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1. Introduction

The potential between two heavy quarks has been among thegdpcation after the formu-
lation of QCD. At leading order it is given by the exchange @@ulomb gluon and can — after
obvious modifications — be obtained from the potential oftihdrogen atom. One- and two-loop
corrections have been considered in Refs. [1, 2, 3, 4, 5,@hare introduced numerically sizable
effects in quarkonium physics (see, e.g., the review RéX. Fince 1998 there has been a raising
interest in the three-loop corrections. The fermionic ections have been completed in 2008 [8]
and in 2009 two independent groups [9, 10] have complete@ubhaly abelian three-loop part. In
Refs. [8, 9] the calculation has been performed in a covhgange and the independence of the
final expression on the gauge parameter has been a cructdd freghe correctness of the result.

2. Outline of the calculation

The calculation of the static potential requires the ev@unaof the four-point amplitude of
a heavy quark and anti-quark. Some sample Feynman diagmneanshewn in Fig. 1. It is suffi-
cient to consider as a starting point the so-called nortivedic QCD (NRQCD), i.e. QCD with
hard degrees of freedom integrated out. In this limit thesji@piark propagators represent static
colour sources with propagatorg whereas the gluons and light quarks are still relativistice
only dimensionful scale in the problem is the momentum fieanlsetween the heavy quark and
anti-quark and thus momentum integrals can be represegtésidspoint functions. In Fig. 2 the
different cases of the scalar two-point integrals up toghoeps are shown.

In case the static lines are absent the problem of compuimgdrresponding integrals up to
three loops has been solved many years ago [11] and a puldlic exists M NCER [12] which
can easily be included in all computational frameworks. presence of the static lines, however,
makes the practical evaluation quite difficult and an expdiclution of the recurrence problem (as
implemented in Ref. [12]) is not available. Furthermore, thaster integrals are significantly more
complicated due to the occurrence of the static lines.

In Refs. [8, 9] the reduction of all occurring integrals toraadl set of master integrals has
been achieved with the help of the progr&hRE [13] which can be linked to a database and
thus handle non-trivial problems in a quite efficient way.olir case up to 16 indices have to be
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Figure 1: Sample diagrams contributing to the static potential &-texel, one-, two- and three-loop order.
Solid and curly lines represent quarks and gluons, resfygtilin the case of closed loops the quarks are
massless; the external quarks are heavy and treated iratielishit.
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Figure2: Scalar one-, two- and three-loop diagrams. The solid liaedst for massless relativistic propaga-
tors and the zigzag line represents static propagators.

considered: 8§ 6 = 14 indices from relativistiv and non-relativistic prop&ga, respectively, and
in addition one index from an irreducible numerator (see EjgThe problem can be simplified by
considering a partial fractioning in those cases whereetktatic lines meet in one vertex and by
linear relations between four static propagators whicddea at most three static propagators at
three loops thus reducing the total number of indices tougeélVe have performed the calculation
in both ways. In the first option with up to 15 indices onlylétmanual work is involved, however,
significantly more computer resources are needed than itwiige-index approach. In the latter
case one has to provide several relations implemeting ttialfaactioning (mentioned above) and
symmetry relations to end up with a small set of differentedasbe considered for the reduction.
The fact that the final results in both approaches agreeitgtesta strong check on our result.

After the reduction one ends up with 41 master integrals fuictvan explicit result is needed.
Nine integrals are quite simple and can essentially be édairom the one- and two-loop results.
14 integrals contain a massless one-loop diagram whicheantdgrated out leading to a two-loop
integral with an exponent depending on the space-time diforil. These integrals are already
quite involved and have been presented in Ref. [14]. The irental8 integrals are genuinely
of three-loop order and involve a nontrivial calculationdiotain their result. All but three =
(4—d)/2 coefficients could be computed analytically; the corresiimy analytical results have
been presented in Ref. [15]. The three missing coefficienat&@own with a numerically precision
sufficient for all foreseeable applications.

3. Static potential to three loops

Let us finally present the result for the static potential. réfeain from analytical results which
can be found in Refs. [8, 9] but immediately she\{d|) in numerical from:

_ anCeas([d))

s Os\ 2 2
V() = = 1+—2(2.5833-0.2778) + (;) (285468 4.1471n, +0.07720)

(%)3 2 3
+(52) (209884(1) — 514048 +2.90617 — 0.02147) +--- |, (3.1)

wherepu? = G2 has been adopted in order to suppress the infrared logaaitiththe ellipses denote
higher order terms ims. It is interesting to note that the term “209” in the threepacoefficient
receives a large contribution (“211") from the term with @ot factorC,:j whereas the new colour
structured@®ddabed only contributes with a coefficient2”. From Eq. (3.1) we observe at one-,
two- and three-loop order a large screening of the non-famini contributions by they terms
which is most prominent in the three-loop coefficient fipe 5.

In Tab. 1 we show the numerical evaluation of the square ketaakEq. (3.1) for the charm,
bottom and top quark case, i.e. for= 3,4 and 5, adopting the appropriate valuesogf For
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n ‘ asm ‘ 1 loop ‘ 2 loop ‘ 3 loop
3 10.40 | 0.2228 | 0.2723 | 0.1677
4 | 0.25 ] 0.1172 | 0.08354| 0.02489
5 1 0.15 | 0.05703| 0.02220| 0.002485

Table 1. Radiative corrections to the potent\a{|f|) where the tree-level result is normalized to 1. In the
second column we also provide the numerical valuatorresponding to the soft scale wheres myas
(mg being the heavy quark mass).

charm the three-loop corrections are almost as big as theamaetwo-loop contributions whereas
for bottom the three-loop contribution is already a factbfooir smaller than the two-loop one. In
the case of the top quark one observes a good convergendbirébdoop term is already a factor
ten smaller than the two-loop counterpart.

To summarize, the three-loop corrections to the staticyhgaark potential are available and
can now be used for the prediction of the top quark threshaduyzction at a future linear collider
with third-order accuracy, for the precise extraction af tottom quark mass froff sum rules,
and for the comparison of the potential with results obt@ioe the lattice in order to gain insight
to the validity of perturbation theory.

References

[1] W. Fischler, Nucl. Phys. B29 (1977) 157.

[2] A. Billoire, Phys. Lett. B92 (1980) 343.

[3] M. Peter, Phys. Rev. Let?8 (1997) 602 [arXiv:hep-ph/9610209].
[4] M. Peter, Nucl. Phys. B01 (1997) 471 [arXiv:hep-ph/9702245].
[5] Y. Schroder, Phys. Lett. B47 (1999) 321 [arXiv:hep-ph/9812205].

[6] B. A. Kniehl, A. A. Penin, M. Steinhauser and V. A. Smirnd&®hys. Rev. D65 (2002) 091503
[arXiv:hep-ph/0106135].

[7]1 N. Brambillaet al.[Quarkonium Working Group], arXiv:hep-ph/0412158.

[8] A.V. Smirnov, V. A. Smirnov and M. Steinhauser, Phys.tL& 668 (2008) 293 [arXiv:0809.1927
[hep-ph]].

[9] A. V. Smirnov, V. A. Smirnov and M. Steinhauser, Phys. Restt. 104 (2010) 112002
[arXiv:0911.4742 [hep-ph]].

[10] C. Anzai, Y. Kiyo and Y. Sumino, Phys. Rev. LetD4 (2010) 112003 [arXiv:0911.4335 [hep-ph]].
[11] K. G. Chetyrkin and F. V. Tkachov, Nucl. Phys.182 (1981) 159.

[12] S. A. Larin, F. V. Tkachov and J. A. M. Vermaseren, “Theafd/ersion Of Mincer.”

[13] A. V. Smirnov, JHER0810 (2008) 107 [arXiv:0807.3243 [hep-ph]].

[14] A. V. Smirnov, V. A. Smirnov and M. Steinhauser, arXi@16.5513 [hep-ph].

[15] A. V. Smirnov, V. A. Smirnov and M. Steinhauser, PBBADCOR2009 (2010) 075 [arXiv:1001.2668
[hep-ph]].



