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Abstract

We present analytical results both in momentum and position space for the massless
correlators of the vector and scalar currents to order α4

s as well as for the tensor
currents to order α3

s. The evolution equations for the correlators together with all
relevant anomalous dimensions are discussed in detail. As an application we present
explicit conversion formulas relating the MS-renormalized vector, scalar and tensor
currents to their counterparts renormalized in the X-space renormalization scheme
more appropriate for lattice calculations.
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1 Introduction

Correlators of gauge invariant quark currents are important objects in QCD.
It is enough to mention that the correlator of two vector currents is directly

related to the famous ratio R(s) = σ(e+e−→hadrons)
σ(e+e−→µ+µ−)

, the Adler function and the

decay widths of the Z-boson and the τ -lepton (for a review see, e.g. [1]).

To be specific, let us consider a correlator:

Π(q) = i
∫

dx eiqx〈Tj(x)j†(0)〉, (1)
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with j being a gauge invariant local operator. The polarization operator Π(q)
satisfies the standard dispersion relation 1

Π(q) =
∫ ∞

0
ds

ρ(s)

s− q2
− subtractions, (2)

The subtractions on the right-hand side of Eq. (2) are necessary as they remove
an additional divergence coming from the vicinity of the region x ∼ 0 in the x-
integration in (1). The structure of the correlator (1) is significantly simplified
if the momentum q is considered as large compared to (active) quark masses.
Setting then all quark masses to zero one can describe the general structure
of the correlator in pQCD as follows:

Π(q) = (Q2)d−2
∞∑

i=1

∑

i≥k≥0

Πik a
i−1
s (µ)

(
ln
µ2

Q2

)k
.

Here Q2 ≡ −q2, as = αs

π
, µ stands for the renormalization scale and d is the

(mass) dimension of the current j.

In some applications it is useful to deal with the correlators in position space
(see, e.g. [2–6] and below). Using a text-book formula for the massive scalar
propagator in position space:

∆(x, s) ≡ 1

i(2π)4

∫ ∞

0
dq

eiqx

s− q2
=

1

−4 π2x2
z K1(z), z =

√
−x2 s, (3)

(with K1 being a modified Bessel function) we arrive at a well-known repre-
sentation for Π:

Π(x) =
∫ ∞

0
ds∆(x, s) ρ(s). (4)

It should be stressed that the spectral density ρ(s) does not depend on the
non-logarithmical contributions to the sum in (1) (that is those proportional
to the coefficients Πik with k ≡ 0). Thus, the full correlator in position space
considered as a function of x (defined for all x with x2 6= 0 ) also does not
depend on non-logarithmical contributions to Π(q).

In general, the operator j is not scale-invariant (equivalently, has a non-zero
anomalous dimension). The renormalization of the operator and the position
space correlator look as follows 2

j = Zj j0, Π(x) = Z2
j Π0(x), (5)

where j0 and Π0 stand for the corresponding bare quantities.

1 For simplicity we assume that the current j is a Lorentz scalar.
2 Note that the momentum space correlator is renormalized in a more complicated
way due to the UV divergence at small x. The corresponding formula is given below
in Section 2.
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An important feature of the position space correlators is that they can be
directly computed non-perturbatively on the lattice by Monte Carlo simula-
tions (see, e.g. [7–10]). Their long-distance behavior is governed by the non-
perturbative features of the underlying field theory, QCD. On the other hand,
due to asymptotic freedom, their short-distance behavior can be described
by perturbation theory and operator product expansion (OPE). A meaning-
ful comparison of perturbative results at short distances with their lattice
counterparts requires, obviously, the use of one and the same renormalization
prescription in the common case of scale-dependent operators. While minimal

subtraction schemes (MS and its relatives [11–13]) are certainly preferable for
perturbative calculations, they, clearly, can not be implemented on lattice.

A solution of the problem is based on the use of an intermediate renormaliza-
tion scheme, with the renormalization conditions imposed directly on quark
and gluon Green functions computed in a fixed gauge and for a particular
configuration of external momenta [14].

A convenient intermediate scheme for the renormalization of the quark current
operators has been developed in [9]. It is based on the study of the correspond-
ing position space correlators and is called the X-space scheme. The conversion
formulas between the MS and the X-space scheme have been elaborated in [9]
to the next-to-leading order.

Recently there has been a lot of progress in computing higher order corrections
to the vector and scalar correlators within perturbative QCD both in the
massless limit as well as for the general case of massive quarks. Both correlators
are now known in momentum space to order α3

s [15–18] (the real and absorptive
parts) and even, partially, to order α4

s [19,20] (only the absorptive part in the
massless limit). The situation is not so good for the tensor correlator, which
is known completely to order α2

s in the massless limit only [21].

In addition, the anomalous dimensions of the scalar and tensor currents are
known to order α4

s [22–24] (vector and axial-vector currents have identically
vanishing anomalous dimension due to the corresponding Ward identity).

The aims of the present paper are:

• To compute the order α3
s contribution to the tensor correlator (only absorp-

tive part in the massless limit).
• To summarize available momentum space results for the scalar, vector and

tensor (all massless) correlators and corresponding anomalous dimensions.
• To discuss in detail the evolution equations for all three correlators.
• To present full results for the correlators in position space, namely: scalar

and vector to (and including) order α4
s and tensor to (and including) order

α3
s computed within massless QCD.

• To construct the N4LO conversion formulas between MS and X-space renor-
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malized scalar and vector currents as well as the N3LO ones for the tensor
current.

• To study the stability of the conversion formulas with respect to higher
order (not yet computed) perturbative corrections.

The plan of the paper is as follows. In the next section we discuss our con-
ventions and the definition of the X-space renormalization scheme as well as a
version of the MS-scheme — the M̃S-one which seems to be more convenient
for renormalization of the position space correlators. Sections 3 and 4 list all
available results for (massless) quark currents correlators in momentum and
position space respectively. In Section 5 we try to provide the reader with the
concise bibliographical information about the origin of the results collected in
the two previous Sections as well as about the main technical tools employed
in the corresponding calculations. Conversion formulas between the X-scheme
and M̃S/MS schemes are discussed in Section 6. In the last section 7 we sum-
marize the content of the paper.

In addition, there are three appendixes. In Appendix A we spell out the rules
which we use to construct the Euclidean correlator from its Minkowskian
counterpart. Appendix B provides the reader with necessary information on
the Fourier transformation. Appendix C lists various anomalous dimensions
relevant for the RG evolution of the quark current correlators.

2 Quark current correlators in momentum and position space

In this section we outline our conventions and recall the definition of the
X-space scheme as presented in Ref. [9]. Our discussion will focus on the cor-
relator of scalar currents first. The generalization to other Lorentz structures
is straightforward, we will comment on it towards the end of the section.

The scalar correlator in momentum space is defined as

ΠS(q) = i
∫

dx eiqx〈Tj(x)j(0)〉 (6)

with j = ψ̄1ψ. For space-like momenta we can express the correlator in terms
of the Euclidean momentum Q. In what follows we will work exclusively with
Euclidean correlators. Our procedure of obtaining Euclidean correlators from
Minkowskian ones is described in Appendix A. The correlator considered in
position space reads

ΠS(X) = 〈j(X)j(0)〉 (7)

with a Euclidean separation X. We work in the chiral limit with mψ = 0.
Note that diagrams with purely gluonic cuts do not contribute to the scalar
correlator (in the assumed massless limit) .
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2.1 Momentum space

We denote the MS renormalized momentum space correlator at the scale µ by

ΠS(Q, µ) = (ZS)2ΠS
0 (Q) + ZSS(µ2)−ǫQ2 , (8)

where ΠS
0 (Q) is the bare scalar correlator. Note that in addition to the mul-

tiplicative renormalization with ZS there is a subtractive counterterm ZSS.
The corresponding renormalization group equation reads

µ2 d

dµ2
ΠS(Q, µ) = 2γSΠS(Q, µ) + γSSQ2 (9)

with the anomalous dimensions

γS = µ2d logZS

dµ2
, γSS = µ2dZSS

dµ2
− (2γS + ǫ)ZSS . (10)

Using the solution to the renormalization group equation (9), we can evolve
the correlator from one scale µ0 to a different scale µ1:

ΠS(Q, µ1) = exp




as(µ1)∫

as(µ0)

dz

z

2γS(z)

β(z)



(
ΠS(Q, µ0) +Q2∆(µ1, µ0)

)
,

∆(µ1, µ0) =

as(µ1)∫

as(µ0)

dz

z

γSS(z)

β(z)
exp


−

z∫

as(µ0)

dz′

z′
2γS(z′)

β(z′)


 , (11)

where as = αs/π = g2/(4π2), g is the strong coupling constant and the β-
function β(as) is defined as

µ2 d

dµ2
as = asβ(as) ≡ −

∑

i≥0

βia
i+2
s . (12)

While it is of course possible to recover logarithms explicitly using this solu-
tion, it is more convenient to rewrite the renormalization group equation into
a differential equation in lµQ = log(µ2/Q2) for this purpose:

∂

∂lµQ
ΠS(Q) = 2γSΠS(Q) + γSSQ2 − β as

∂

∂as
ΠS(Q) , (13)

This equation can be used to iteratively reconstruct the logarithmic parts
of ΠS(Q). Explicit formulas for the anomalous dimensions and the QCD β
function are given in Appendix C.
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2.2 Position space

In principle, the discussion of the preceding paragraph can be directly trans-
lated to the position space correlator. It is, however, convenient to use a mod-
ification of the MS scheme that is a bit different from the traditional MS
convention. The reason for this is that in the MS scheme logarithms in posi-
tion space naturally appear in the form 3

log

(
µ2X2

4

)
+ 2γE . (14)

We can transform these to the simpler form log(µ2X2) with a shift in the
renormalization scale:

µ→ 2e−γEµ ≈ 1.12µ . (15)

The shifted µ defines a new modified MS scheme which we call M̃S. The
relation between M̃S quantities and their MS counterparts is of course very
simple:

Π̃S(X,µ) = ΠS

(
X, 2e−γEµ

)
, ãs(µ) = as

(
2e−γEµ

)
, (16)

Using the evolution of the strong coupling constant we can also relate the M̃S
coupling to the MS coupling at the same scale:

ãs(µ) =as(µ)

{
1 − as(µ)lβ0 + a2

s(µ)l(β2
0 l − β1) + a3

s(µ)l
(
−β3

0 l
2 +

5

2
β0β1l − β2

)

+ a4
s(µ)l

[
β4

0 l
3 − 13

3
β2

0β1l
2 + 3

(
β2

1

2
+ β0β2

)
l − β3

]
+ O(a5

sl
5)

}
,

(17)

where l = 2 (log(2) − γE).

In position space there is no additional subtractive renormalization. Hence,
the renormalization group evolution simplifies to

Π̃S(X,µ1) = exp




ãs(µ1)∫

ãs(µ0)

dz

z

2γS(z)

β(z)


 Π̃S(X,µ0) . (18)

The evolution equation for the MS scheme is obtained from Eq. (18) by simply
replacing M̃S quantities by their MS counterparts.

3 See Appendix B.3 for more details.
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2.3 The X-space scheme

The X-space renormalization scheme is defined by fixing the correlator of the
normalized current jX = ZS

Xj at a separation X0 to its value in the free
continuum theory [9]:

ΠS
X(X0) = (ZS

X)2 ΠS
0 (X0) = ΠS(X0)

∣∣∣
free

. (19)

This prescription can be readily implemented both in lattice and perturbative
QCD. In perturbation theory the free theory value of a correlator is obviously
just the leading order contribution.

2.4 Other correlators

In addition to scalar correlators, we also consider correlators of vector, ten-
sor, pseudo-scalar and axial-vector quark currents. In position space these are
defined as

ΠV
µν(X) =〈jµ(X)jν(0)〉 , ΠT

µνρσ(X) =〈jµν(X)jρσ(0)〉 ,
ΠP (X) =〈j5(X)j5(0)〉 , ΠA

µν(X) =〈jµ5(X)jν5(0)〉 (20)

with

j5 = iψ̄γ5ψ, jµ = ψ̄γµψ, jµ5 = ψ̄γµγ5ψ, jµν = ψ̄σµνψ . (21)

Since we work with mψ = 0, the results for the pseudo-scalar correlator will
be the same as for the scalar correlator.

Except for two small points, the entire discussion for the scalar case also holds
for the more complicated Lorentz structures. First, in contrast to all other cor-
relators, the vector and the axial-vector correlators do receive contributions
from diagrams with purely gluonic cuts. We choose to neglect them in this
work. This implies that also vector- and axial-vector correlators coincide. Sec-
ond, it is not possible to näıvely renormalise the vector correlator according to
the X-space condition (Eq. (19)). The reason for this is that in position space
its tensor structure varies between different orders of perturbation theory. We
choose to renormalise the trace of the vector correlator instead.

3 Momentum space correlators: results

In the following two sections we present the results for the correlators both in
momentum and position space. All results with their explicit renormalization
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scale dependence can also be retrieved from
http://www-ttp.particle.uni-karlsruhe.de/Progdata/ttp10/ttp10-42/

We list the correlators in momentum space at the scale µ2 = Q2, where all
logarithms vanish. Results for arbitrary values of µ can be recovered by solving
the renormalization group equation (i.e. by using Eq. (11) or (13)). Note that
the anomalous dimensions listed in Appendix C allow the reconstruction of
all logarithms at one order higher, i.e. at order α4

s for the vector and scalar
correlators and at order α3

s for the tensor correlator.

ΠS(Q) = − 3

4π2
Q2

(
1 +

∞∑

n=1

C(n),sans

)
,

C(1),s =
131

24
− 2 ζ3 ,

C(2),s =
17645

288
− 353

12
ζ3 −

1

8
ζ4 +

25

6
ζ5 + nf

(
− 511

216
+

2

3
ζ3

)
,

C(3),s =
215626549

248832
− 1789009

3456
ζ3 +

1639

32
ζ2
3 − 1645

1152
ζ4 +

73565

1728
ζ5

+
325

192
ζ6 −

665

72
ζ7 + nf

(
− 26364175

373248
+

22769

864
ζ3 −

5

6
ζ2
3 − 53

48
ζ4

+
1889

432
ζ5

)
+ n2

f

(
499069

559872
− 157

1296
ζ3 +

1

48
ζ4 −

5

18
ζ5

)
, (22)

ΠV
µν(Q) =

5

12π2
(−Q2δµν +QµQν)

(
1 +

∞∑

n=1

C(n),vans

)
,

C(1),v =
11

4
− 12

5
ζ3 ,

C(2),v =
41927

1440
− 829

30
ζ3 + 5ζ5 + nf

(
− 3701

2160
+

19

15
ζ3

)
,

C(3),v =
31431599

69120
− 624799

1440
ζ3 +

99

2
ζ2
3 +

11

16
ζ4 +

349

32
ζ5 −

133

12
ζ7

+ nf

(
− 1863319

34560
+

174421

4320
ζ3 − ζ2

3 − 11

48
ζ4 +

109

18
ζ5

)

+ n2
f

(
196513

155520
− 809

1080
ζ3 −

1

3
ζ5

)
, (23)
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ΠT
µνρσ(Q) = Q2

(
Ct T (1)

µνρσ +Dt T (2)
µνρσ(Q)

)
,

Ct =
1

12π2

(
1 +

∞∑

n=1

C(n),tans

)
, Dt = − 5

12π2

(
1 +

∞∑

n=1

D(n),tans

)
,

C(1),t =
491

72
− 6ζ3 ,

C(2),t =
556475

7776
− 2657

36
ζ3 +

7

24
ζ4 +

25

2
ζ5 + nf

(
− 667

162
+

32

9
ζ3

)
,

D(1),t =
593

180
− 12

5
ζ3 ,

D(2),t =
566777

19440
− 265

9
ζ3 +

7

60
ζ4 + 5ζ5 + nf

(
− 1333

810
+

64

45
ζ3

)
(24)

with

as =
αs
(√

Q2
)

π
, ζn =

∞∑

k=1

1

kn
,

T (1)
µνρσ = δµρδνσ − δµσδνρ ,

T (2)
µνρσ(Q) =

QµQρ

Q2
δνσ −

QµQσ

Q2
δνρ −

QνQρ

Q2
δµσ +

QνQσ

Q2
δµρ , (25)

and nf active quark flavours.

4 Position space correlators: results

The position space results are obtained by four-dimensional Fourier transfor-
mation (see Appendix B) of their momentum space counterparts. As it was dis-
cussed in Section 1 the position space correlators are not sensitive (at x2 6= 0)
to the constant (non-logarithmic) contributions to the momentum-space ones.
Thus, the knowledge of the full vector and scalar momentum space correlators
at order α3

s plus the O(α4
s) anomalous dimensions γSS and γV V from Appendix

C allows us to present below the vector and scalar correlators in the position
space at order α4

s. Similarly, the use of Eq. (13) and the O(α3
s) anomalous di-

mensions γ(1),TT and γ(2),TT computed by us (see eqs. in Appendix C ) result
to the full O(α3

s) results for the position space tensor correlator.

We present the results in the M̃S scheme (see Eq. (16)) at the scale µ2 = 1
X2

which correspond to MS results at the scale µ2 = 4
X2 e

−2γE . Results at an
arbitrary scale µ can again be obtained with the use of the renormalization
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group evolution (Eq. (18)). The correlators in position space read

Π̃S(X) =
3

π4
(
X2
)3

(
1 +

∞∑

n=1

C̃(n),sãns

)
,

C̃(1),s =
2

3
,

C̃(2),s =
817

144
− 39

2
ζ3 + nf

(
− 23

72
+

2

3
ζ3

)
,

C̃(3),s =
150353

5184
− 5125

54
ζ3 +

815

12
ζ5 + nf

(
− 13361

3888
+

3

4
ζ3 −

5

6
ζ4 −

25

9
ζ5

)

+ n2
f

(
− 383

11664
+

8

27
ζ3

)
,

C̃(4),s = +
22254833

497664
− 592067

5184
ζ3 +

458425

432
ζ2
3 +

265

18
ζ4 −

607225

864
ζ5

− 1375

32
ζ6 −

178045

768
ζ7 + nf

(
− 8775605

373248
− 392129

5184
ζ3

− 955

16
ζ2
3 −

6731

576
ζ4 +

45695

216
ζ5 +

2875

288
ζ6 +

665

72
ζ7

)

+ n2
f

(
− 224695

2239488
+

11263

1296
ζ3 +

5

6
ζ2
3 +

25

96
ζ4 −

6515

432
ζ5

)

+ n3
f

(
6653

559872
− 173

1296
ζ3 +

1

144
ζ4 +

5

18
ζ5

)
, (26)

Π̃V
µν(X) =

6

π4
(
X2
)3



(
δµν
2

− XµXν

X2

)
C̃v + δµνD̃

v


 ,

C̃v = 1 +
∞∑

n=1

C̃(n),vãns , D̃v =
∞∑

n=0

D̃(n),vãns ,

C̃(1),v = 1 ,

C̃(2),v =
61

6
− 11ζ3 + nf

(
− 11

18
+

2

3
ζ3

)
,

C̃(3),v =
7309

48
− 989

6
ζ3 +

275

6
ζ5 + nf

(
− 2617

144
+

47

3
ζ3 −

25

9
ζ5

)

+ n2
f

(
277

648
− 8

27
ζ3

)
,

C̃(4),v =
57640705

20736
− 278401

108
ζ3 +

5445

8
ζ2
3 − 133705

288
ζ5 −

7315

48
ζ7

+ nf

(
− 10278875

20736
+

50705

144
ζ3 − 55ζ2

3 +
65975

432
ζ5 +

665

72
ζ7

)

+ n2
f

(
1554751

62208
− 10691

864
ζ3 +

5

6
ζ2
3 − 1315

108
ζ5

)

+ n3
f

(
− 503

1458
+

2

27
ζ3 +

5

18
ζ5

)
,
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D̃(0),v = D̃(1),v = 0 ,

D̃(2),v = −11

24
+
nf
36

,

D̃(3),v = −101

9
+

121

12
ζ3 + nf

(
587

432
− 11

9
ζ3

)
+ n2

f

(
− 1

27
+

1

27
ζ3

)
,

D̃(4),v = −616333

2304
+

1111

4
ζ3 −

3025

48
ζ5 + nf

(
111409

2304
− 1607

36
ζ3 +

275

36
ζ5

)

+ n2
f

(
− 54373

20736
+

79

36
ζ3 −

25

108
ζ5

)
+ n3

f

(
325

7776
− 5

162
ζ3

)
,

(27)

Π̃T
µνρσ(X) = − 6

π4
(
X2
)3

(
1

2
T (1)
µνρσ − T (2)

µνρσ(X)
)(

1 +
∞∑

n=1

C̃(n),tãns

)
,

C̃(1),t = 2 ,

C̃(2),t =
5303

432
− 143

18
ζ3 + nf

(
− 443

648
+

2

3
ζ3

)
,

C̃(3),t = +
8439437

46656
− 77977

486
ζ3 +

29

54
ζ4 +

2395

108
ζ5

+ nf

(
− 246515

11664
+

1985

108
ζ3 +

5

18
ζ4 −

25

9
ζ5

)

+ n2
f

(
18287

34992
− 4

9
ζ3

)
, (28)

with

ãs =
α̃s
(
1/
√
X2
)

π
, ζn =

∞∑

k=1

1

kn
,

T (1)
µνρσ = δµρδνσ − δµσδνρ ,

T (2)
µνρσ(X) =

XµXρ

X2
δνσ −

XµXσ

X2
δνρ −

XνXρ

X2
δµσ +

XνXσ

X2
δµρ , (29)

and nf active quark flavours.

In numerical form for nf = 3 the results read

Π̃S(X) =
3

π4
(
X2
)3

(
1 + 0.67 ãs − 16.3 ã2

s − 31 ã3
s + 497 ã4

s

)
, (30)

Π̃V
µν(X) =

6

π4
(
X2
)3

(
δµν
2

− XµXν

X2

)(
1 + ãs − 2.5 ã2

s − 4.4 ã3
s + 66 ã4

s

)

− δµν
(
− 0.375 ã2

s + 0.63 ã3
s + 7.0 ã4

s

)
, (31)

Π̃T
µνρσ(X) = − 6

π4
(
X2
)3

(
1

2
T (1)
µνρσ − T (2)

µνρσ(X)
)(

1 + 2 ãs + 3.1 ã2
s + 6.6 ã3

s

)
.

(32)
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This can be compared to the MS results at the same scale µ2 = 1/X2:

ΠS(X) =
3

π4
(
X2
)3

(
1 + 0.20 as − 18.5 a2

s − 11 a3
s + 579 a4

s

)
, (33)

ΠV
µν(X) =

6

π4
(
X2
)3

(
δµν
2

− XµXν

X2

)(
1 + as − 3.0 a2

s − 2.4 a3
s + 74 a4

s

)

− δµν
(
− 0.375 a2

s + 1.0 a3
s + 6.4 a4

s

)
, (34)

ΠT
µνρσ(X) = − 6

π4
(
X2
)3

(
1

2
T (1)
µνρσ − T (2)

µνρσ(X)
)(

1.+ 2.15 as + 3.3 a2
s + 6.4 a3

s

)
,

(35)

where we use the abbreviation as = αs
(
1/
√
X2
)
/π. In both schemes the α4

s

coefficients of the vector and the scalar correlator are quite large. In the M̃S
scheme we observe a slightly smaller α4

s contribution; furthermore the coeffi-
cients are a bit more uniform between different orders. This indicates a better
behavior of the perturbative series in this scheme.

It is remarkable that the Lorentz structure of the tensor correlator remains the
same at each order while it begins to vary at order α2

s in the vector correlator
result. This change can be easily understood by considering the transversality
condition

∂µ〈jµ(X)jν(0)〉 = 0 . (36)

Together with the appearance of terms which are logarithmic in X also the
Lorentz structure has to change so that the vector correlator remains transver-
sal (see Eq. (B.4) in Appendix B).

As a consequence of this, it is not possible to renormalise the vector correlator
in the X-space scheme according to the prescription Eq. (19). There are many
possible generalizations leading to a well-defined renormalization prescription
for the vector correlator. Among them, we choose to renormalise the trace
of the correlator. For the other correlators the renormalization is straightfor-
ward. We refrain from presenting the somewhat lengthy explicit results here.
They can be easily constructed from the M̃S results (Eq. (26)-(28)) and the
conversion formulas listed in Section 6 (Eq. (40)-(42)).

5 Bibliographical and technical comments

We start with some generic notes. First, the non-logarithmic part of a quark
current correlator in momentum space is not physical within QCD as it re-
quires additional UV subtractions beyond the ones associated to the coupling
constant renormalization.

12



Still, the constant part is important because it provides us with a very conve-
nient way to compute the Q-dependent (that is physical) contribution. Indeed,
suppose that we want to get the Q-dependent contribution at order αns to, say,
the scalar correlator (the discussion below is general and applicable to every
massless correlator). A direct calculation would require to deal with (n+1)-
loop massless propagator-like diagrams contributing to ΠS. A better way 4 is
to use the evolution equation (13). Indeed, after a (trivial) integration of the
right-hand side of the equation with respect to lµQ we arrive at the conclusion
that the Q-dependent part of ΠS is completely determined by the knowledge
of three ingredients:

1. the very correlator ΠS (including its constant, Q-independent part) and the
beta-function to order αns (both are contributed by n-loop diagrams);

2. the anomalous dimension γS to order αns ( n-loop diagrams);

3. the anomalous dimension γSS to order αn+1
s ((n+ 1)-loop diagrams).

Moreover, it is a well-known fact that the methods of Infrared Rearrangements
(IRR) [29] and R∗-operation [30] allow to reduce the problem of evaluation
of a (n+1) loop contribution to an (arbitrary) anomalous dimension to the
computation of some properly constructed set of n-loop massless propagator-
like diagrams.

Up to and including three loops the massless propagator-like diagrams can be
computed easily with the FORM [31] package MINCER [32,33]. The package
implements the algorithm developed in [34] and is based on the use of the
traditional method of integration by parts. Another powerful approach —
the method of the Gegenbauer Polynomials in x-space (GPTx) [13] — is less
automated, but, sometimes, is applicable in cases with loop number exceeding
three (see, e.g. [35] for recent spectacular examples).

The only systematical way to compute massless propagators at four loops is
based on the so-called 1/D-expansion elaborated in [36,37] and on the use
of a special parametric representation of Feynman integrals [38–40]. Here by
computation we mean the reduction to the corresponding master integrals,
the latter have been computed analytically [41] and numerically [42].

In Table 1 we display the bibliographic information about results listed in Sec-
tions 3,4, and in Appendix B. In addition we also mention the main theoretical
tools used in obtaining these results.

We want also to stress, that literally all O(α4
s) calculations listed in the Table

4 The observation below was explicitly made (for the particular case of the vector
correlator) in [25].
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α2
s α3

s α4
s

ΠS [17,21], MINCER [19,26], 1/D expansion

γSS [27,17], MINCER [17], MINCER, IRR [19,26], 1/D expan-
sion,

R∗-operation

Im ΠS [27], MINCER [17], MINCER,
R∗-operation

[19], 1/D expansion,

R∗-operation

ΠV [15,16,21], MINCER [20,28], 1/D expansion

γV V [25], MINCER [15,16], MINCER, IRR [20,28], 1/D expan-
sion,

R∗-operation

Im ΠV [25], IRR [17], MINCER,
R∗-operation

[28], 1/D expansion,

R∗-operation

ΠT [21], MINCER

γTT [21], MINCER present work, MINCER,
R∗-operation

Im ΠT [21], MINCER present work, MINCER,
R∗-operation

Table 1
Calculations of massless quark correlators in QCD: references and main theoretical
tools.

would be not possible to perform without a heavy use of the parallel versions
of FORM, PARFORM [43–45] and TFORM [46]. Last, but not least, the
generation of thousands of four-and five-loop input QCD diagrams have been
conveniently done with the help of the (FORTRAN) program QGRAF [47].

6 Conversion between X-space scheme and M̃S or MS

The natural scale for a transition between the M̃S and the X-space scheme is

µ̃2
0 =

1

X2
0

. (37)
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This is obviously equivalent to a transition between MS and X-space scheme
at a scale µ2

0 = 4
X2

0

e−2γE . Imposing the X-space renormalization condition

(Eq. (19)) on

Πδ
X(X0) =

(
Zδ
X

Z̃δ(µ̃0)

)2

Π̃δ(X0, µ̃0) =

(
Zδ
X

Zδ(µ0)

)2

Πδ(X0, µ0) (38)

with δ ∈ {V, S, T} directly yields the desired ratios [9]

Zδ(µ0)

Zδ
X

=
Z̃δ(µ̃0)

Zδ
X

=

√√√√√
Π̃δ(X0, µ̃0)

Πδ(X0)
∣∣∣
free

(39)

between the renormalization constants in the different schemes. We obtain

Z̃S(µ̃0)

ZS
X

= 1 +
∞∑

n=1

δ(n),s ãs(µ̃0)
n ,

δ(1),s =
1

3
,

δ(2),s =
89

32
− 39

4
ζ3 + nf

(
− 23

144
+

1

3
ζ3

)
,

δ(3),s =
140741

10368
− 2387

54
ζ3 +

815

24
ζ5 + nf

(
− 12947

7776
+

19

72
ζ3 −

5

12
ζ4 −

25

18
ζ5

)

+ n2
f

(
− 383

23328
+

4

27
ζ3

)
,

δ(4),s =
13901515

995328
− 4393

288
ζ3 +

208679

432
ζ2
3 +

265

36
ζ4 −

626785

1728
ζ5

− 1375

64
ζ6 −

178045

1536
ζ7 + nf

(
− 8029687

746496
− 418799

10368
ζ3

− 851

32
ζ2
3 −

6571

1152
ζ4 +

45895

432
ζ5 +

2875

576
ζ6 +

665

144
ζ7

)

+ n2
f

(
− 257315

4478976
+

11273

2592
ζ3 +

13

36
ζ2
3 +

25

192
ζ4 −

6515

864
ζ5

)

+ n3
f

(
6653

1119744
− 173

2592
ζ3 +

1

288
ζ4 +

5

36
ζ5

)
, (40)
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Z̃V (µ̃0)

ZV
X

= (ZV
X)−1 = 1 +

∞∑

n=1

δ(n),v ãs(µ̃0)
n ,

δ(1),v =
1

2
,

δ(2),v =
97

24
− 11

2
ζ3 + nf

(
− 1

4
+

1

3
ζ3

)
,

δ(3),v =
14881

288
− 119

2
ζ3 +

275

12
ζ5 + nf

(
− 5395

864
+

47

9
ζ3 −

25

18
ζ5

)

+ n2
f

(
181

1296
− 2

27
ζ3

)
,

δ(4),v =
34042561

41472
− 294371

432
ζ3 +

5203

16
ζ2
3 − 212905

576
ζ5 −

7315

96
ζ7

+ nf

(
− 6096767

41472
+

7819

96
ζ3 −

77

3
ζ2
3 +

79775

864
ζ5 +

665

144
ζ7

)

+ n2
f

(
889699

124416
− 2899

1728
ζ3 +

13

36
ζ2
3 −

1415

216
ζ5

)

+ n3
f

(
− 1037

11664
− 2

81
ζ3 +

5

36
ζ5

)
, (41)

Z̃T (µ̃0)

ZT
X

= 1 +
∞∑

n=1

δ(n),t ãs(µ̃0)
n ,

δ(1),t = 1 ,

δ(2),t =
4871

864
− 143

36
ζ3 + nf

(
− 443

1296
+

1

3
ζ3

)
,

δ(3),t =
7913369

93312
− 18529

243
ζ3 +

29

108
ζ4 +

2395

216
ζ5

+ nf

(
− 238541

23328
+

1913

216
ζ3 +

5

36
ζ4 −

25

18
ζ5

)
+ n2

f

(
18287

69984
− 2

9
ζ3

)
.

(42)

The conversion can of course be performed for an arbitrary scale µ with the
help of the renormalization group evolution (Eq. (18)).

The new higher order results reduce the theoretical error significantly com-
pared to the old NLO conversion formulas of Ref. [9]. As an example we show
the values of Zδ(2 GeV)/Zδ

X(X2
0 ) with δ ∈ {V, S, T}, X2

0 = (1.5 GeV)−2 at
different orders in perturbation theory. We estimate the theory error from
higher orders by performing the transition between the two schemes at some
varying intermediate scale µ and evolving the result to the final scale of 2 GeV:

Zδ(2 GeV)

Zδ
X(X2

0 )
= exp



as(2 GeV)∫

as(µ)

dz

z

γδ(z)

β(z)




Zδ(µ)

Zδ
X(X2

0 )
. (43)

For the evolution, we use anomalous dimensions at one order higher than
Zδ(2 GeV)/Zδ

X(X2
0 ), up to the highest available order of α4

s . In Figure 1 the
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scalar correlator
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Fig. 1. Values of Zδ(2GeV)/Zδ
X(X2

0 ) for vector, scalar and tensor currents with
X2

0 = (1.5GeV)−2 and nf = 3 quark flavours at different orders in perturbation
theory. The error bars on the left-hand side are obtained by running the ratio of
renormalization constants from an intermediate scale µ with 1/X2

0 ≤ µ2 ≤ 4/X2
0 to

2GeV. On the right-hand side, the dependence on the choice of µ is shown.
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Fig. 2. Values of Zδ(2GeV)/Zδ
X(X2

0 ) for vector, scalar and tensor currents with
X2

0 = (1.5GeV)−2 and nf = 0 quark flavours at different orders in perturbation
theory.
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values for this transition factor are plotted for a varying intermediate scale
µ2 between 1/X2

0 and 4/X2
0 and nf = 3 quark flavours. Figure 2 shows the

same ratios of renormalization constants for nf = 0. As expected from the
numerical formulas Eqs. (33)-(35) the vector and scalar correlators receive
large contributions at order α2

s and α4
s for nf = 3.

7 Conclusion

In this work we have presented presently available information on three basic
quark currents correlators — the scalar, vector and the tensor ones — con-
sidered within the massless QCD. The correlators and the corresponding RG
evolution equations have been studied both in the momentum and position
space. Explicit conversion formulas relating the MS renormalized vector, scalar
and tensor currents to their counterparts renormalized in the X-space renor-
malization scheme are constructed. It is demonstrated that the new higher
order results reduce the theoretical error significantly compared to the old
NLO conversion formulas of Ref. [9].
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A Euclidean correlators from Minkowskian ones

Let us consider a generic correlator defined originally in the Minkowskian
space:
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Πµ1µ2...ν1ν2...(q) = i
∫

M
dx eiqx〈Tjν1ν2...(x) j†µ1µ2...

(0)〉 (A.1)

=
∑

k

T kµ1µ2...(q)ν1ν2...(q) Πk(−q2), (A.2)

where the tensors T kµ1µ2...ν1ν2...
are made from the metric tensor gµν , the vector

q and the indexes µ1µ2 . . .ν1ν2 . . ..

The corresponding Euclidean correlator in the momentum space is constructed
as follows:

Πµ1µ2...ν1ν2...(Q) ≡
∑

k

T kµ1µ2...ν1ν2...
(Q) Πk(Q

2), (A.3)

with T kµ1µ2...ν1ν2...
(Q) being made from T kµ1µ2...ν1ν2...

(q) with the help of the re-
placements qµi

→ −Qµi
, qνi

→ −Qνi
, gµν → −δµν .

At last, the Euclidean correlator in the position space is defined with the help
of the Fourier transformation, viz.

Πµ1µ2...ν1ν2...(Q) ≡
∫

E
dX eiQX〈Tjν1ν2...(X) j†µ1µ2...

(0)〉 (A.4)

B Fourier transformation in d dimensions

Perturbative calculations are in most cases quite cumbersome in position
space. A more convenient alternative is to perform the calculation in mo-
mentum space, where exploiting invariance under translations (implying mo-
mentum conservation) leads to great simplifications. In the end, the result in
position space can be recovered by means of Fourier transformation.

B.1 Fourier transformation of bare functions

In the current work, all bare Green functions have a power-like dependence
on the momentum. For the transformation from euclidean momentum space
to euclidean position space we use the following formula:

FT
(
(Q2)−r

)
≡
∫

ddQ

(2π)d
eiQX

(Q2)r
=

1

(4π)
d

2

Γ(d
2
− r)

Γ(r)

(
X2

4

)r− d

2

. (B.1)

It is straightforward to derive this formula by using Schwinger parametrization
and Gauss integration.
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For Green functions with a non-trivial Lorentz structure it is convenient to
use momentum operators, i.e.

Qµ →− i
∂

∂Xµ

, (B.2)

FT
(
QµQν(Q

2)−(r+1)
)

=
1

(4π)
d

2

Γ(d
2
− r)

Γ(r)

(
X2

4

)r− d

2
[
δµν
2r

−
(
d

2r
− 1

)
XµXν

X2

]
.

(B.3)

Note that forming the trace of the right-hand side of Eq. (B.3) again yields
the simpler result from Eq. (B.1).

We also see explicitly that the Fourier transformation preserves transversality.
Combining Eqs. (B.1) and (B.3) we obtain

FT

[(
δµν −

QµQν

Q2

)
(Q2)−r

]
=

1

(4π)
d

2

Γ(d
2
− r)

Γ(r)

(
X2

4

)r− d

2

(B.4)

×
[(

1 − 1

2r

)
δµν −

(
1 − d

2r

)
XµXν

X2

]
,

∂µ FT

[(
δµν −

QµQν

Q2

)
(Q2)−r

]
=∂ν FT

[(
δµν −

QµQν

Q2

)
(Q2)−r

]
= 0 . (B.5)

B.2 Fourier transformation in four dimensions

The Fourier transformation for the correlators we consider is regular at d = 4.
This means that there are two ways of obtaining the renormalized correlators
in position space. On the one hand, we can transform the bare Green functions
in d dimensions and perform the renormalization afterwards. On the other
hand, we can start from the renormalized correlator in momentum space and
transform it in four dimensions. In the latter case we have to transform terms
which are logarithmic in Q2 in addition to simple powers of Q2. Rewriting the
logarithms with the help of derivatives leads to

FT
[ (
Q2
)r

logs
(
Q2
) ]

= lim
δ→0

(
∂

∂δ

)s
FT

[ (
Q2
)r+δ ]

. (B.6)

In Table B.1 the resulting expressions are listed for all powers of Q2 and
log (Q2) which appear in the momentum space correlators up to order α4

s.
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Momentum space Position space

log(µ2/Q2) 1
π2(X2)2

log2(µ2/Q2) 2
π2(X2)2 (−1 + lµX)

log3(µ2/Q2) 3
π2(X2)2

(−2lµX + l2µX)

log4(µ2/Q2) 4
π2(X2)2

(4ζ3 − 3l2µX + l3µX)

log5(µ2/Q2) 5
π2(X2)2

(−16ζ3 + 16lµXζ3 − 4l3µX + l4µX)

Q2 log(µ2/Q2) − 8
π2(X2)3

Q2 log2(µ2/Q2) 8
π2(X2)3

(5 − 2lµX)

Q2 log3(µ2/Q2) 24
π2(X2)3 (−4 + 5lµX − l2µX)

Q2 log4(µ2/Q2) 16
π2(X2)3 (6 − 8ζ3 − 24lµX + 15l2µX − 2l3µX )

Q2 log5(µ2/Q2) 40
π2(X2)3

(40ζ3 + 12lµX − 16lµXζ3 − 24l2µX + 10l3µX − l4µX)

Table B.1
Fourier transformation of logarithmic terms for various powers of Q2 and log Q2.
Terms that do not contain logarithms vanish for non-negative integer powers of Q2.
We use the abbreviation lµX = log(µ2X2/4) + 2γE .

B.3 Logarithmic structure

One-scale problems, like the correlators considered in this work, exhibit a very
special structure of their logarithmic terms both in momentum and in position
space.

In momentum space in the MS scheme, logarithms have the form log(µ2/Q2).
They originate from terms of the form

(
µ2

Q2

)lǫ
= 1 + lǫ log

(
µ2

Q2

)
+ O

(
ǫ2
)
, (B.7)

where l denotes the number of loops in the corresponding diagram. In order to
obtain the logarithmic structure in position space we can again extract terms
of the form ylǫ from the Fourier transform of the left-hand side of Eq. (B.7).
Expressing the Gamma functions in the Fourier transform in terms of expo-
nential functions and polynomials in ǫ we find

(
µ2X2

4
e2γE

)lǫ
= 1 + lǫ


 log

(
µ2X2

4

)
+ 2γE


+ O

(
ǫ2
)
, (B.8)

for the general structure of position space logarithms.
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C Anomalous dimensions

In our conventions the momentum space renormalization group equations of
the scalar, vector and tensor correlators read

µ2 d

dµ2
ΠS(Q, µ) = 2γSΠS(Q, µ) + γSSQ2 , (C.1)

µ2 d

dµ2
ΠV
µν(Q, µ) = 2γV ΠV

µν(Q, µ) + γV V (−Q2δµν +QµQν) , (C.2)

µ2 d

dµ2
ΠT
µνρσ(Q, µ) = 2γTΠT

µνρσ(Q, µ) +
(
γ(1),TTT (1)

µνρσ + γ(2),TTT (2)
µνρσ(Q)

)
Q2

(C.3)

with the tensor structures

T (1)
µνρσ = δµρδνσ − δµσδνρ ,

T (2)
µνρσ(Q) =

QµQρ

Q2
δνσ −

QµQσ

Q2
δνρ −

QνQρ

Q2
δµσ +

QνQσ

Q2
δµρ . (C.4)

The corresponding evolution equations in position space are analogous, but
contain no subtractive anomalous dimensions. The anomalous dimensions are
given by

γV (as) = 0 , (C.5)

γV V (as) =
1

16π2

∞∑

n=0

γV Vn ans ,

γV V0 = 4 ,

γV V1 = 4 ,

γV V2 =
125

12
− 11

18
nf ,

γV V3 =
10487

432
+

110

9
ζ3 + nf

(
− 707

216
− 110

27
ζ3

)
− 77

972
n2
f ,

γV V4 =
2665349

41472
+

182335

864
ζ3 −

605

16
ζ4 −

31375

288
ζ5

+ nf

(
− 11785

648
− 58625

864
ζ3 +

715

48
ζ4 +

13325

432
ζ5

)

+ n2
f

(
− 4729

31104
+

3163

1296
ζ3 −

55

72
ζ4

)
+ n3

f

(
107

15552
+

1

108
ζ3

)
, (C.6)
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γS(as) = −γm =
∞∑

n=0

γSna
n+1
s ,

γS0 = 1 ,

γS1 =
101

24
− 5

36
nf ,

γS2 =
1249

64
+ nf

(
− 277

216
− 5

6
ζ3

)
− 35

1296
n2
f ,

γS3 =
4603055

41472
+

530

27
ζ3 −

275

8
ζ5 + nf

(
− 91723

6912
− 2137

144
ζ3 +

55

16
ζ4 +

575

72
ζ5

)

+ n2
f

(
2621

31104
+

25

72
ζ3 −

5

24
ζ4

)
+ n3

f

(
− 83

15552
+

1

108
ζ3

)
, (C.7)

γSS(as) =
1

16π2

∞∑

n=0

γSSn ans ,

γSS0 = −6 ,

γSS1 = −10 ,

γSS2 = −455

12
+ 3ζ3 − 2nf ,

γSS3 = −157697

864
+

1645

36
ζ3 −

45

4
ζ4 −

65

2
ζ5 + nf

(
14131

1296
+

26

3
ζ3 +

11

2
ζ4

)

+ n2
f

(
1625

1944
− 2

3
ζ3

)
,

γSS4 = −1305623

864
− 540883

3456
ζ3 −

19327

288
ζ2
3 − 113557

384
ζ4 +

158765

576
ζ5 +

29825

64
ζ6

+
97895

384
ζ7 + nf

(
11341807

62208
+

385147

1728
ζ3 −

187

16
ζ2
3 +

10207

192
ζ4

− 55127

288
ζ5 −

6725

96
ζ6

)
+ n2

f

(
249113

373248
− 749

48
ζ3 +

21

8
ζ4 +

37

4
ζ5

)

+ n3
f

(
1625

15552
+

5

108
ζ3 −

1

6
ζ4

)
, (C.8)

γT (as) =
∞∑

n=0

γTn a
n+1
s ,

γT0 = −1

3
,

γT1 = −181

72
+

13

108
nf ,

γT2 = −52555

5184
+

29

54
ζ3 + nf

(
655

648
+

5

18
ζ3

)
+

n2
f

144
,

γT3 = −2208517

41472
+

7733

3888
ζ3 −

319

144
ζ4 +

10465

972
ζ5

+ nf

(
1537379

186624
+

18979

3888
ζ3 −

437

432
ζ4 −

575

216
ζ5

)

+ n2
f

(
− 9961

93312
− 115

648
ζ3 +

5

72
ζ4

)
+ n3

f

(
− 7

15552
− 1

324
ζ3

)
, (C.9)
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γ(1),TT (as) =
1

16π2

∞∑

n=0

γ(1),TT
n ans ,

γ
(1),TT
0 = 2 ,

γ
(1),TT
1 =

22

9
,

γ
(1),TT
2 =

841

324
+

7

9
ζ3 +

nf
81

,

γ
(1),TT
3 =

617299

69984
+

35171

972
ζ3 −

29

36
ζ4 −

1955

54
ζ5

+ nf

(
32821

34992
− 152

81
ζ3 +

37

54
ζ4

)
+ n2

f

(
557

17496
− 2

27
ζ3

)
, (C.10)

γ(2),TT (as) =
1

16π2

∞∑

n=0

γ(2),TT
n ans ,

γ
(2),TT
0 = −4 ,

γ
(2),TT
1 = −68

9
,

γ
(2),TT
2 = −1412

81
− 14

9
ζ3 +

25

81
nf ,

γ
(2),TT
3 = −2679661

34992
− 31865

486
ζ3 +

29

18
ζ4 +

1955

27
ζ5

+ nf

(
52337

17496
+

470

81
ζ3 −

37

27
ζ4

)
+ n2

f

(
− 95

8748
+

4

27
ζ3

)
. (C.11)

Additionally, the four loop QCD β function is required for the renormalisation
group evolution (Eqs. (11), (18)). In our convention it reads

β(as) = −
∞∑

n=0

βna
n+1
s ,

β0 =
11

4
− nf

6
,

β1 =
51

8
− 19

24
nf ,

β2 =
2857

128
− 5033

1152
nf +

325

3456
n2
f ,

β3 =
149753

1536
+

891

64
ζ3 + nf

(
− 1078361

41472
− 1627

1728
ζ3

)

+ n2
f

(
50065

41472
+

809

2592
ζ3

)
+

1093

186624
n3
f . (C.12)

The β function and the mass anomalous dimension γm were computed at four
loop order in Refs. [48,49,22,23].
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[27] S. G. Gorishny, A. L. Kataev, S. A. Larin, L. R. Surguladze. CORRECTED
THREE LOOP QCD CORRECTION TO THE CORRELATOR OF THE
QUARK SCALAR CURRENTS AND GAMMA (tot) (H0 → HADRONS).
Mod. Phys. Lett., A5:2703–2712, 1990.

[28] P. A. Baikov, K. G. Chetyrkin, J. H. Kühn. R(s) and hadronic tau-Decays in
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