → 3 e) 1.1 ×10−11 [23]

BR(τ → 3 e) 3.6 ×10−8 [23]

BR(τ → 3 µ) 3.2 ×10−8 [23]

CR(µ → e , T i) 4.3 × 10−12 [23]

CR(µ → e , Au) 7.0 × 10−12 [23]

Table 1: Summary of the current experimental bounds on LFV processes. For later

convenience we reported also the current bounds on ℓi → ℓjℓkℓk decays and µ → e

conversions in nuclei.

other flavour violating observables [12]. A complete analysis of such scenarios and a more

realistic model for neutrino masses is postponed to future works.

In the next section we are going to consider another symmetry pattern in which

the breaking of the lepton number is separated from that of lepton flavour. In this

setup the mass insertions are enhanced by a factor 1/ε2
L, where εL is related to the

amount of breaking of the total lepton number, thus allowing to lift the rates towards the

experimental sensitivity.

4 A predictive scenario: SU(3)5 ⊗ U(1)L ⊗ U(1)B

In the previous section we have seen that the contribution to LFV processes are generi-

cally well below the present experimental bounds. This is due to fact that the spurions

responsible for neutrino masses break simultaneously both the total lepton number and

the non-abelian part of the flavor group. As it has been shown in [4, 9], in order to

have measurable rates for the flavor changing radiative charged lepton decays, one has to

separate the source of breaking of lepton number from that of LFV.

This leads us to consider a different scenario based on another subgroup of the original

kinetic symmetry GMSSM
kin (cf. Eq. (5)). We assume that the symmetry that we want to

formally restore is given by SU(3)5 ⊗U(1)L ⊗U(1)B, where L and B are the total lepton

and baryon number. The U(1)B factor is needed in order to properly suppress dangerous

contributions to the proton decay rate (for the relevant bounds see for instance Ref. [24]).

In this setup the R-parity violating couplings µi, λ, λ′ and λ′′ can be split in two

parts, one responsible for the breaking of lepton and baryon number and the other for
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the breaking of the flavor group

µi = εLµ̃i , λ = εLλ̃ , λ′ = εLλ̃
′

, λ′′ = εBλ̃
′′

. (31)

The quantum numbers of the flavor spurions under SU(3)5 are given by

yU ∼ (3̄, 3̄, 1, 1, 1)

yD ∼ (3̄, 1, 3̄, 1, 1)

yE ∼ (1, 1, 1, 3̄, 3̄)

µ̃ ∼ (1, 1, 1, 1, 3̄)

λ̃ ∼ (1, 1, 1, 3̄, 3)

λ̃
′

∼ (3̄, 1, 3̄, 1, 3̄)

λ̃
′′

∼ (1, 3̄, 3, 1, 1) ,

(32)

while εL and εB have charge −1 and +1 respectively under U(1)L and U(1)B. The

corresponding MFV expansion is reported in Eq. (54) of Appendix B.2.

In this case the rates of the LFV processes are dominated by the lepton and baryon

number preserving (but flavor changing) slepton mass insertions, which depend only on

the parameters µ̃, λ̃, λ̃
′

. Other RPV vertex contributions depend on quantities which

violate total lepton number and hence are suppressed by the εL factor.

As we are going to show, peculiar correlations among physical observables will emerge

due the MFV expansion. For definiteness we consider an example based on the toy model

of neutrino masses already introduced in the previous section, where only the spurions µi

and λ′i33 are switched on.

In such a case the relevant off-diagonal terms i 6= j induced by this two spurions in

(m̃2
ℓ)

i
j and aij

E are given by (cf. Eq. (54) in Appendix B)

(

m̃2
ℓ

)i

j
= m̃2

(

d2
ℓ(λ̃

′)i33λ̃′∗
j33 + d3

ℓ

µ̃iµ̃∗
j

|µ|2

)

, (33)

aij
E = A yjj

E

(

d4
aE

µ̃∗
j µ̃

i

|µ|2
+ d5

aE
λ̃′∗

j33(λ̃
′)i33

)

. (34)

In our setup it turns out that the LL mass insertions, and thus (m̃2
ℓ)

i
j , give the dominant

11



contribution to the LFV processes1. Focusing on δLL, using (24) and (26), we get:

(

δLL
)i

j
=

1

cℓ

[

d3
ℓ

µ̃iµ̃∗
j

|µ|2
+ d2

ℓ(λ̃
′)i33λ̃′∗

j33

]

=
1

ε2
Lcℓ

[

d3
ℓ

(

tanβ

MZ

)2(
M1M2

M1c2
W + M2s2

W

−
M2

Z

µ
sin 2β

)

m3 Û i3(Û j3)∗

+d2
ℓ

8π2m̃2

3µ tanβ m2
b

m2 Û i2(Û j2)∗
]

. (35)

Notice that the factor 1/ε2
L in the mass insertions implies an enhancement of 1/ε4

L in the

rates. Indeed it is possible to estimate the branching ratios in the following way

BR(ℓi → ℓj γ)

BR(ℓi → ℓjνiνj)
≈ 10−27

(

1

εL

)4(
m̃

1 TeV

)−4(
tanβ

10

)2(
λ′

10−5

)4

, (36)

for values of εL ∼ 10−(3÷4) the rates of the three relevant processes can get close to the

experimental sensitivities, depending on the values of SUSY parameters.

Notice that the coupling εL cannot be arbitrarily small. Indeed, by imposing the

relations in Eqs. (25)–(27) and by requiring that the flavor violating parameters µ̃ and λ̃′

are at most of order one, we can estimate the lower bound εL & 10−5.

Given the potential detectability of these processes it is now interesting to compute

the ratio among the branching ratios of the LFV channels. The correlation of these

quantities with the neutrino observables allows for peculiar predictions, hence giving a

way to distinguish our realization of MFV from other setups. In our model of neutrino

masses the ratio between two branching ratios is given by the ratio of the mass insertions

squared and it is parametrized by

BR(ℓj → ℓiγ)

BR(ℓk → ℓmγ)
=

|Û i2(Û j2)∗ + c Û i3(Û j3)∗|2

|Ûm2(Ûk2)∗ + c Ûm3(Ûk3)∗|2
, (37)

where the constant c can be estimated as

c ≈ 1.4 × 10−1

(

d3
ℓ

d2
ℓ

)(

tan β

10

)3
( µ

1 TeV

)

(

m̃

1 TeV

)−2(
MG

300 GeV

)

, (38)

where M1 = M2 ≡ MG and we have imposed m2 =
√

∆m2
sol and m3 =

√

∆m2
atm .

From Eq. (38) it is evident that, depending on the SUSY parameters, the mass insertions

are dominated either by the trilinear (c ≪ 1) or the bilinear (c ≫ 1) couplings. It is

possible then to identify two asymptotic regimes in which the ratio between the LFV

branching ratios have a simple analitical expression:

1The term aE is responsible for the LR mass insertions. However, according to the analysis of Refs. [19],

δLR is negligible provided that δLR
ij ≪ (mℓi

/m̃) tanβ δLL
ij . In our case, assuming all the coefficients of

the MFV expansion to be of order one, this condition translates into |(m̃/A) tanβ| ≫ 1.
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• |c| ≪ 1

In this case the mass insertions are dominated by the contribution from the trilin-

ear couplings (λ̃′)i33. Since the ratios BR(µ → eγ)/BR(τ → µγ) and BR(µ →

eγ)/BR(τ → eγ) show only a slight dependence from the Maiorana phase δ, we

take δ = 0, π and obtain

BR(µ → eγ)

BR(τ → µγ)
≈

|Û12|2

|Û32|2
=

s2
12c

2
13

(∓c23s12s13 − c12s23)2
≈ 0.53 ÷ 1.75 , (39)

BR(µ → eγ)

BR(τ → eγ)
≈

|Û22|2

|Û32|2
=

(c12c23 ∓ s12s13s23)
2

(∓c23s12s13 − c12s23)2
≈ 0.37 ÷ 2.4 , (40)

where the extrema of the range are obtained by scanning over the 2-σ values of the

mixing angles (cf. Table 2). In this case, the three branching ratios are of the same

order of magnitude. Notice that the LFV effects depend on the PMNS matrix Û i2,

differently with respect to other MLFV setups (cf. for instance Table 3).

• |c| ≫ 1

In this case the mass insertions are dominated by the bilinear couplings µi. Then

we can derive the following functional behaviors for the two relevant ratios

BR(µ → eγ)

BR(τ → µγ)
≈

|Û13|2

|Û33|2
≈

s2
13

c2
13c

2
23

≈ 0.007 ÷ 0.07 , (41)

BR(µ → eγ)

BR(τ → eγ)
≈

|Û23|2

|Û33|2
≈

s2
23

c2
23

≈ 0.7 ÷ 1.6 . (42)

Compared to the previous case we observe an enhancement of BR(τ → µ γ) com-

pared to the other branching ratios. This results coincides with the one found in

Ref. [11] in the case of inverted hierarchy of neutrino masses.

Furthermore, in order to study the general case we vary the parameter c in the range

[−100, 100] and the parameters of the neutrino sector according to Table 2 as before. The

results are plotted in Fig. 1. In Fig. 2 we report the correlation between the two ratios

BR(µ → e γ)/BR(τ → µ γ) and BR(µ → e γ)/BR(τ → e γ).

From Fig. 1 it is possible to see that, away from the two asymptotic regimes, there

are regions of strong enhancement or suppression of the ratios. Indeed we can estimate

the values of the c parameter for which BR(ℓi → ℓj γ) → 0

BR(µ → e γ) → 0 −→ c ≈ ∓
c12s23s12

s23s13
= ∓(2.23 ÷ 9.43) (δ = 0, π) , (43)

BR(τ → e γ) → 0 −→ c ≈ ±
c12s23s12

s23s13
= ±(2.23 ÷ 9.43) (δ = 0, π) , (44)
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Observable Best fit 2-σ

∆m2
atm 2.50 × 10−3 eV2 (2.25 − 2.68) × 10−3 eV2

∆m2
sol 7.59 × 10−5 eV2 (7.24 − 7.99) × 10−5 eV2

sin2 θ12 0.312 0.28 − 0.35

sin2 θ23 0.52 0.41 − 0.61

sin2 θ13 0.013 0.004 − 0.028

Table 2: Experimental values of the neutrino sector observables as reported in Ref. [25].

For the PMNS matrix we have considered the PDG parametrization [23]. The Dirac phase

δ varies in the range [0, 2π].

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.001  0.01  0.1  1  10  100

B
R

(µ
 -

>
 e

+
γ)

 /
 B

R
(τ

 -
>

 µ
+

γ)

|c|

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.001  0.01  0.1  1  10  100

B
R

(µ
 -

>
 e

+
γ)

 /
 B

R
(τ

 -
>

 e
+

γ)

|c|

Figure 1: Ratios between branching ratios of as function of |c|.
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Figure 2: BR(µ → e γ)/BR(τ → µ γ) versus BR(µ → e γ)/BR(τ → e γ). The parameter

c is varied in the range [−100, 100]. The blue region is characterized by |c| = 0 while the

green one by |c| ≫ 1.

BR(τ → µ γ) → 0 −→ c ≈
c2
12

c2
13

= (0.66 ÷ 0.72) . (45)

Finally, for the purpose of comparison, we show in Table 3 the LFV parameters predicted

by various MLFV models.

Model Flavor violating parameter

Minimal field content [4] Ûm̂2
νÛ

†

Extended field content + CP limit [4] Ûm̂νÛ
†

Extended field content + leptogenesis [6, 8] Ûm̂
1/2
ν H2 m̂

1/2
ν Û †

SU(3)ℓ ⊗ SU(3)N → SU(3)ℓ+N [11] Û 1
m̂2

ν

Û †

MSSM wihtout R-parity (toy model) Û i2Û∗j2 + c Û i3Û∗j3

Table 3: Comparative summary of MLFV models.

We conclude commenting on other LFV processes like µ → e conversions and ℓi →

ℓjℓkℓk decays, not considered until now. In our case these processes are determined by

γ-penguin type diagrams [26] and turn out to have the same flavor structure of ℓi →

ℓjγ. This implies in particular that the decays in three leptons have similar patterns of

enhancements/suppressions of those discussed above. Notice however that the radiative

decays are the processes most severely constrained by the experiments.

15



5 Conclusions

In this work we presented a general supersymmetric version of MFV including also the

RPV terms as the irreducible sources of the flavour symmetry breaking. If the RPV

couplings are responsible for neutrino masses, the framework can be viewed as an extension

of MFV to the lepton sector.

An important aspect stressed throughout the paper is that the global symmetry of the

kinetic term of the MSSM lagrangian is enhanced with respect that of the SM. Indeed

the superfields ℓ̂i and ĥd can be rearranged in a 4-dimensional flavour multiplet L̂, whose

kinetic term is invariant under U(4)L̂ unitary transformations. This gives us the possibility

to consider as the most general flavour symmetry the non-abelian group SU(3)4⊗SU(4)L̂.

In such a case the breaking of the total lepton number and that of lepton flavour number

are linked together, thus generically implying small effects in LFV physics.

On the other hand the separation between the breaking of lepton number and lepton

flavour number leads to an interesting phenomenology. This is the motivation to consider

our second scenario based on the SU(3)5 ⊗ U(1)L ⊗ U(1)B flavour symmetry. This last

option yields peculiar correlations among the branching ratios of the ℓi → ℓjγ processes.

Several interesting possibilities could be taken into account for future investigations

both from a theoretical and a phenomenological point of view. For instance, the neutrino

mass model employed here should be considered just as a toy model which allows to easily

connect the RPV spurions with the observables in the neutrino sector, and a more realistic

model should be taken into account.
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A Notation

In this Appendix we define both the SU(3)4 ⊗ SU(4) and SU(3)5 notations and provide

the translation between the two languages.
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• SU(3)4 ⊗ SU(4) notation

W = Y ij
U q̂iû

c
jĥu + Y αij

D L̂αq̂id̂
c
j + 1

2
Y αβi

E L̂αL̂β ê
c
i + µαĥuL̂α + 1

2
(λ

′′

)ijkûc
i d̂

c
jd̂

c
k

−Lsoft = gaugino masses

+
∑

F F̃ †m̃2
F F̃ + m̃2

hu
h∗

uhu +
(

BαhuL̃α + h.c.
)

+ Aij
U q̃iũ

c
jhu + Aαij

D L̃αq̃id̃
c
j + 1

2
Aαβj

E L̃αL̃β ẽc
j + 1

2
(Aλ′′ )ijkũc

i d̃
c
jd̃

c
k + h.c.

(46)

with F = {q, uc, dc, ec, L}.

• SU(3)5 notation

WRPC = yij
U q̂iû

c
jĥu + yij

Dĥdq̂id̂
c
j + yij

E ĥdℓ̂iê
c
j + µ ĥuĥd

WRPV = µiĥuℓ̂i + 1
2
λijkℓ̂iℓ̂j ê

c
k + (λ

′

)ijkℓ̂iq̂j d̂
c
k + 1

2
(λ

′′

)ijkûc
i d̂

c
jd̂

c
k

−LRPC
soft = gaugino masses

+
∑

f f̃ †m̃2
f f̃ + m̃2

hu
h∗

uhu + m̃2
hd

h∗
dhd + (b huhd + h.c.)

+ aij
U q̃iũ

c
jhu + aij

Dhdq̃id̃
c
j + aij

Ehdℓ̃iẽ
c
j + h.c.

−LRPV
soft = (m̃2

d)
ih∗

dℓ̃i + bihuℓ̃i + h.c.

+ 1
2
(aλ)

ijkℓ̃iℓ̃j ẽ
c
k + (aλ′ )ijkℓ̃iq̃j d̃

c
k + 1

2
(aλ′′ )ijkũc

i d̃
c
jd̃

c
k + h.c.

(47)

with f = {q, uc, dc, ec, ℓ}.

Let us define

L̂i ≡ ℓ̂i , L̂4 ≡ ĥd , L̃4 ≡ hd , (48)
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then, by comparing Eq. (47) with Eq. (46), the following identifications follow

yij
U = Y ij

U

yij
D = Y 4ij

D

yij
E = Y 4ij

E

µ = µ4

λijk = Y ijk
E

(λ′)ijk = Y ijk
D

(m̃ℓ)
i
j = (m̃L)i

j

m̃hd
= (m̃L)4

4

(m̃d)
i = (m̃L)i

4

b = B4

bi = Bi

aij
U = Aij

U

aij
D = A4ij

D

aij
E = A4ij

E

(aλ)
ijk = Aijk

E

(aλ′ )ijk = Aijk
D .

(49)

B Group theory

B.1 SU(3)4 ⊗ SU(4)

Spurions:

µ ∼ (1, 1, 1, 1, 4̄)

YU ∼ (3̄, 3̄, 1, 1, 1)

YD ∼ (3̄, 1, 3̄, 1, 4̄)

YE ∼ (1, 1, 1, 3̄, 6)

λ
′′

∼ (1, 3̄, 3, 1, 1)

(50)

Soft terms:
m̃2

q ∼ (8, 1, 1, 1, 1)⊕ (1, 1, 1, 1, 1)

m̃2
uc ∼ (1, 8, 1, 1, 1)⊕ (1, 1, 1, 1, 1)

m̃2
dc ∼ (1, 1, 8, 1, 1)⊕ (1, 1, 1, 1, 1)

m̃2
ec ∼ (1, 1, 1, 8, 1)⊕ (1, 1, 1, 1, 1)

m̃2
L ∼ (1, 1, 1, 1, 15)⊕ (1, 1, 1, 1, 1)

B ∼ (1, 1, 1, 1, 4̄)

AU ∼ (3̄, 3̄, 1, 1, 1)

AD ∼ (3̄, 1, 3̄, 1, 4̄)

AE ∼ (1, 1, 1, 3̄, 6)

(51)
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The expansion of the soft terms in both the SU(3)4 ⊗ SU(4) and the SU(3)5 languages

is provided respectively in Eq. (14) and Eq. (17) of Sect. 2.

B.2 SU(3)5 ⊗ U(1)L ⊗ U(1)B

Spurions:

yU ∼ (3̄, 3̄, 1, 1, 1)(0,0)

yD ∼ (3̄, 1, 3̄, 1, 1)(0,0)

yE ∼ (1, 1, 1, 3̄, 3̄)(0,0)

µ̃i ∼ (1, 1, 1, 1, 3̄)(0,0)

λ̃ ∼ (1, 1, 1, 3̄, 3)(0,0)

λ̃
′

∼ (3̄, 1, 3̄, 1, 3̄)(0,0)

λ̃
′′

∼ (1, 3̄, 3, 1, 1)(0,0)

εL ∼ (1, 1, 1, 1, 1)(−1,0)

εB ∼ (1, 1, 1, 1, 1)(0,+1)

(52)

where the subscripts label the abelian quantum numbers.

Soft terms:
m̃2

q ∼ (8, 1, 1, 1, 1)(0,0) ⊕ (1, 1, 1, 1, 1)(0,0)

m̃2
uc ∼ (1, 8, 1, 1, 1)(0,0) ⊕ (1, 1, 1, 1, 1)(0,0)

m̃2
dc ∼ (1, 1, 8, 1, 1)(0,0) ⊕ (1, 1, 1, 1, 1)(0,0)

m̃2
ec ∼ (1, 1, 1, 8, 1)(0,0) ⊕ (1, 1, 1, 1, 1)(0,0)

m̃2
l ∼ (1, 1, 1, 1, 8)(0,0) ⊕ (1, 1, 1, 1, 1)(0,0)

(m̃2
d)

i
∼ (1, 1, 1, 1, 3̄)(+1,0)

bi ∼ (1, 1, 1, 1, 3̄)(+1,0)

aU ∼ (3̄, 3̄, 1, 1, 1)(0,0)

aD ∼ (3̄, 1, 3̄, 1, 1)(0,0)

aE ∼ (1, 1, 1, 3̄, 3̄)(0,0)

aλ ∼ (1, 1, 1, 3̄, 3)(+1,0)

aλ′ ∼ (3̄, 1, 3̄, 1, 3̄)(+1,0)

aλ
′′ ∼ (1, 3̄, 3, 1, 1)(0,−1)

(53)
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Then the MFV expansion reads

(

m̃2
q

)i

j
= m̃2

(

cqδ
i
j + d1

q(yUy†
U)i

j + d
(21)
q (yDy†

D)i
j + d

(22)
q (λ̃′)likλ̃′∗

ljk

)

(m̃2
uc)

i
j = m̃2

(

cucδi
j + d1

uc(y
†
UyU)i

j + d2
uc(λ̃

′′

)ikl(λ̃
′′∗)jkl

)

(m̃2
dc)

i
j = m̃2

(

cdcδi
j + d

(11)
dc (y†

DyD)i
j + d

(12)
dc (λ̃′)lkiλ̃′∗

lkj + d2
dc(λ̃

′′

)kil(λ̃
′′∗)kjl

)

(m̃2
ec)

i
j = m̃2

(

cecδi
j + d

(11)
ec (y†

EyE)i
j + d

(12)
ec λ̃lkiλ̃∗

lkj

)

(m̃2
ℓ)

i
j = m̃2

(

cℓδ
i
j + d

(11)
ℓ (yEy†

E)i
j + d

(12)
ℓ λ̃ilkλ̃∗

jlk + d2
ℓ(λ̃

′)ilkλ̃′∗
jlk + d3

ℓ µ̃iµ̃∗
j/|µ|

)

(m̃2
d)

i
= m̃2 εL

(

d1
d µ̃i/|µ| + d2

d (λ̃′)ilk(y∗
D)lk + d3

d (λ̃′)ilkλ̃′∗
plk µ̃p/|µ|

+d4
d (λ̃)ilk(y∗

E)lk + d5
d (λ̃)ilkλ̃∗

plk µ̃p/|µ| + d6
d (yEy†

E)i
p µ̃p/|µ|

)

bi = m̃2 εL

(

cb µ̃i/|µ| + d
(11)
b (λ̃′)ilk(y∗

D)lk + d
(12)
b (λ̃′)ilkλ̃′∗

plk µ̃p/|µ|

+d
(21)
b (λ̃)ilk(y∗

E)lk + d
(22)
b (λ̃)ilkλ̃∗

plk µ̃p/|µ| + d
(23)
b (yEy†

E)i
p µ̃p/|µ|

)

aij
U = A

(

caU
yij

U + . . .
)

aij
D = A

(

caD
yij

D + . . .
)

aij
E = A

(

caE
yij

E + d1
aE

(yEy†
EyE)ij + d2

aE
λ̃ikjλ̃′∗

klmylm
D + d3

aE
ykj

E µ̃∗
kµ̃

i/|µ|

+d4
aE

ykj
E λ̃′∗

klm(λ̃′)ilm + d5
aE

yim
E λ̃∗

klmλ̃klj + d6
aE

ykj
E λ̃∗

klmλ̃ilm

+d7
aE

ykm
E λ̃∗

klmλ̃lij + d8
aE

ǫklmλ̃ikjµ̃lµ̃m + d9
aE

ǫiklǫjmn(y∗
E)kl(y

∗
E)mn

+d10
aE

ǫiklǫjmnµ̃p(y∗
E)pmλ̃∗

kln + d11
aE

ǫiklǫjmnµ̃p(y∗
E)kmλ̃∗

lpn

+d12
aE

λ̃ikjµ̃∗
k/|µ|

)

(aλ)
ijk = A εL

(

cAE
λ̃ijk + . . .

)

(aλ′ )ijk = A εL

(

cAD
(λ̃′)ijk + . . .

)

aijk

λ
′′ = A εB

(

cA
λ
′′
(λ̃

′′

)ijk + . . .
)

,

(54)

up to two flavor spurions and only one in εL or εB. Just in the case of aE we consider the

expansion up to three spurions.

C Review of RPV contributions to neutrino masses

The neutrino mass matrix receives contributions both at the tree level and from loops [12].

We briefly review for convenience here the general formulae.

C.1 Tree level

In the basis where only hd develops an electroweak VEV, the tree level contribution to

neutrino masses is due to the RPV mixings among neutrinos and higgsinos, proportional to

the parameters µi. The tree level neutral fermion mass matrix in the basis (Lα, Hu, B̃, W̃ )
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reads

Mν =

(

0 mRPV

mT
RPV MN

)

, (55)

where MN is the 4 × 4 neutralino mass matrix

MN =










0 −µ sin β sin θW MZ − sin β cos θW MZ

−µ 0 − cos β sin θW MZ cos β cos θW MZ

sin β sin θW MZ − cos β sin θW MZ M1 0

− sin β cos θW MZ cos β cos θW MZ 0 M2











(56)

and

mRPV =







0 −µ1 0 0

0 −µ2 0 0

0 −µ3 0 0






. (57)

Under the hypothesis mRPV ≪ MN the matrix Mν can be perturbatively diagonalized,

thus yielding for the three lightest neutrino mass matrix

(m(tree)
ν )ij ≈ −(mRPV M−1

N mT
RPV )ij = m(tree)

ν

µiµj

∑

i |µ
2
i |

, (58)

where

m(tree)
ν =

(

M1 cos2 θW + M2 sin2 θW

)

M2
Z cos2 β

µ
(

(M1 cos2 θW + M2 sin2 θW )M2
Z sin 2β − M1M2 µ

) ×
∑

i

|µ2
i | . (59)

By diagonalizing the rank-1 matrix in Eq. (58) we get

m
(tree)
3 = m(tree)

ν , m
(tree)
2 = 0 , m

(tree)
1 = 0 . (60)

We adopt the following convention for the neutrino mass eigenvalues: m3 ≥ m2 ≥ m1.

C.2 Loops

In order to complete the neutrino spectrum one has to go at the loop level. One-loop

neutrino masses get contributions from many diagrams involving different combinations

of the coupling µi, λ′ and λ. On the other hand, under reasonable assumptions on the

SUSY parameters (see e.g. [27]), one can focus the attention only on the contribution

coming from the trilinear terms λ and λ′. In the basis where the down-quark and the

charged-lepton mass matrices are diagonal, one finds [12]

(m(λ′λ′)
ν )ij =

3

16π2

∑

k,l,m

λ′iklλ′jmk m̂Dk

(m̃d 2
LR

)ml

m2
d̃Rl

− m2
d̃Lm

ln

(

m2
d̃Rl

m2
d̃Lm

)

+ (i ↔ j) , (61)

(m(λλ)
ν )ij =

1

16π2

∑

k,l,m

λiklλjmk m̂Ek

(m̃e 2
LR

)ml

m2
ẽRl

− m2
ẽLm

ln

(

m2
ẽRl

m2
ẽLm

)

+ (i ↔ j) , (62)
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which at the leading order in the MFV expansion read

(m(λ′λ′)
ν )ij =

3

8π2

m̃ cAD
− µ tanβ

m̃2

1

cdc − cq

ln

(

cdc

cq

)

(λ′)ikl(λ′)jlkm̂Dk
m̂Dl

, (63)

(m(λλ)
ν )ij =

1

8π2

m̃ cAE
− µ tanβ

m̃2

1

cec − cL

ln

(

cec

cL

)

λiklλjlkm̂Ek
m̂El

. (64)
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