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Abstract. We evaluate three typical four-loop non-planar massless propagator diagrams in a Taylor ex-
pansion in dimensional regularization parameter ¢ = (4 —d)/2 up to transcendentality weight twelve, using
a recently developed method of one of the present coauthors (R.L.). We observe only multiple zeta values

in our results.
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1 Introduction

Analytic results for one-scale multiloop Feynman integrals
in a Laurent expansion in € = (4 — d)/2 are expressed as
linear combinations of transcendental constants with ra-
tional coefficients. The set of these constants essentially
depends on the type of Feynman integrals. Probably, the
simplest type of one-scale Feynman integrals are massless
propagator integrals depending on one external momen-
tum. Here the world record is set at four loops — see
Ref. [1] where all the corresponding master integrals were
analytically evaluated in an epsilon expansion up to tran-
scendentality weight seven.

Practical calculations show that only multiple zeta val-
ues (MZV) (see, e.g., [2]) appear in results. Brown proved
[3] that convergent scalar massless propagator integrals
with the degree of divergence w = 4h — 2L = —2 (where h
and L are numbers of loops and edges, correspondingly)
up to five loops contain only MZV in their epsilon ex-
pansions. (In two loops, a proof was earlier presented in
Ref. [4].) He also proved that for the three diagrams de-
picted in Fig. 1, every coefficient in a Taylor expansion in €
is a rational linear combination of MZV and Goncharov’s
polylogarithms [5] with sixth roots of unity as arguments.

The goal of this brief communication is to study these
diagrams experimentally. We present results in an epsilon
expansion up to transcendentality weight twelve. To do
this we apply the DRA method recently suggested by one
of the authors (R.L.), Ref. [6]. The method is based on
the use of dimensional recurrence relations (DRR) [7] and
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Fig. 1. Diagrams considered in Ref. [3] as possible candidates
for the presence of sixth roots of unity in the e-expansion.

analytic properties of Feynman integrals as functions of
the parameter of dimensional regularization, d, and was
already successfully applied in previous calculations [8—
12]. To apply this method it is essential to perform an
integration by parts (IBP) [13] reduction of integrals that
participate in dimensional recurrence relations to master
integrals. To do this, we use the C++ version of the code
FIRE [14].

To study analytic properties of solutions of dimen-
sional recurrence relations, i.e. to reveal the position and
the order of poles in d in a basic stripe, we used a sector
decomposition [15-17] implemented in the code FIESTA
[17,18]. To fix remaining constants in the homogenous so-
lutions of dimensional recurrence relations it was quite
sufficient for us to use analytic results for the four-loop
massless propagators master integrals [1] (confirmed nu-
merically by FIESTA [19]). Finally, after obtaining results
for master integrals in terms of multiple series we calcu-
lated resulting coefficients at powers of € numerically with
a high precision and then applied the PSLQ algorithm
[20]. We also applied the code HPL [21] for dealing with
harmonic polylogarithms.

For all the three diagrams of Fig. 1, we performed
evaluation up to transcendentality weight twelve where
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the basis of transcendental numbers we used includes 48
constants. Since coefficients in our results turn out to be
cumbersome the accuracy necessary for a successful cal-
culation by PSLQ was rather high so that we were forced
to perform numerical calculations with the accuracy of
around 800 digits.

The first diagram of Fig. 1 is a master diagram. This
is nothing but Mys in Fig. 2 of Ref. [1] where all the mas-
ter integrals for four-loop massless propagators are shown.
Following the method of [6] we needed, first to calculate

lower master integrals M()l, M117 Mlg, M14, M21, M27, M35.

Eventually, we arrived at the following result which is

made homogeneously transcendental by pulling out an ap-

propriate rational function of € and normalizing it at the

fourth power of the one-loop integral (i.e. M3; according
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The other two diagrams of Fig. 1 are not master inte-
grals and, consequently, they do not appear in Fig. 2 of
Ref. [1]. We found their reduction to lower master integrals
by FIRE and then evaluated resulting master integrals by
our technique. Let us stress that the master integrals in-
volved in the IBP reduction of the second and the third
non-planar integrals of Fig. 1 are all planar diagrams so
that they did not have any chance to involve something
in addition to MZV, according to [3]. These are our re-
sults for them in the same normalization where we again
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managed to reveal homogenous transcendentality:
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We see that only MZV are present in our results. Al-
though Goncharov’s polylogarithms at sixth roots of unity
were allowed to appear according to the analysis of Ref. [3]
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they have not appeared. In fact, such transcendental num-
bers do appear in epsilon expansions of some classes of
massive Feynman integrals [22-25].

Taking our results into account it is plausible to con-
jecture that there are only MZV in massless propagator
diagrams. For the moment, it seems to be unclear how to
prove this conjecture. It also seems to be very difficult to
find a counterexample.
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