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Abstract

We calculate the contributions to electroweak precision observables (EWPOs) due
to a fourth generation of fermions with the most general (quark-) flavour structure
(but assuming Dirac neutrinos and a trivial flavour structure in the lepton sector).
We discuss the size of non-oblique contributions arising from Z–quark–anti-quark
vertex corrections and the dependence of the EWPOs on all CKM mixing angles
involving the fourth generation. We find that the electroweak precision observables
are equally sensitive to all three fourth-generation mixing angles and that the
corresponding constraints on these angles are competitive with those obtained
from flavour physics. For non-trivial 4 × 4 flavour structures, the non-oblique
contributions lead to relative corrections at the permille level and may well have
a noticable effect in a global fit.
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1 Introduction

With the advent of LHC data the first direct tests for many models of new physics
are within reach. Among the conceptionally simplest extensions of the Standard Model
(SM3) are those which only add a minimal set of fermions to the SM particle content.
This class encompasses both the additional vector-like quarks [? ? ? ? ] and the
fourth-generation scenario (SM4).

The SM4 was fairly popular in the 1980s until electroweak precision observables
seemed to rule it out. In the last years models with an additional fourth generation
experienced a renaissance as new analyses, e.g. [? ? ? ? ? ? ], somewhat relaxed the
electroweak tensions. This realisation also prompted numerous studies of the non-trivial
flavour structure of the SM4 [? ? ? ? ], as well as searches for specific signatures in
new physics observables [? ? ? ? ? ? ].

Recently, some effort has been directed towards providing an actual fit of the param-
eters of the model — or, to be precise, of one particular variant which restricts itself to
an (almost) decoupled fourth Dirac-like neutrino.1 This scenario requires merely seven
additional parameters and fitting them simultaneously does not seem unrealistic. One of
the first attempts in this direction primarily used the electroweak precision observables
and restricted itself to only one CKM parameter [? ]; still non-trivial correlations were
found, for example, between the Higgs mass and the new mixing angle. More recent
studies seek to contain [? ] or even determine [? ] the full 4 × 4 CKM matrix. In this
case the main challenge is the fact that, if one allows for a generic CKM structure, the
flavour and electroweak sector are intertwined and have to be treated simultaneously.

Usually the effects of new physics in the electroweak sector are parametrised by
the oblique electroweak parameters S, T and U , as introduced by Peskin and Takeuchi
[? ? ]. These allow for fairly simple and straightforward estimates of new physics
contribution to electroweak observables. However, the validity of this parametrisation
relies on certain assumptions about the new physics model, which are, in principle, no
longer satisfied in an SM4 with the most general flavour structure.

In this letter we discuss the contributions to electroweak precision observables (EW-
POs) due to a fourth generation with general 4 × 4 flavour mixing. For the sake of
simplicity we assume Dirac neutrinos and a trivial flavour structure in the lepton sector.
Our calculation includes non-oblique contributions, i.e. those which are not captured by
the S, T and U parameters, and can easily be combined with existing calculations of
higher-order QCD and QED corrections within the SM3. We discuss the importance of
the non-oblique contributions and the impact of flavour mixing between the fourth and
the first three generation in several SM4 scenarios.

In section 2 we briefly review the oblique parameters and their range of applicability.
In section 3 we introduce our notations for the SM4 parameters and explain our method

1See e.g. [? ] for a discussion of fourth generation Majorana neutrinos.
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for calculating the corrections to the EWPOs. In section 4 we describe our treatment
of the Fermi constant GF , which is an observable and not a parameter in our analy-
sis. Our numerical results are presented in section ??. We find that the EWPOs are
equally sensitive to all three fourth-generation mixing angles and that the corresponding
constraints on these angles are competitive with those obtained from flavour physics.
For non-trivial 4 × 4 flavour structures, the non-oblique contributions lead to relative
corrections of up to one permille for the hadronic Z width Γhad and of several permille
for the hadronic Z → bb̄ branching ratio Rb. A simultaneous fit of the SM4 masses,
couplings and CKM matrix should therefore take into account all six SM4 CKM mixing
angles and the non-oblique corrections to the EWPOs. We conclude in section ??.

2 Oblique Corrections and Electroweak Observables

The constraints imposed on new physics by EWPOs measured at LEP have already
been discussed extensively in the literature. In 1992 Peskin and Takeuchi presented a
model-independent way of parametrising the new physics contributions to the Z pole
observables [? ]. Their analysis was based on three assumptions:

1. The electroweak gauge group of the new-physics model is SU(2)L × U(1)Y .

2. The new-physics couplings to light fermions (i.e. all SM3 fermions except the
top-quark) are negligible.

3. The scale of new physics is much larger than the electroweak scale.

The first assumption forbids the existence of additional gauge bosons coupling directly
to leptons. The second assumption guarantees that there are no additional vertex or
box-diagrams contributing to the Drell-Yan process. Thus, the only way the new physics
contribute to the Z pole observables is through the renormalisation of weak gauge boson
wave functions, the electric charge or the Weinberg angle. The third assumption is
needed to justify a step in the discussion in [? ], where the gauge boson self-energies
are expanded to first order around q2 = 0 (q being the momentum flowing through the
self-energy graphs). In practice, it is usually sufficient to require that new particles
coupling directly to weak gauge bosons are heavier than the Z boson.

In SM extensions that satisfy the criteria above, the new physics contributions to
the Z pole observables can be expressed in terms of the oblique electroweak parameters
S, T and U which were defined in [? ? ] and represent different linear combinations
of gauge boson self-energies and their derivatives. On the experimental side, the values
of S, T and U can then be determined from data by performing a global fit of S, T , U
and the SM3 parameters to the Z pole and possibly other low-energy observables. (See
[? ] for a recent analysis of this type.) On the theoretical side one can test to what

2



experiment theory (SM3)
Γhad [GeV] 1.7444 ± 0.002 1.7418 ± 0.0009

Rb 0.21629± 0.00066 0.21578± 0.00005
Ab

FB 0.0992 ± 0.0016 0.1034 ± 0.0007
Ab 0.923 ± 0.020 0.9348 ± 0.0001
Ae 0.15138± 0.00216 0.1475 ± 0.0010

MW [GeV] 80.420 ± 0.031 80.384 ± 0.014

Table 1: Experimental results and Standard Model predictions for selected electroweak ob-
servables. All numbers were taken from [? ].

extent a given model of new physics agrees with low-energy observables by computing
S, T and U in this model and comparing the results with the best-fit values.

This method of testing an SM extension against constraints from low-energy exper-
iments is very convenient since it only requires the computation of three quantities. It
has been applied to a number of models including the SM4 [? ]. One should, however,
keep in mind that the validity of this method depends on the validity of the assumptions
listed above. In the SM4 the second assumption is no longer valid if the fourth genera-
tion quarks are allowed to mix with the quarks of the first three generations. Hence, the
validity of the “oblique method” must be checked explicitly if one attempts to constrain
the new mixing angles of the SM4 CKM matrix.

3 The Zqq̄ Vertex in the SM4

The properties of the Z boson and its couplings to fermions have been measured at LEP
1 with a very high accuracy. Table 1 shows the experimental values and accuracies for
a selection of Z-pole observables as well as their theoretical predictions within the SM3.
The observables are: the partial width for Z → hadrons (Γhad), the hadronic branching
fraction for Z → bb̄ (Rb), the forward-backward asymmetry for Z → bb̄ (Ab

FB) and the
mass of the W (MW ). In the Z-pole approximation, the forward-backward asymmetry
can be written as 3

4
AeAb, where the quantities Ae and Ab only depend on the Ze+e−

and Zbb̄ couplings, respectively. The relative precision of Γhad is approximately 0.1%
and Rb is known to an accuracy of 0.3%. The measured value of Ab

FB deviates from
its SM3 prediction by more than two standard deviations. The discrepancy originates
mainly from the factor Ae. Oblique corrections due to a fourth generation of fermions
affect all Z-pole observables, but only observables related to the Z–quark–anti-quark
vertex are subject to non-oblique corrections; of the observables from table 1, only Γhad,
Rb and Ab receive non-oblique contributions. Our discussion will therefore mainly focus

3



on these quantities.2

Within the SM3 the couplings of Z bosons to quarks have been studied in great detail.
Electroweak and QCD corrections to the gauge boson self-energies and the Z–quark–
anti-quark vertex have been calculated at two-loop order [? ? ? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ] and the results have been implemented in public
codes such as TOPAZ0 [? ] or ZFITTER [? ? ]. Radiative corrections to the partial widths
are of the order of 0.1% (QED) and 4% (QCD). To match the experimental accuracy
of the Z-pole observables they must therefore be included in theoretical calculations.
In this section we explain how predictions for the Z pole observables within the SM4
can be calculated at the required level of accuracy without the need to re-visit the SM3
calculations.

Before we begin, let us briefly explain our notations for the SM3 and SM4 parameters.
For the SM3 CKM matrix we use the standard parametrisation. In this parametrisation
the independent parameters are the three mixing angles θ12, θ13 and θ23 and one complex
phase δ13. The explicit form of the SM3 CKM matrix in terms of the phase and mixing
angles is given in appendix ??.

In the SM4 the CKM matrix is a unitary 4× 4 matrix. After absorbing unphysical
complex phases into the definitions of the quark fields, its parametrisation requires only
three additional mixing angles θ14, θ24 and θ34 and two additional complex phases δ14
and δ24. The explicit form of the SM4 CKM matrix is also given in appendix ??. For the
discussion below it is only important to know that for θ14 = θ24 = θ34 = δ14 = δ24 = 0
the SM4 CKM matrix assumes a block-diagonal form with the SM3 CKM matrix in the
first 3× 3 block and a one in the last block.

To distinguish the phase δ13 and the mixing angles θ12, θ13 and θ23 of the SM4
CKM matrix from their SM3 counterparts we will use superscripts ‘SM4’ and ‘SM3’,
respectively. The same applies to other parameters like mH or MW , which exist in both
models. We will also use the shorthands sij and cij for the sines and cosines of the
mixing angles θij . Finally, we denote the lepton, neutrino, up and down-type quark of
the fourth generation as ℓ4, ν4, t

′ and b′, respectively. Their masses mℓ4 , mν4 , mt′ and
mb′ are independent parameters of the SM4.

Let us now proceed with the discussion of higher order corrections to the Zqq̄ vertex.
In the limit of vanishing external quark masses mq, the on-shell Zqq̄ vertex function only
contains two Lorentz structures:

Γq
µ = ieγµ[F

q
V − F q

Aγ5] . (1)

Here and in the following, q = u, d, s, c, b denotes the quark flavour. The form factors
F q
V and F q

A depend on the quark flavour, the external masses and the parameters of the
model under consideration (SM3 or SM4). Following the discussion in [? ], we express

2The branching fraction Rc and asymmetry factor Ac for the charm quark also receive non-oblique
corrections, but these observables are less constraining due to their larger experimental error.
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QCD and QED radiative corrections to F q
V and F q

A in terms of radiator functions Rq
V

and Rq
A and write

F q
V = gqVR

q
V , F q

A = gqAR
q
A . (2)

In doing this, we neglect the non-factorisable contributions [? ? ], whose effect is below
the permille level. The effective couplings gqV and gqA now only contain infrared finite
contributions. At leading order Rq

V = Rq
A = 1 and gqV and gqA are the tree-level vector

and axial couplings of the Z boson.

In this paper we are interested in the difference between predictions for Z pole
observables within the SM3 and SM4. For this purpose we denote, for any quantity X ,
the new physics correction by

δX = XSM4 −XSM3 , (3)

where the superscripts ‘SM4’ and ‘SM3’ indicate that X is evaluated with a given set
of SM4 or SM3 parameters, respectively. In principle, the two sets of parameters can
be completely unrelated. It is, however, extremely convenient to use the same values of
MZ , MW , mt, α and αs in both sets.3 In this case, δRq

V = δRq
A = 0 and the new physics

corrections to any Z pole observable can be obtained by only computing the infrared
finite quantities δgqV and δgqA. The form factors F q,SM4

V and F q,SM4
A (and thus for the Z-

pole observables within the SM4) may then be calculated by scaling the corresponding
SM3 form factors with the ratios gq,SM4

V /gq,SM3
V and gq,SM4

A /gq,SM3
A , respectively. This

way, factorisable QCD and QED corrections are included in F SM4
V and F SM4

A if they
were included in the SM3 ‘reference values’ F SM3

V and F SM3
A . As we will see below, the

ratios δgqV /g
q(0)
V and δgqA/g

q(0)
A (with g

q(0)
V and g

q(0)
A being the tree-level couplings) are

typically below 1%. Thus, the approximation

F q,SM4
V ≈ F q,SM3

V

(

1 +
δgqV

g
q,(0)
V

)

, F q,SM4
A ≈ F q,SM3

A

(

1 +
δgqA

g
q,(0)
A

)

(4)

(with g
q(0)
V and g

q(0)
A being the tree-level couplings) is generally valid with a relative

precision of the order of 10−4.

The difference between Rq
V and Rq

A is of the order of a few percent [? ]. Thus, to
estimate the size of the new physics contributions to the EWPOs we use the approxi-
mation

Rq
V ≈ Rq

A ≡ Rq (5)

and obtain
δΓq

µ = ieRqγµ[δg
q
V − δgqAγ5] . (6)

The hadronic Z partial widths and asymmetries are then given by

Γ(Z → qq̄) = αMZRq[(gqV )
2 + (gqA)

2] , Aq =
gqV g

q
A

(gqV )
2 + (gqA)

2
(7)

3These are independent SM3 input parameters in the on-shell renormalisation scheme [? ], which
is the scheme we used in our calculations.
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The new physics corrections to these quantities are readily obtained by expanding the
effective couplings to first order in δgqV and δgqA:

δΓ(Z → qq̄)

ΓSM3(Z → qq̄)
= 2

g
q(SM3)
V Re δgqV + g

q(SM3)
A Re δgqA

(g
q(SM3)
V )2 + (g

q(SM3)
A )2

≈ 2
g
q(0)
V Re δgqV + g

q(0)
A Re δgqA

(g
q(0)
V )2 + (g

q(0)
A )2

, (8a)

δAq

ASM3
q

=
Re δgqV

g
q(SM3)
V

+
Re δgqA

g
q(SM3)
A

− 2
g
q(SM3)
V Re δgqV + g

q(SM3)
A Re δgqA

(g
q(SM3)
V )2 + (g

q(SM3)
A )2

≈ Re δgqV

g
q(0)
V

+
Re δgqA

g
q(0)
A

− 2
g
q(0)
V Re δgqV + g

q(0)
A Re δgqA

(g
q(0)
V )2 + (g

q(0)
A )2

. (8b)

Note that, as a result of approximating Rq
V ≈ Rq

A, the radiator functions cancel in the
ratios above.

If mixing between the fourth generation quarks and the quarks of the first three
generations is neglected, the new physics corrections can be expressed in terms of the
oblique electroweak parameters S, T and U [? ? ]. In this case, the relations between
δgqV , δg

q
A and S, T and U are

δgqV =
α

16cWs3W

[

2Iq3S − 4[(c2W − s2W )Iq3 + 2s2WQq]T −
(c2W − s2W

s2W
Iq3 + 2Qq

)

U

]

,

(9a)

δgqA =
α

16cWs3W

[

2S − c2W − s2W
s2W

(4s2WT + U)

]

Iq3 , (9b)

where Qq and Iq3 are the electric charge and weak isospin of the quark q and sW and cW
are the sine and cosine of the Weinberg angle, defined by s2W = 1−M2

W/M2
Z .

If the fourth generation quarks are allowed to mix with the quarks of the first three
generations one also needs to compute the vertex diagrams contributing to δgqV and δgqA.
We used the FeynArts/FormCalc package [? ? ? ] to compute δgqV and δgqA to one-loop
order. The renormalisation of the Zqq̄ vertex was done in the on-shell scheme [? ].
At the one-loop level only diagrams involving W bosons, charged Goldstone bosons or
Higgs bosons contribute to δgqV and δgqA, as long as α, αs, MZ , MW and mt are chosen
to be the same in the SM3 and SM4. The SM3 parameters and corresponding values
for Γ(Z → qq̄) and Aq were taken from [? ]. Specifically, we use

1/α(mZ) = 128.892 , αs(mZ) = 0.1185 , MZ = 91.1875GeV ,

MW = 80.384GeV , mt = 173.2GeV , mSM3
H = 90GeV ,

ΓSM3
had = 1.7418GeV , RSM3

b = 0.21578 , ASM3
b = 0.9348 , (10)
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where

Γhad =
∑

q=u,d,s,c,b

Γ(Z → qq̄) , Rq =
Γ(Z → qq̄)

Γhad
. (11)

The phase and mixing angles of the SM3 CKM matrix were also taken from [? ]:

θSM3
12 = 0.2273 , θSM3

13 = 0.003466 , θSM3
23 = 0.04103 , δSM3

13 = 1.2020 . (12)

Note that the numerical values for ΓSM3
had and RSM3

b are for a fixed “reference” Higgs mass
mSM3

H = 90GeV. In the SM4 the Higgs mass is treated as a free parameter.

4 A Note on GF

As mentioned above, we use in this work the on-shell renormalisation scheme for the
computation of new physics corrections. In this scheme, the quantities α(MZ), MZ

and MW are independent parameters. This parametrisation is very convenient for the
computation of higher order corrections, but it has its disadvantages if one wants to
compare it with experimental data. The Fermi constant GF , which is determined from
the muon lifetime, is a non-trivial function of α(MZ), MZ , MW and the other model
parameters. Since GF is measured very accurately (namely, to a relative precision of
10−5) it constrains the model to a non-trivial hyper-surface in its parameter space. In
other words, one parameter of the model is fixed by the requirement that GF assumes
its measured value. Typically, one adjusts the value of MW to obtain the correct value
of GF .

The relation between GF and MW is conventionally written as [? ]

GF =
πα√

2s2WM2
W

1

1−∆r
, (13)

where ∆r encodes higher order corrections and is, in general, a function of all other
parameters. New physics, like the existence of a fourth generation of fermions, changes
the function ∆r. Denoting, as before, the new physics correction to ∆r as δ∆r and
writing the solutions of (13) in the SM3 and SM4 as MSM3

W and MSM4
W ≡ MSM3

W + δMW ,
respectively, we find

δMW

MSM3
W

= − s2W
2(c2W − s2W )

δ∆r . (14)

However, since the parameters (10) already satisfy the GF constraint we have MSM3
W =

MW with MW from (10). If the SM4 is to agree with the measured value of the W mass,
the ratio δMW/MSM3

W cannot be much larger than one permille. Hence, the shift in MW

is unimportant for the purpose of computing δ∆r and the new physics corrections (8) of
the hadronic Z partial widths and asymmetries. We can therefore safely use the value
from (10) in these calculations.
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