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Abstract

We perform the two-loop matching calculation for heavy-to-light currents from

QCD onto soft-collinear effective theory for the complete set of Dirac structures.

The newly obtained matching coefficients enter several phenomenological applica-

tions, of which we discuss heavy-to-light form factor ratios and exclusive radia-

tive decays, as well as the semi-inclusive decay B̄ → Xsℓ
+ℓ−. For this decay,

we observe a significant shift of the forward-backward asymmetry zero and find

q2
0 = (3.34+0.22

−0.25)GeV2 for an invariant mass cut mcut
X = 2.0GeV.



1 Introduction

The flavour-changing quark currents q̄ Γi b, with Γi = {1, γ5, γ
µ, γ5γ

µ, iσµν}, govern the

hadronic dynamics in semi-leptonic and radiative B decays. The matrix elements of the

currents, usually parameterized by several transition form factors, are also important

inputs to the factorization formulae for non-leptonic B decays [1]. In the kinematic

region where the hadronic final state has small invariant mass but large energy, soft-

collinear effective theory (SCET) [2, 3] is the appropriate theoretical framework, with

which transparent factorization formulae for the heavy-to-light form factors have been

derived [4] (see also [5,6]). Thus, the accurate representation of the heavy-to-light currents

in SCET is of particular interest.

The LO and NLO matching coefficients for heavy-to-light currents from QCD onto

SCET for an arbitrary Dirac matrix has been worked out a few years ago [2, 7, 8]. The

coefficients for V-A currents have recently been determined to NNLO in the context

of inclusive semi-leptonic B decays [9–12] in the shape-function region. In this paper

we complete the NNLO calculation by computing the remaining matching coefficients

of the tensor currents. The tensor matching coefficients enter several phenomenological

applications, of which we shall discuss heavy-to-light form factor ratios and exclusive

radiative decays, as well as the semi-inclusive decay B̄ → Xsℓ
+ℓ−.

The paper is organized as follows. In Section 2 we first set up notation and then

briefly recapitulate the techniques applied and the necessary ingredients for the two-

loop calculation. In Section 3 the two-loop calculation of the QCD form factors and

the corresponding matching coefficients are presented in detail. Three interesting phe-

nomenological applications of our results to heavy-to-light form factor ratios, exclusive

radiative decays, as well as the inclusive decay B̄ → Xsℓ
+ℓ− are discussed in Sections 4

and 5. We conclude in Section 6. The lengthy analytic expressions for the coefficient

functions can be found in Appendices A and B.

2 NNLO calculation

2.1 Set-up of the matching calculation

A generic heavy-to-light current q̄ Γi b is represented in SCET by a set of non-local “two-

body” and “three-body” [3–6] operators,

[q̄ Γi b](0) =
∑

j

∫

ds C̃j
i (s)

[

ξ̄Whc

]

(sn+) Γ′
j hv(0)

+
∑

j

∫

ds1ds2 C̃
(B1)j
iµ (s1, s2) O

(B1)jµ
i (s1, s2) + . . . , (1)

where hv is the static heavy quark field defined in HQET, whereas ξ and Whc are the

hard-collinear light quark field and a hard-collinear Wilson line from SCET, respectively.

In this paper we are concerned with the calculation of the matching coefficients in the
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first line of (1). The three-body operators O
(B1)jµ
i (s1, s2) in the second line are 1/mb-

suppressed but relevant at leading power for exclusive transitions and form factors due

to the matrix element suppression of the leading term. Their one-loop matching coef-

ficients are known from [8, 13] and this suffices to work out their contribution to the

exclusive transitions at O(α2
s). We refer to [14] for the details of the calculation of these

spectator-scattering terms. In the current work we consider the missing O(α2
s) matching

coefficients of the two-body operators
[

ξ̄Whc

]

(sn+) Γ′
j hv(0) and adopt the momentum

space representation, which follows from

Cj
i (n+p) =

∫

ds eisn+p C̃j
i (s). (2)

We decompose the heavy-to-light currents in the basis from [14] (summarized in Table 1)

with two reference vectors v and n− that fulfill v = (n− + n+)/2, n2
± = 0 and n+n− = 2.

The matching calculation involves 12 coefficient functions Cj
i , which are not independent

in a renormalization scheme with anti-commuting γ5 due to the chiral symmetry of QCD.

In the NDR scheme adopted in this work, this translates into the constraints CP = CS

and Ci
A = Ci

V , while similar relations hold between the matching coefficients of the tensor

and the pseudotensor current. As the latter is reducible in four space-time dimensions,

we obtain the additional constraints C2
T = C4

T = 0 in four dimensions. We nevertheless

keep the more general basis from Table 1, since we work in dimensional regularization

and obtain intermediate results that are valid in d = 4 − 2ǫ dimensions, where C2
T and

C4
T are of O(ǫ) but non-vanishing.

It is convenient to perform the matching calculation with on-shell quarks and to

use dimensional regularization to regularize ultraviolet (UV) and infrared (IR) singular-

ities. The SCET diagrams are then scaleless and vanish and the computation essentially

amounts to a two-loop calculation in QCD. We, in particular, introduce an analogous

tensor decomposition to (1) and parameterize the QCD result in terms of 12 form fac-

tors,

〈q(p)|q̄ Γi b|b(pb)〉 =
∑

j

F j
i (q2) ū(p) Γ′

j u(pb), (3)

where pb = mbv is the momentum of the heavy quark, p = umbn−/2 the momentum of

the light quark and q2 = (pb − p)2 = (1 − u)m2
b denotes the momentum transfer. Due to

the absence of loop contributions on the effective theory side, the SCET matrix elements

are given by the tree level matrix elements multiplied by a universal renormalization

factor ZJ of the SCET current
[

ξ̄Whc

]

Γ′
jhv. There is thus a one-to-one correspondence

Γi 1 γ5 γµ γ5γ
µ iσµν

Γ′
j 1 γ5 γµ vµ nµ

− γ5γ
µ vµγ5 nµ

−γ5 γ[µγν] v[µγν] n
[µ
−γν] n

[µ
−vν]

Cj
i CS CP C1

V C2
V C3

V C1
A C2

A C3
A C1

T C2
T C3

T C4
T

Table 1: Matching coefficients Cj
i according to the decomposition in (1) (a[µbν] ≡ aµbν−aνbµ).
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between the matching coefficients Cj
i and the form factors F j

i ,

Cj
i = Z−1

J F j
i . (4)

As the form factors are, however, in general IR-divergent, there exists no analogous

relation on the form factor level to the four-dimensional constraints C2
T = C4

T = 0.

The purpose of our analysis consists in the computation of the matching coefficients

Cj
i (and the respective form factors F j

i ) to NNLO in QCD. Whereas the NLO corrections

have been worked out in [2,7,8], the coefficients Ci
V and Ci

A have recently been determined

to NNLO in the context of inclusive semi-leptonic B decays [9–12]. In the current work

we complete the NNLO calculation by computing the remaining matching coefficients CS,

CP and Ci
T . The four-dimensional constraints mentioned above, will serve as a non-trivial

check of our calculation.

2.2 Technical aspects of the calculation

We organize the calculation along the strategy that we used in our previous works on

the V-A current [11,12]. The calculation is based on an automated reduction algorithm,

which uses integration-by-parts techniques [15] and the Laporta algorithm [16] to express

the two-loop diagrams (shown in Figure 1 of [11]) in terms of a small set of scalar master

integrals. The required master integrals are already known from the computations in [9–

11,17, 18].

Our results will be given in terms of the following set of harmonic polylogarithms

(HPLs) [19],

H(0; x) = ln(x), H(0, 0, 1; x) = Li3(x),

H(1; x) = − ln(1 − x), H(0, 1, 1; x) = S1,2(x),

H(−1; x) = ln(1 + x), H(0, 0, 0, 1; x) = Li4(x),

H(0, 1; x) = Li2(x), H(0, 0, 1, 1; x) = S2,2(x),

H(0,−1; x) = −Li2(−x), H(0, 1, 1, 1; x) = S1,3(x),

H(−1, 0, 1; x) ≡ H1(x), H(0,−1, 0, 1; x) ≡ H2(x), (5)

where we introduced a shorthand notation for the last two HPLs. Whereas the first one

can be written in a compact form [20],

H1(x) = ln(1 + x)Li2(x) +
1

2
S1,2(x

2) − S1,2(x) − S1,2(−x), (6)

the second one, H2(x) =
∫ x

0
dx′H1(x

′)/x′, cannot be expressed in terms of Nielsen Poly-

logarithms and has to be evaluated numerically.

The charm quark enters the matching calculation at the two-loop level through the

gluon self energy which contains closed fermion loops. Our analytical results from Sec-

tions 3.1 and 3.2 are valid for massless charm quark, but we also show some numerical
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results in Section 3.2 that include charm mass effects. In this case we formally keep

mc/mb fixed in the heavy-quark expansion, so the coefficients depend non-trivially on

the quark mass ratio (see Section 5 of [12]).

The pure two-loop calculation yields bare form factors F j
i that are UV- and IR-

divergent. The UV-divergences are subtracted in a standard renormalization procedure,

which has been described in detail in our previous works [11,12]. We, in particular, renor-

malize the strong coupling constant in the MS-scheme, whereas the quark wave-functions

and the b-quark mass are renormalized in the on-shell scheme. The only difference in the

current calculation consists in the fact that the scalar and the tensor current have non-

vanishing anomalous dimensions in contrast to the vector current considered in [11, 12].

This gives rise to an additional multiplicative counterterm Z−1
i (i = S, T ). We expand

the inverse

Zi = 1 +

∞
∑

k=1

(

α
(5)
s

4π

)k

Z
(k)
i (7)

in terms of the renormalized coupling constant of a theory with five active quark flavours.

In the MS-scheme the respective NLO coefficients are then given by Z
(1)
S = 3CF /ǫ and

Z
(1)
T = −CF /ǫ for the scalar and the tensor current, respectively. At NNLO the counter-

terms can be inferred from [21],

Z
(2)
S = CF

{[

9

2
CF −

11

2
CA + 2nfTF

]

1

ǫ2
+

[

3

4
CF +

97

12
CA −

5

3
nfTF

]

1

ǫ

}

,

Z
(2)
T = CF

{[

1

2
CF +

11

6
CA −

2

3
nfTF

]

1

ǫ2
+

[

19

4
CF −

257

36
CA +

13

9
nfTF

]

1

ǫ

}

, (8)

where nf = 5 denotes the number of active quark flavours.

3 Results

3.1 Renormalized form factors

We first present our results for the renormalized form factors F j
i , which are UV-finite but

IR-divergent. It will be convenient to decompose the form factors according to

F j
i =

∞
∑

k=0

(

α
(5)
s

4π

)k

F
j,(k)
i , F

j,(k)
i =

∑

l

F
j,(k)
i,l ǫl. (9)

In this normalization the form factors become at tree level

F
(0)
S = −2F

1,(0)
T = 1,

F
2,(0)
T = F

3,(0)
T = F

4,(0)
T = 0. (10)
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Here and below we do not quote our results for the pseudoscalar and the (axial) vector

current, since the former are equal to those of the scalar current in the NDR scheme,

while the latter have already been computed before and can be found in [9–12].

One-loop form factors. At NLO we compute the form factors up to terms of O(ǫ2).

Our results are given in terms of a set of coefficient functions gi(u), which we list in

Appendix A. The scalar form factor is IR-divergent and becomes (with q2 = ūm2
b ,

ū = 1 − u and L = lnµ2/m2
b),

F
(1)
S,−2(u) = −CF ,

F
(1)
S,−1(u) = CF

(

g0(u) − L

)

,

F
(1)
S,0(u) = CF

(

g1(u) +
[

g0(u) + 3
]

L −
1

2
L2

)

,

F
(1)
S,1(u) = CF

(

g2(u) + g1(u)L +
1

2

[

g0(u) + 3
]

L2 −
1

6
L3

)

,

F
(1)
S,2(u) = CF

(

g3(u) + g2(u)L +
1

2
g1(u)L2 +

1

6

[

g0(u) + 3
]

L3 −
1

24
L4

)

. (11)

The first tensor form factor is also IR-divergent and given by

F
1,(1)
T,−2(u) =

CF

2
,

F
1,(1)
T,−1(u) = −

CF

2

(

g0(u) − L

)

,

F
1,(1)
T,0 (u) = −

CF

2

(

g4(u) +
[

g0(u) − 1
]

L −
1

2
L2

)

,

F
1,(1)
T,1 (u) = −

CF

2

(

g5(u) + g4(u)L +
1

2

[

g0(u) − 1
]

L2 −
1

6
L3

)

,

F
1,(1)
T,2 (u) = −

CF

2

(

g6(u) + g5(u)L +
1

2
g4(u)L2 +

1

6

[

g0(u) − 1
]

L3 −
1

24
L4

)

, (12)

whereas the other tensor form factors are IR-finite at NLO and read

F
2,(1)
T,0 (u) = 0,

F
2,(1)
T,1 (u) = CFg7(u),

F
2,(1)
T,2 (u) = CF

(

g8(u) + g7(u)L

)

, (13)

F
3,(1)
T,0 (u) = CFg9(u),
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F
3,(1)
T,1 (u) = CF

(

g10(u) + g9(u)L

)

,

F
3,(1)
T,2 (u) = CF

(

g11(u) + g10(u)L +
1

2
g9(u)L2

)

, (14)

F
4,(1)
T,0 (u) = 0,

F
4,(1)
T,1 (u) = CFg12(u),

F
4,(1)
T,2 (u) = CF

(

g13(u) + g12(u)L

)

. (15)

Two-loop form factors. At NNLO the IR-divergent parts of the form factors can be

expressed in terms of the one-loop coefficient functions gi(u). The divergent terms of the

scalar form factor read

F
(2)
S,−4(u) =

1

2
C2

F ,

F
(2)
S,−3(u) = C2

F

(

L − g0(u)

)

+
11

4
CACF − nlTF CF ,

F
(2)
S,−2(u) = C2

F

[

L2 −

(

2g0(u) + 3

)

L +
1

2
g0(u)2 − g1(u)

]

+
4

3
L TF CF

+ CACF

[

11

6

(

L − g0(u)

)

−
67

36
+

π2

12

]

+ nlTF CF

[

5

9
−

2

3

(

L − g0(u)

)]

,

F
(2)
S,−1(u) = C2

F

[

2

3
L3 −

(

2g0(u) +
9

2

)

L2 −

(

2g1(u) − g0(u)2 − 3g0(u)

)

L

+ g0(u)g1(u) − g2(u) −
3

8
+

π2

2
− 6ζ3

]

+ CACF

[(

π2

6
−

67

18

)(

L − g0(u)

)

+
461

216
−

17π2

24
+

11

2
ζ3

]

+ nlTF CF

[

10

9

(

L − g0(u)

)

−
25

54
+

π2

6

]

+ TF CF

[

2L2 −
4

3
g0(u)L +

π2

9

]

,

(16)

and for the first tensor form factor we get

F
1,(2)
T,−4(u) = −

1

4
C2

F ,

F
1,(2)
T,−3(u) = −

1

2
C2

F

(

L − g0(u)

)

−
11

8
CACF +

1

2
nlTFCF ,

F
1,(2)
T,−2(u) = −

1

2
C2

F

[

L2 −

(

2g0(u) − 1

)

L +
1

2
g0(u)2 − g4(u)

]

−
2

3
L TF CF
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−
1

2
CACF

[

11

6

(

L − g0(u)

)

−
67

36
+

π2

12

]

−
1

2
nlTF CF

[

5

9
−

2

3

(

L − g0(u)

)]

,

F
1,(2)
T,−1(u) = −

1

2
C2

F

[

2

3
L3 −

(

2g0(u) −
3

2

)

L2 −

(

2g4(u) − g0(u)2 + g0(u)

)

L

+ g0(u)g4(u) − g5(u) −
3

8
+

π2

2
− 6ζ3

]

−
1

2
CACF

[(

π2

6
−

67

18

)(

L − g0(u)

)

+
461

216
−

17π2

24
+

11

2
ζ3

]

−
1

2
nlTF CF

[

10

9

(

L − g0(u)

)

−
25

54
+

π2

6

]

−
1

2
TF CF

[

2L2 −
4

3
g0(u)L +

π2

9

]

.

(17)

The IR-divergent parts of the other tensor form factors are given by

F
2,(2)
T,−1(u) = −C2

F g7(u), (18)

and

F
3,(2)
T,−2(u) = −C2

F g9(u),

F
3,(2)
T,−1(u) = C2

F

(

g0(u)g9(u) − g10(u) − 2g9(u)L

)

, (19)

and

F
4,(2)
T,−1(u) = −C2

F g12(u). (20)

The finite parts of the two-loop form factors involve a new set of coefficient functions

hi(u), which we specify in Appendix B. We find

F
(2)
S,0(u) = C2

F

[

1

3
L4 −

(

4

3
g0(u) +

7

2

)

L3 −

(

2g1(u) − g0(u)2 −
9

2
g0(u) −

9

2

)

L2

−

(

2g2(u) − 2g1(u)g0(u) − 3g1(u) −
3

4
− π2 + 12ζ3

)

L + h1(u)

]

+ CACF

[

−
11

18
L3 +

(

11

6
g0(u) +

16

9
+

π2

6

)

L2

+

(

11

3
g1(u) +

(67

9
−

π2

3

)

g0(u) +
2207

108
−

17π2

12
+ 11ζ3

)

L + h2(u)

]

+ nlTFCF

[

2

9
L3 −

(

2

3
g0(u) +

8

9

)

L2 −

(

4

3
g1(u) +

20

9
g0(u) +

115

27
−

π2

3

)

L

−
4

3
g2(u) −

20

9
g1(u) −

(

20

27
+

π2

3

)

g0(u) −
541

324
−

13π2

18
+

10

3
ζ3

]
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+ TF CF

[

14

9
L3 −

(

2g0(u) + 2

)

L2 −

(

4

3
g1(u) +

10

3
−

2π2

9

)

L + h3(u)

]

, (21)

and

F
1,(2)
T,0 (u) = −

1

2
C2

F

[

1

3
L4 −

(

4

3
g0(u) −

7

6

)

L3 −

(

2g4(u) − g0(u)2 +
3

2
g0(u) −

1

2

)

L2

−

(

2g5(u) − 2g4(u)g0(u) + g4(u) −
35

4
− π2 + 12ζ3

)

L + h4(u)

]

−
1

2
CACF

[

−
11

18
L3 +

(

11

6
g0(u) −

50

9
+

π2

6

)

L2

+

(

11

3
g4(u) +

(67

9
−

π2

3

)

g0(u) −
1081

108
−

17π2

12
+ 11ζ3

)

L + h5(u)

]

−
1

2
nlTF CF

[

2

9
L3 −

(

2

3
g0(u) −

16

9

)

L2 −

(

4

3
g4(u) +

20

9
g0(u) −

53

27
−

π2

3

)

L

−
4

3
g5(u) −

20

9
g4(u) −

(

20

27
+

π2

3

)

g0(u) + h6(u)

]

−
1

2
TF CF

[

14

9
L3 −

(

2g0(u) −
2

3

)

L2 −

(

4

3
g4(u) −

26

9
−

2π2

9

)

L + h7(u)

]

,

(22)

and

F
2,(2)
T,0 (u) = C2

F

(

g0(u)g7(u) − g8(u) − 2g7(u)L

)

, (23)

and

F
3,(2)
T,0 (u) = C2

F

[

− 2g9(u)L2 +

(

2g0(u)g9(u) − g9(u) − 2g10(u)

)

L + h8(u)

]

+ CACF

[

11

3
g9(u)L + h9(u)

]

+ TF CF

[

−
4

3
g9(u)L + h10(u)

]

+ nlTF CF

[

−
4

3
g9(u)L −

4

3
g10(u) −

8

9
g9(u) +

4u

3ū2
ln(u) +

4u

3ū

]

, (24)

and

F
4,(2)
T,0 (u) = C2

F

(

g0(u)g12(u) − g13(u) − 2g12(u)L

)

. (25)

3.2 Matching coefficients

The matching coefficients Cj
i follow from the above expressions for the renormalized form

factors F j
i after multiplication with the inverse of the renormalization factor of the SCET
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current ZJ , cf. (4). To this end one has to keep in mind that the form factors have been

computed in QCD with five active quark flavours, while ZJ is usually given in SCET

with four active flavours. We thus have

ZJ = 1 +

∞
∑

k=1

(

α
(4)
s

4π

)k

Z
(k)
J , (26)

with NLO coefficient [2],

Z
(1)
J = CF

{

−
1

ǫ2
−

1

ǫ

(

ln
µ2

u2m2
b

+
5

2

)}

. (27)

The two-loop anomalous dimension can be deduced from [22] (see also [10])

Z
(2)
J = CF

{

CF

2ǫ4
+

[(

ln
µ2

u2m2
b

+
5

2

)

CF +
11

4
CA − nlTF

]

1

ǫ3

+

[

1

2

(

ln
µ2

u2m2
b

+
5

2

)2

CF +

(

π2

12
−

67

36
+

11

6

(

ln
µ2

u2m2
b

+
5

2

)

)

CA

+

(

5

9
−

2

3

(

ln
µ2

u2m2
b

+
5

2

)

)

nlTF

]

1

ǫ2
+

[(

π2

2
−

3

8
− 6ζ3

)

CF

+

(

461

216
−

17π2

24
+

11

2
ζ3 +

(π2

6
−

67

18

)(

ln
µ2

u2m2
b

+
5

2

)

)

CA

+

(

π2

6
−

25

54
+

10

9

(

ln
µ2

u2m2
b

+
5

2

)

)

nlTF

]

1

ǫ

}

, (28)

where nl = nf − 1 = 4 is the number of active quark flavours in the effective theory.

We now expand the matching coefficients in terms of the coupling constant of the

four-flavour theory as

Cj
i =

∞
∑

k=0

(

α
(4)
s

4π

)k

C
j,(k)
i , (29)

and rewrite (4) up to NNLO, which yields

C
j,(0)
i = F

j,(0)
i ,

C
j,(1)
i = F

j,(1)
i − Z

(1)
J F

j,(0)
i ,

C
j,(2)
i = F

j,(2)
i + δα(1)

s F
j,(1)
i − Z

(1)
J

(

F
j,(1)
i − Z

(1)
J F

j,(0)
i

)

− Z
(2)
J F

j,(0)
i . (30)

Notice that the last relation implies a term which stems from the conversion of the five-

flavour to the four-flavour coupling constant,

α(5)
s = α(4)

s

[

1 +
α

(4)
s

4π
δα(1)

s + O(α2
s)

]

(31)

9



with (see also [11, 12] for further details)

δα(1)
s = TF

[

4

3
ln

µ2

m2
b

+

(

2

3
ln2 µ2

m2
b

+
π2

9

)

ǫ +

(

2

9
ln3 µ2

m2
b

+
π2

9
ln

µ2

m2
b

−
4

9
ζ3

)

ǫ2 + O(ǫ3)

]

.

(32)

At LO the matching coefficients then become

C
(0)
S = −2C

1,(0)
T = 1,

C
2,(0)
T = C

3,(0)
T = C

4,(0)
T = 0. (33)

At NLO the matching coefficients are given by the finite terms of the one-loop form

factors,

C
(1)
S (u) = F

(1)
S,0(u),

C
1,(1)
T (u) = F

1,(1)
T,0 (u),

C
3,(1)
T (u) = F

3,(1)
T,0 (u), (34)

and, in particular, C
2,(1)
T = F

2,(1)
T,0 = 0 and C

4,(1)
T = F

4,(1)
T,0 = 0 in accordance with the

four-dimensional constraints for the tensor coefficients that we mentioned in Section 2.1.

Here and in the following we provide the expressions for the matching coefficients in the

limit ǫ → 0, since the O(ǫ) terms are not relevant in two-loop applications.

At NNLO the matching coefficients are no longer given by the finite terms of the

respective form factors alone. We now find

C
(2)
S (u) = F

(2)
S,0(u)

+ TF CF

[

4

9
ζ3 +

π2

9
g0(u) +

2

9

(

6g1(u) − π2
)

L +
(

2g0(u) + 4
)

L2 −
14

9
L3

]

+ C2
F

[

g3(u) − g0(u)g2(u) +
(

2g2(u) − g0(u)g1(u)
)

L

+
1

2

(

3g1(u) − g0(u)2 − 3g0(u)
)

L2 +
(5

6
g0(u) + 2

)

L3 −
5

24
L4

]

, (35)

and

C
1,(2)
T (u) = F

1,(2)
T,0 (u)

−
1

2
TF CF

[

4

9
ζ3 +

π2

9
g0(u) +

2

9

(

6g4(u) − π2
)

L +
(

2g0(u) −
4

3

)

L2 −
14

9
L3

]

−
1

2
C2

F

[

g6(u) − g0(u)g5(u) +
(

2g5(u) − g0(u)g4(u)
)

L

10



+
1

2

(

3g4(u) − g0(u)2 + g0(u)
)

L2 +
(5

6
g0(u) −

2

3

)

L3 −
5

24
L4

]

, (36)

and

C
3,(2)
T (u) = F

3,(2)
T,0 (u) + TF CF

[

4

3
g9(u)L

]

+ C2
F

[

g11(u) − g0(u)g10(u) +
(

2g10(u) − g0(u)g9(u)
)

L +
3

2
g9(u)L2

]

. (37)

The other tensor coefficients are again found to fulfill the four-dimensional constraints

C
2,(2)
T (u) = F

2,(2)
T,0 (u) − C2

F

[

g0(u)g7(u) − g8(u) − 2g7(u)L

]

= 0,

C
4,(2)
T (u) = F

4,(2)
T,0 (u) − C2

F

[

g0(u)g12(u) − g13(u) − 2g12(u)L

]

= 0, (38)

which provides a non-trivial cross check of our calculation.

As a further check of our NNLO results we verified that the matching coefficients

obey the renormalization group equation,

d

d ln µ
Cj

i (u; µ) =

[

Γcusp(α
(4)
s ) ln

umb

µ
+ γ′(α(4)

s ) + γi(α
(5)
s )

]

Cj
i (u; µ), (39)

which consists of a universal piece related to the renormalization properties of the SCET

current with

Γcusp(α
(4)
s ) =

∞
∑

k=1

(

α
(4)
s

4π

)k

Γ(k)
cusp, γ′(α(4)

s ) =
∞
∑

k=1

(

α
(4)
s

4π

)k

γ′(k), (40)

and a second term that contains the anomalous dimension of the QCD current with

γi(α
(5)
s ) =

∞
∑

k=1

(

α
(5)
s

4π

)k

γ
(k)
i . (41)

The one- and two-loop coefficients needed for the check read Γ
(1)
cusp = 4CF , γ′(1) = −5CF ,

Γ(2)
cusp = CACF

[

268

9
−

4π2

3

]

−
80

9
nlTFCF ,

γ′(2) = C2
F

[

2π2 −
3

2
− 24ζ3

]

+ CACF

[

22ζ3 −
1549

54
−

7π2

6

]

+ nlTF CF

[

250

27
+

2π2

3

]

,

(42)

and

γ
(1)
S = 6CF , γ

(2)
S = CF

[

3CF +
97

3
CA −

20

3
(nl + 1)TF

]

,
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γ
(1)
T = −2CF , γ

(2)
T = CF

[

19CF −
257

9
CA +

52

9
(nl + 1)TF

]

. (43)

The twofold structure of (39) can be used to distinguish the scale µ, that governs the

renormalization group evolution in SCET, from a second scale ν, that is related to the

non-conservation of the scalar/tensor current in QCD. More explicitly the distinction

between the scales µ and ν can be accounted for by writing

Cj
i (u; µ, ν) = Cj

i (u; µ) + δCj
i (u; µ, ν), (44)

where the first term on the right-hand side refers to the above expressions for the matching

coefficients, Cj
i (u; µ) ≡ Cj

i (u), while the latter captures the dependence on ln(ν/µ), which

vanishes when the two scales are not distinguished. Expanding the new contribution as

δCj
i =

∞
∑

k=1

(

α
(4)
s (µ)

4π

)k

δC
j,(k)
i , (45)

we find

δC
j,(1)
i (u; µ, ν) = γ

(1)
i C

j,(0)
i ln

ν

µ
(46)

in NLO, and

δC
j,(2)
i (u; µ, ν) =

[

γ
(1)
i

2

2
− γ

(1)
i β

(5)
0

]

C
j,(0)
i ln2 ν

µ

+

[(

γ
(2)
i +

4

3
TF γ

(1)
i ln

µ2

m2
b

)

C
j,(0)
i + γ

(1)
i C

j,(1)
i (u; µ)

]

ln
ν

µ
(47)

in NNLO. (Here β
(5)
0 = 11CA/3 − 4/3 TFnf refers to the QCD beta-function with nf =

nl + 1 flavours.) Our final results for the matching coefficients with the two scales µ and

ν distinct from each other are provided in electronic form in [23].

The matching coefficients with the SCET and QCD scale distinct from each other can

be used for additional cross-checks. The scalar coefficient is not independent but can be

related to the vector coefficients by means of the equations of motion, yielding [13]

C1
V (u; µ) +

(

1 −
u

2

)

C2
V (u; µ) + C3

V (u; µ) =
mb(ν)

mb

CS(u; µ, ν) , (48)

where mb(ν) is the MS renormalized mass in five-flavour QCD. Due to the conservation

of the vector current the left-hand side of (48), which happens to be just the coefficient

C
(A0)
f0

from (54) below, is free of ν. Hence the QCD scale must also drop out of the

right-hand side. We checked that our results satisfy (48). An equivalent formulation

of (48) was given in [9] in terms of a Ward-identity. Also the tensor coefficients at u = 1,

corresponding to q2 = 0, can be checked against existing results in the literature, since

they enter the b → sγ process. From [24] (see also [25]) one can infer the combinations

−2 F 1
T (u = 1) +

1

2
F 2

T (u = 1) + F 3
T (u = 1) (49)

12



and

−2 C1
T (u = 1; µ, ν) + C3

T (u = 1; µ, ν) . (50)

The latter equation can again be checked for distinct µ and ν, and both (49) and (50)

agree with the formulas in [24]. Note that (50) is just the coefficient C
(A0)
T1

from (54) at

u = 1.

In Figure 1 we evaluate the matching coefficients for µ = ν = mb and α
(4)
s (mb) = 0.22.

For completeness we show the full set of matching coefficients Cj
i that we introduced in

Table 1. We see that the NNLO corrections are in general moderate and add in each

case constructively to the NLO corrections. In Figure 1 we also show the effect of a

finite charm quark mass, which is generally rather small, typically modifying the NNLO

correction by about 10 − 20%.

4 Exclusive semi-leptonic and radiative B decays

With the two-loop matching coefficients Cj
i at hand, we explore several applications to

B meson decays in this and the following section. For the numerical study we use the

following input parameters: the b-quark pole mass mb = 4.8 GeV; the renormalization

scale of the QCD scalar and tensor currents ν = mb; the hard scale µ = mb. The strong

coupling constant is obtained from α
(4)
s (mb) = 0.215 by employing three-loop running

(Λ
(nf =4)

MS
= 290.9 MeV), which gives α

(4)
s (1.5 GeV) = 0.349. When we add the hard

spectator-scattering contribution from [14] as required for exclusive processes, we need

further parameters (such as moments of light-cone distribution amplitudes), for which

we use the same values as [14] including the hard-collinear scale µhc = 1.5 GeV.

4.1 Heavy-to-light form factor ratios

The heavy-to-light form factors in the large-recoil regime, where the light meson momen-

tum is parametrically of order of the heavy-quark mass, take the following factorization

formula [4, 7]

F B→M
i (E) = Ci(E) ξa(E) +

∫ ∞

0

dω

ω

∫ 1

0

dv Ti(E; lnω, v)φB+(ω)φM(v) , (51)

where E denotes the energy of the light meson M , ξa(E) is the single non-perturbative

form factor (one of two when M is a vector meson), and φX the light-cone distribution

amplitudes of the B meson and the light meson. The short-distance coefficients Ci and

the spectator-scattering kernel Ti can be calculated in perturbation theory. The two

terms in the above equation correspond to the matrix elements of the two terms in the

operator matching equation (1). In particular, the two-loop results from the previous

section enter the coefficients Ci(E) of the first term. The spectator-scattering kernels Ti

have been calculated at O(αs) in [7], and at O(α2
s) in [13, 14].

In the following we discuss relations between different QCD form factors F B→M
i (E)

that can be deduced from the factorization formula (51). Adopting the same conventions

13
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Figure 1: Matching coefficients Cj
i at the scale µ = ν = mb as a function of u (the

momentum transfer is given by q2 = (1−u)m2
b). The dotted horizontal lines show the

tree level results, the dashed lines the one-loop approximation and the solid lines the

two-loop approximation with massless charm quarks (orange/light grey) and massive

charm quarks with mc/mb = 0.3 (blue/dark grey).

and notations as [14], we can express the three independent B → P form factors as

f+(E) = C
(A0)
f+

(E) ξP (E) +

∫

dτ C
(B1)
f+

(E, τ) ΞP (τ, E) ,

mB

2E
f0(E) = C

(A0)
f0

(E) ξP (E) +

∫

dτ C
(B1)
f0

(E, τ) ΞP (τ, E) ,
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mB

mB + mP

fT (E) = C
(A0)
fT

(E) ξP (E) +

∫

dτ C
(B1)
fT

(E, τ) ΞP (τ, E) , (52)

and the seven independent B → V form factors as

mB

mB + mV

V (E) = C
(A0)
V (E) ξ⊥(E) +

∫

dτ C
(B1)
V (E, τ) Ξ⊥(τ, E) ,

mV

E
A0(E) = C

(A0)
f0

(E) ξ‖(E) +

∫

dτ C
(B1)
f0

(E, τ) Ξ‖(τ, E) ,

mB + mV

2E
A1(E) = C

(A0)
V (E) ξ⊥(E) +

∫

dτ C
(B1)
V (E, τ) Ξ⊥(τ, E) ,

mB + mV

2E
A1(E) −

mB − mV

mB

A2(E)

= C
(A0)
f+

(E) ξ‖(E) +

∫

dτ C
(B1)
f+

(E, τ) Ξ‖(τ, E) ,

T1(E) = C
(A0)
T1

(E) ξ⊥(E) +

∫

dτ C
(B1)
T1

(E, τ) Ξ⊥(τ, E) ,

mB

2E
T2(E) = C

(A0)
T1

(E) ξ⊥(E) +

∫

dτ C
(B1)
T1

(E, τ) Ξ⊥(τ, E) ,

mB

2E
T2(E) − T3(E) = C

(A0)
fT

(E) ξ‖(E) +

∫

dτ C
(B1)
fT

(E, τ) Ξ‖(τ, E). (53)

Here mB represents the B meson mass, mP and mV refer to the pseudoscalar and vector

light meson masses, respectively. The coefficient functions C
(A0)
F and C

(B1)
F are defined as

linear combinations of the matching coefficients of two- (“A0-type”) and three-body (“B-

type”) SCET operators, while Ξa(τ, E) denotes the matrix elements of the three-body

operators O
(B1)jµ
i (s1, s2), see (1). In terms of the coefficients Cj

i introduced in previous

sections, the five independent A0-coefficients are given by

C
(A0)
f+

= C1
V (u; µ) +

u

2
C2

V (u; µ) + C3
V (u; µ) ,

C
(A0)
f0

= C1
V (u; µ) +

(

1 −
u

2

)

C2
V (u; µ) + C3

V (u; µ) ,

C
(A0)
fT

= −2C1
T (u; µ, ν) + C2

T (u; µ, ν) − C4
T (u; µ, ν) ,

C
(A0)
V = C1

V (u; µ) ,

C
(A0)
T1

= −2C1
T (u; µ, ν) +

(

1 −
u

2

)

C2
T (u; µ, ν) + C3

T (u; µ, ν) . (54)

Recall that in D = 4 dimensions one has C2
T = C4

T = 0. The variable E used in (52) and

(53) is related to u through u = 2E/mB. The five independent B-coefficients are given

in Appendix A2 of [14].

From (52) and (53), we have the following two identities

mB

mB + mV

V (E) =
mB + mV

2E
A1(E), T1(E) =

mB

2E
T2(E) (55)
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up to power corrections [26]. In the physical form factor scheme [7,14], where the SCETI

form factors ξa(E) are defined in terms of three QCD form factors,

ξFF
P ≡ f+, ξFF

⊥ ≡
mB

mB + mV

V, ξFF
‖ ≡

mB + mV

2E
A1 −

mB − mV

mB

A2, (56)

the five remaining form factors read

mB

2E
f0 = R0 ξFF

P +
(

C
(B1)
f0

− C
(B1)
f+

R0

)

⋆ ΞP ,

mB

mB + mP

fT = RT ξFF
P +

(

C
(B1)
fT

− C
(B1)
f+

RT

)

⋆ ΞP ,

T1 = R⊥ ξFF
⊥ +

(

C
(B1)
T1

− C
(B1)
V R⊥

)

⋆ Ξ⊥,

mV

E
A0 = R0 ξFF

‖ +
(

C
(B1)
f0

− C
(B1)
f+

R0

)

⋆ Ξ‖,

mB

2E
T2 − T3 = RT ξFF

‖ +
(

C
(B1)
fT

− C
(B1)
f+

RT

)

⋆ Ξ‖. (57)

In this scheme there are only three non-trivial ratios R and three non-trivial combinations

of B-coefficients, defined, respectively, as

R0(u) ≡
C

(A0)
f0

C
(A0)
f+

= 1 +
α

(4)
s

4π
CF [2 + g9(u)]

[

1 +
α

(4)
s

4π
β

(4)
0 Lµ

]

+

(

α
(4)
s

4π

)2{

C2
F j1(u) + CF CA j2(u) + CF nl TF j3(u) + CF TF j4(u)

}

+ O(α3
s) ,

RT (u) ≡
C

(A0)
fT

C
(A0)
f+

= 1 +
α

(4)
s

4π
CF [−Lν − g9(u)]

[

1 +
α

(4)
s

4π
β

(4)
0 Lµ

]

+

(

α
(4)
s

4π

)2 {

C2
F

[

L2
ν

2
+

(

19

2
+ g9(u)

)

Lν + j5(u)

]

+ CF CA

[

11L2
ν

6
−

257Lν

18
+ j6(u)

]

+CF nl TF

[

−
2L2

ν

3
+

26Lν

9
+ j7(u)

]

+ CF TF

[

−
2L2

ν

3
+

26Lν

9
+ j8(u)

]}

+ O(α3
s) ,

R⊥(u) ≡
C

(A0)
T1

C
(A0)
V

= 1 +
α

(4)
s

4π
CF

[

−Lν +
1

2
g9(u)

]

[

1 +
α

(4)
s

4π
β

(4)
0 Lµ

]

+

(

α
(4)
s

4π

)2 {

C2
F

[

L2
ν

2
+

(

19

2
−

1

2
g9(u)

)

Lν −
1

2
j5(u) + j9(u)

]

+CF CA

[

11L2
ν

6
−

257Lν

18
−

1

2
j6(u) + j10(u)

]

+ CF nl TF

[

−
2L2

ν

3
+

26Lν

9
−

1

2
j7(u)
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+
2π2

3
+

205

36

]

+ CF TF

[

−
2L2

ν

3
+

26Lν

9
−

1

2
j8(u) −

4π2

3
+

421

36

]}

+ O(α3
s) , (58)

and

C
(B1)
0+ (τ, E) = C

(B1)
f0

(τ, E) − C
(B1)
f+

(τ, E) R0(E),

C
(B1)
T+ (τ, E) = C

(B1)
fT

(τ, E) − C
(B1)
f+

(τ, E) RT (E),

C
(B1)
T1V (τ, E) = C

(B1)
T1

(τ, E) − C
(B1)
V (τ, E) R⊥(E). (59)

We denote Lµ = ln(µ2/m2
b), Lν = ln(ν2/m2

b), and β
(4)
0 = 11/3 CA − 4/3 TF nl. The func-

tions ji(u) can be found in Appendix B. One recognizes the relatively simple structure of

the ratios RX in the physical form factor scheme. Compared to the matching coefficients,

where we encounter up to the fourth power of logarithms, the ratios RX have logarithmic

dependences that are at most quadratic, since the universal Sudakov logarithms cancel

in the ratios.

As expected in any perturbative QCD calculation, the higher-order correction is nec-

essary to eliminate scale ambiguities. While the A0-coefficients C
(A0)
X depend on the

hard scale µ (which is cancelled by the corresponding dependence of the SCETI form

factors ξa(E)), the µ dependence of the ratios RX (X = 0, T,⊥) arises only from the

scale-dependence of αs(µ) and should be reduced after including the higher-order cor-

rection. In Figure 2, we show the dependence of the three ratios RX on the scale µ at

u = 0.85 (corresponding to the light-meson energy E = umB/2 = 2.24 GeV or momen-

tum transfer q2 = 4.18 GeV2) and fixed renormalization scale ν = mb of the QCD tensor

current. In the absence of radiative and power corrections, all these coefficients equal

1 (dotted lines). We observe that the scale dependence is reduced at the two-loop order

for the ratios R0,T , but not for R⊥, which receives a large two-loop correction.

Since the A0-type coefficients C
(A0)
X and hence the ratios RX also depend on the

momentum transfer q2, we show in Figure 3 these coefficients as a function of u (related

to light-meson energy E = u mB/2 or momentum transfer q2 = (1 − u) m2
B), with the

scales fixed at ν = µ = mb. As illustrated in Figure 3, the NNLO correction to all the

five coefficients C
(A0)
X is quite similar and adds in each case constructively to the NLO

result; among the three ratios RX , the two-loop correction to R⊥, i.e. to the ratio of the

tensor and vector form factor, T1/V , is most significant.

To further investigate these two-loop corrections to the form factor ratios, following

[14] we also take the B → π and B → ρ transitions as examples. Seven ratios among the

total of ten pion and ρ meson form factors can be obtained from the two identities (55),

which do not receive any perturbative corrections, and the five relations that follow from

(57) by dividing through the appropriate ξFF
a . The q2 dependence of these form factor

ratios are shown in Figure 4. As in [14] the q2-dependence of the ξFF
a in the normalization

of the spectator-scattering correction is taken from the QCD sum rule calculation. The

ratios are normalized such that in absence of any radiative and power corrections they

equal 1 for all q2. Our final results, including both RX and the spectator-scattering term

to order α2
s, are shown as solid dark grey (blue in colour) curves, while the results with
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Figure 2: Dependence of the ratios RX (X = 0, T,⊥) defined in (58) on the scale µ, with

u = 0.85 (corresponding to the light-meson energy E = umB/2 = 2.24GeV or momentum

transfer q2 = 4.18GeV2) and ν = mb (the renormalization scale of the QCD tensor current).

All of them equal 1 in the absence of radiative and power corrections (dotted line). The solid

and dashed lines denote the NNLO and NLO results, respectively.

RX evaluated only at NLO as solid light grey (orange in colour) ones. One can see that

the radiative correction always enhances the symmetry-breaking effect, and the NNLO

term is generally quite moderate; the most significant effect from the two-loop correction

is on the ratio T1/V (through the ratio R⊥). To see the relative size of the two terms in

the factorization formula (51), we also show the result without the spectator-scattering

term (dashed curves with blue/dark grey and orange/light grey denoting the NNLO and

NLO results, respectively). Comparing the solid with the dashed curves, one can see

that the radiative correction from the A0-coefficients C
(A0)
X is always smaller than the

spectator-scattering contribution.

To compare our results with the QCD sum rule calculations [27], the sum rule pre-

dictions for these form factor ratios are shown as dash-dotted curves in Figure 4. One

notices that, while the sum rule calculation generally satisfies the symmetry relations

better than predicted on the basis of the heavy-quark limit corrected by radiative and

spectator-scattering effects, see for instance the lower right panel of Figure 4, there are

also significant differences concerning the sign of the correction, which might be due to

1/mb power corrections or ununderstood systematics of the sum rule calculations; further

detailed discussions could be found in [7, 14, 28]. The new two-loop correction does not

affect the conclusions on this point.
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Figure 3: The A0-type coefficients C
(A0)
X and the ratios RX (X = 0, T,⊥) defined in (58)

as a function of u (related to light-meson energy E = umB/2 or momentum transfer q2 =

(1 − u)m2
B), with the scales fixed at ν = µ = mb. The legend is the same as in Figure 2.
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Figure 4: Corrections to the B → π and B → ρ form factor ratios as a function of momentum

transfer q2. All the ratios equal 1 in the absence of radiative corrections. Solid curves: full

results with RX evaluated at NNLO (blue/dark grey) and NLO (orange/light grey), including the

spectator-scattering term; Dashed: results without the spectator-scattering contribution; Dash-

dotted: results from QCD sum rule calculation. The lower right panel shows the two form factor

ratios that equal 1 at leading power. For comparison, the QCD sum rule results for these two

ratios are also shown (upper line refers to A1/V , lower line to T2/T1).

4.2 Exclusive radiative B decays

As factorization calculations of exclusive radiative and hadronic B decays involving only

light mesons make use of the heavy-to-light form factors at maximal recoil, it is of interest

to investigate the short-distance corrections at u = 1, i.e. E = mB/2 or q2 = 0. In this
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subsection we shall consider the following two ratios [14]

R1(E) ≡
mB

mB + mP

fT (E)

f+(E)
= RT (E) +

∫ 1

0

dτ C
(B1)
T+ (τ, E)

ΞP (τ, E)

f+(E)
,

R2(E) ≡
mB + mV

mB

T1(E)

V (E)
= R⊥(E) +

mB + mV

mB

∫ 1

0

dτ C
(B1)
T1V (τ, E)

Ξ⊥(τ, E)

V (E)
, (60)

defined in the physical form factor scheme.

At u = 1 and assuming the asymptotic form for the light-meson distribution amplitude

φM(v) = 6vv̄, the analytic expressions for these two ratios simplify considerably, even

at NNLO. As the spectator-scattering contribution is already given by Eq. (124) in [14],

here we give only the expressions for the ratios RT,⊥ at u = 1 (as a consequence of the

equations of motion, we have R0(u = 1) ≡ 1),

RT (u = 1) = 1 +
α

(4)
s

4π

[

8

3
−

4

3
Lν

]

+

(

α
(4)
s

4π

)2 [

−
100

9
LµLν +

200

9
Lµ + 6L2

ν −
922

27
Lν

−
16

3
ζ(3) +

10

3
π4 −

952

27
π2 +

8047

162
+

128

27
π2 ln 2

]

,

R⊥(u = 1) = 1 +
α

(4)
s

4π

[

−
4

3
−

4

3
Lν

]

+

(

α
(4)
s

4π

)2 [

−
100

9
LµLν −

100

9
Lµ + 6L2

ν −
778

27
Lν

+4ζ(3) −
5

3
π4 +

428

27
π2 −

13013

162
−

88

27
π2 ln 2

]

, (61)

with Lµ = ln(µ2/m2
b), Lν = ln(ν2/m2

b), and nl = 4 has been used. Using the three-loop

running coupling and specifying to the pion (R1) and ρ meson (R2), numerically we

obtain (setting ν = µ = mb)

R1(Emax) = 1 +
[

0.046 (NLO) + 0.015 (NNLO)
]

(RT )

−0.160
{

1 + 0.524 (NLO spec.) − 0.002 (δ
‖
log)
}

= 0.817,

R2(Emax) = 1 −
[

0.023 (NLO) + 0.030 (NNLO)
]

(R⊥)

+0.084
{

1 + 0.406 (NLO spec.) + 0.032 (δ
‖
log)
}

= 1.067. (62)

In these expressions we separated the symmetry-conserving (first number, normalized

to 1), A0- and B-type corrections (denoted by RT,⊥ and the remaining terms, respec-

tively). The parameter δ
‖
log denotes the small effect from renormalization-group summa-

tion and has the same meaning as in Eq. (124) of [14]. We observe that the A0-type and
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spectator-scattering corrections always have opposite sign, but the latter are larger and

determine the sign of the deviation from the symmetry limit. We also notice that the

two-loop correction to R⊥ is more significant than to RT . The small numerical difference

of spectator-scattering contribution relative to Eq. (124) in [14] is due to the fact that now

the 3-loop running coupling is used. For comparison the QCD sum rule calculation [27]

gives R1 = 0.955 and R2 = 0.947. For the tensor-to-vector ratio R2, one notices that the

sign of the symmetry-breaking correction between these two methods is opposite. Since

the form factor ratio T1/V is important for radiative and electroweak penguin decays (see

the discussion in Section 5.2 of [14]), the discrepancy between the SCET and QCD sum

rules results for R2 suggests that a dedicated analysis of symmetry breaking corrections

to form factors (rather than the form factors themselves) with the QCD sum rule method

should be performed.

5 Semi-inclusive B̄ → Xsℓ
+ℓ− decays

Rare inclusive B-meson decays induced by the quark level transition b → sℓ+ℓ− are highly

sensitive to new physics. Due to the presence of two extra operators (ℓ̄ℓ)V,A(s̄b)V −A in

the effective Hamiltonian and the availability of additional kinematical observables, such

as the dilepton invariant mass (q2) spectrum and the forward-backward asymmetry, the

b → sℓ+ℓ− decay provides complementary information relative to the radiative b → sγ

process.

The exclusive decay process B → K∗ℓ+ℓ− has been studied in great detail, both

with respect to its QCD dynamics [29] and to the sensitivity of various observables

to new physics [30], because it can be measured relatively easily at hadron colliders.

Also on the inclusive decay process B̄ → Xsℓ
+ℓ− dedicated work exists on higher order

radiative corrections (see [31] for recent reviews), power corrections [32, 33], and on the

identification of additional kinematic observables [34].

The low dilepton invariant mass region, 1 GeV2 ≤ q2 ≤ 6 GeV2 is particularly in-

teresting, since it benefits from smaller theoretical uncertainties and a higher rate. At

somewhat higher q2 the spectrum is dominated by charmonium resonances (which also

determine the integrated decay rate, see the discussion in [35]). On the other hand, for

q2 < 1 GeV2, the branching ratio is determined largely by the contribution from almost

real intermediate photons, and hence contains essentially the same information as the

b → sγ transition.

In the following we discuss semi-inclusive B̄ → Xsℓ
+ℓ− decay, where the hadronic

final state Xs is constrained to have small invariant mass mX and q2 is in the range

from 1 GeV2 to 6 GeV2. In this kinematic region (the so-called “shape function region”),

the outgoing hadronic state is jet-like and the relevant degrees of freedom are hard-

collinear and soft modes. The semi-inclusive decay rates can be calculated by matching

the effective weak interaction Hamiltonian to soft-collinear effective theory. At the leading

order in the ΛQCD/mb expansion, the decay rates can be factorized into process-dependent

hard functions h[0], related to physics at the hard scale µ ∼ mb and above, a universal jet
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function J , related to physics at the intermediate hard-collinear scale µhc ∼
√

mbΛQCD,

as well as a universal non-perturbative shape function S, describing the internal soft

dynamics of the B meson, with the following schematic form [36,37]

dΓ[0] = h[0] × J ⊗ S , (63)

a result already applied extensively to inclusive B̄ → Xuℓν̄ and B̄ → Xsγ decays in

the shape-function region. The two-loop matching coefficients of the tensor currents

calculated in the present paper provide further input to reaching NNLO (α2
s) accuracy in

h[0] and the entire differential decay rate dΓ[0]. Compared to exclusive decays mediated

by the b → sℓ+ℓ− transition [29] the semi-inclusive case has the advantage that the

theoretically less certain spectator-scattering contributions to the currents that enter the

exclusive form factors are power-suppressed and can be dropped.

In the following we will be mainly interested in the forward-backward asymmetry of

the differential rate integrated up to an invariant mass mcut
X in the final state. We briefly

review the theoretical description of this quantity, adopting the same conventions and

notation as [37], to which we also refer for further details. The short-distance coefficients

h[0] at the hard matching scale µ are composed of products of two factors, since the

hadronic part of the effective weak interaction Hamiltonian is first matched to two QCD

(rather than SCET) currents,

Jµ
9 = s̄ γµPLb , Jµ

7 =
2 mb

q2
s̄ iqρσ

ρµPRb
∣

∣

∣

ν=mb

, (64)

with coefficients C incl
i (q2, µ) and PL,R = (1 ∓ γ5)/2. Moreover, mb in Jµ

7 refers to the

bottom quark pole mass. The QCD currents are then related to the corresponding SCET

currents,

Jµ
9 =

∑

i=1,2,3

c9
i (u, µ) [ξ̄Whc] Γ

µ
9,i hv ,

Jµ
7 =

2mb

q2

∑

i=1,2

c7
i (u, µ) [ξ̄Whc] Γ

µ
7,i hv . (65)

These equations represent the momentum space versions of (1). The variable u is related

to the kinematics of the process by u = p−/mb, where

p− = n+p = mb −
q2

mB − p+
X

, (66)

and p+
X = n−pX ≪ mB is the small light-cone component of the hadronic final state’s

momentum. The basis of Dirac structures is chosen as

Γµ
9,i = PR

{

γµ, vµ, qµ
}

,

Γµ
7,i = PR

{

iqνσ
νµ, qν(q

νvµ − qµvν)
}

. (67)
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As noted in [37], the choice of qµ instead of nµ
− for Γµ

9,3 is convenient here as it makes

explicit the constraint from lepton current conservation, which implies that for massless

leptons c9
3 does not contribute, while for Γµ

7,i there are only two independent coefficients.

Transforming the basis (67) to our operator basis listed in Table 1, the matching coeffi-

cients c9
i and c7

i are given, respectively, as

c9
1(u, µ) = C1

V (u; µ) ,

c9
2(u, µ) = C2

V (u; µ) +
2

u
C3

V (u; µ) ,

c9
3(u, µ) = −

2

umb

C3
V (u; µ) ,

c7
1(u, µ) = −2 C1

T (u; µ, ν = mb) + C3
T (u; µ, ν = mb) ,

c7
2(u, µ) = −

2

umb

C3
T (u; µ, ν = mb) . (68)

The two-loop matching coefficients c9
i for the vector current have become available in the

context of inclusive semi-leptonic B decays [9–12]. The results of this paper allow us to

compute also the matching coefficients c7
i at NNLO. As a consequence the factor in h[0]

related to the QCD current matching is now complete at NNLO, while the other factor

related to C incl
i (q2, µ) is known at the next-to-next-to-leading logarithmic (NNLL) order,

since the three-loop O(α2
s) matrix elements of the current-current operators (giving rise

to charm-loop diagrams) are not available.

In Figure 5 we show these matching coefficients as a function of u in the one- (dashed)

and two-loop (solid) approximation, evaluated at µ = mb = 4.8 GeV (blue/dark grey

curves) and at µ = 1.5 GeV (orange/light grey curves), respectively. The difference

between these two different choices of the IR factorization scale µ is compensated by

the corresponding scale dependence of the convolution J ⊗ S such that the differential

rate (63) is µ-independent. Note that, while we show the entire range of u, Eq. (66)

implies that the relevant values of u for b → sℓ+ℓ− in the q2 region of interest are above

u ≈ 0.75. In the lower right panel of Figure 5, we also show the ratio c7
1/c

9
1, which equals

the quantity R⊥ defined earlier in (58) at ν = mb, and plays an important role for the

forward-backward asymmetry as discussed below. Note that R⊥ is µ-independent, except

for the truncation of the perturbative series. In evaluating this ratio to a given order in

αs, we expand the denominator and truncate the expanded expression.

Comparing the dashed (one-loop approximation) and solid (two-loop approximation)

curves of the same colour in Figure 5, we observe that the two-loop corrections are

generally moderate in the large u (low q2) region, whereas the large correction in the

region of small u is due to the fact that increasing powers of large logarithms take over

in this region. However, the correction is amplified in the ratio R⊥, where the two-loop

correction exceeds the one-loop term. This leads to a considerable residual µ-dependence

(difference of blue/dark grey and orange/light grey curves) as can also be seen in Figure 2.

Since the infrared physics drops out from the ratio c7
1/c

9
1 the natural scale is of order of

the hard scale mb.
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Figure 5: The matching coefficients c9
i (u, µ) and c7

i (u, µ) as a function of u (related to the

dilepton invariant mass q2 = (1− u)m2
b) in the one-loop (dashed) and two-loop (solid) approxi-

mation. The blue/dark grey curves refer to µ = mb = 4.8GeV, and the orange/light grey ones

to µ = 1.5GeV.

The differential decay rate (63) can be written as

d3Γ

dq2dp+
Xd cos θ

=
3

8

[

(1 + cos2 θ)HT (q2, p+
X) + 2 (1 − cos2 θ)HL(q2, p+

X)

+ 2 cos θ HA(q2, p+
X)
]

, (69)

where for B̄ decay, θ denotes the angle between the positively charged lepton and the B̄

meson in the centre-of-mass frame of the ℓ+ℓ− pair. For fixed p+
X , the forward-backward

asymmetry in θ therefore vanishes for a particular q2
0 at which HA(q2

0, p
+
X) = 0. Integrating

over the invariant mass of the hadronic final state up to the cut mcut
X , the asymmetry
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zero occurs at

0 =

∫ p+cut

X

0

dp+
X HA(q2

0, p
+
X)

= const ×

∫ p+cut

X

0

dp+
X h

[0]
A (q2

0 , p
+
X)

(q0+ − q0−)2

q0+
q2
0

∫

dω p−J(p−ω) S(p+
X − ω), (70)

where [37] q+ = mB − p+
X , q− = q2/q+,

p+cut
X =

1

2mB

[

m2
B + (mcut

X )2 − q2 −
√

(m2
B + (mcut

X )2 − q2)2 − 4m2
B(mcut

X )2

]

, (71)

and

h
[0]
A (q2, p+

X) = 2C10 c9
1(u) Re

[

C incl
9 (q2)c9

1(u) +
2mb

q−
C incl

7 (q2)c7
1(u)

]

. (72)

We now observe that h
[0]
A (q2

0 , p
+
X) depends on p+

X only through the definition of u in

(66) and the kinematic factor 2mb/q−. For typical mcut
X of 2 GeV this dependence is very

weak, since then p+
X ∼ 1 GeV ≪ mB. Thus, p+

X appears only as a small correction to

mB − p+
X , and in the definition of u in a term that is additionally suppressed by q2/mB

relative to mb, see (66). This results in a very small variation of u of about 0.02 over

the entire p+
X integration region. We may therefore pull the slowly varying function

h
[0]
A (q2

0, p
+
X) in front of the p+

X integration in (70) thereby replacing p+
X in the argument

by an average value which we assume to be 〈p+
X〉 = p+cut

X /2. The remaining integral over

the jet and soft function is different from zero, thus the forward-backward asymmetry

zero is determined by h
[0]
A (q2

0, 〈p
+
X〉) = 0. Using (72) this is equivalent to the condition

q2
0

2mb(mB − 〈p+
X〉)

= −
Re [C incl

7 (q2
0)]

Re [C incl
9 (q2

0)]

c7
1(u0)

c9
1(u0)

(73)

with u0 ≡ 1 − q2
0/(mb(mB − 〈p+

X〉)). This result leads to the important conclusion that

the QCD dynamics that determines the location of the asymmetry zero is to a very good

approximation independent of the long-distance physics below the scale mb contained in

the jet function and the non-perturbative shape function. It also depends only very weakly

on the value of the invariant mass cut through the dependence of 〈p+
X〉 on mcut

X . The bulk

dependence of q2
0 on the invariant mass cut mcut

X enters through the kinematical factor

mB − 〈p+
X〉 on the left-hand side of (73).

We are now in the position to quantify the impact of the two-loop calculation of

R⊥(u0, ν = mb) = c7
1(u0)/c

9
1(u0) on q2

0. In [37] the asymmetry zero has been determined

by keeping the full NNLL expression for Re [C incl
7 (q2)]/Re [C incl

9 (q2)] but setting R⊥ = 1.

In this approximation, and excluding 1/mb-suppressed shape function effects for the

moment, the zero is found to be

q2
0
∣

∣

R
⊥

=1

= (3.62 . . . 3.69) GeV2 for mcut
X = (2.0 . . . 1.8) GeV . (74)
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αs(MZ) = 0.1180 λ2 ≃
1
4
(m2

B∗ − m2
B) ≃ 0.12 GeV2

sin2 θW = 0.23122 mpole
t = 171.4 GeV

MW = 80.426 GeV mpole
c = (1.5 ± 0.1) GeV

MZ = 91.1876 GeV mPS
b (2 GeV) = (4.6 ± 0.1) GeV

Table 2: Numerical inputs that we use in the phenomenological analysis of the forward-backward

asymmetry zero.

As indicated the lowest value corresponds to mcut
X = 2.0 GeV and the highest one to

mcut
X = 1.8 GeV. Our value is somewhat larger than what can be extracted from Figure 4

of [37], because we expand the factor mb(µ)/mpole
b that accompanies C7 in αs. Moreover,

the variation of the zero when changing mcut
X from 1.8 GeV to 2.0 GeV is about twice

as large compared to what can be read off from Fig. 4 of [37], which is likely due to our

approximation of pulling the slowly varying function h
[0]
A (q2

0 , p
+
X) out of the integral in

(70). However, our approximation is still justified since even the increased sensitivity of

the zero on mcut
X is only ±0.03 GeV2 and hence below 1%. Taking into account R⊥ at

the NLO, we find for the position of the zero

q2
0
∣

∣

R⊥ NLO

= (3.55 . . . 3.61) GeV2 for mcut
X = (2.0 . . . 1.8) GeV . (75)

The impact of the NLO correction to R⊥ is to shift the zero by −2.2%. As we already

stated before, and as can also be seen from Figures 2 and 5, the size of the NNLO

correction to R⊥ is significant. It amounts to a shift of the NLO zero in (75) by another

−3% and hence is larger than the NLO shift. The total shift induced by R⊥ through

NNLO therefore amounts to −5%.

Before proceeding to our final result we briefly comment on the rôle of power correc-

tions. The authors of [37] performed a thorough study of 1/mb-suppressed shape function

effects which result in a shift of the zero of −0.05 GeV2 to −0.1 GeV2. This shift is more

strongly dependent on the invariant mass cut and the theoretical error increases when

mcut
X is chosen smaller. In the following we take the larger value as an estimate for the

shift and also for the associated uncertainty. However, the study of power corrections

in [37] does not cover all such corrections and applies a rather crude treatment to those

arising from soft gluon attachments to the charm-loop diagrams by absorbing the 1/m2
c

non-perturbative power corrections into the C incl
i , which is justified only in the absence

of invariant mass cuts. In the semi-inclusive region, the matrix element of (29) in [33]

cannot, due to the presence of a soft gluon, be expressed in terms of a short-distance coef-

ficient times a local matrix element, since the soft gluon attached to the charm loop affects

the invariant mass of an energetic hadronic final state by a relevant amount
√

mbΛQCD,

which must be accounted for by a subleading shape function. By treating this correction
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as in the inclusive case, the authors of [37] implicitly assumed that this shape function

somehow factorizes into the local heavy-quark effective theory matrix element λ2 and

the leading-power shape function. It is not clear to us how this simplification can be

justified and it is likely not even parametrically correct. Nevertheless, in the absence of

better information we follow the treatment of [37] and include the 1/m2
c power correc-

tions into the C incl
i . This results in a shift of the asymmetry zero by +0.07 GeV2, which is

included in (74), (75), and below in (76). To be conservative we assign another 0.1 GeV2

uncertainty to this estimate and add it in quadrature with the other power correction

uncertainty.

We are now in the position to present our final NNLO result based on the numerical

input parameters and their respective intervals as specified in Table 2. We then find

q 2
0 =

[

(3.34 . . . 3.40) +0.04
−0.13 µ ± 0.08mb

+0.05
−0.04 mc ± 0.14SF ± 0.14 〈 p+

X〉

]

GeV2

=
[

(3.34 . . . 3.40)+0.22
−0.25

]

GeV2 for mcut
X = (2.0 . . . 1.8) GeV . (76)

The error estimate is computed as follows: The range of scale variation is taken to be

2.3 GeV < µ < 9.2 GeV, and we vary the scale in the C incl
i and in R⊥ independently to

account conservatively for the absence of the O(α2
s) correction to the C incl

i . The input

quark mass is the bottom mass in the potential-subtracted (PS) scheme [38], see Table 2.

The pole mass and MS mass used in intermediate expressions are computed using the

one-loop conversion factors resulting in mpole
b = 4.78 GeV and m (mPS

b ) = 4.36 GeV,

respectively, when mPS
b (2 GeV) = 4.6 GeV. The dependence on the charm quark mass

enters through the matrix elements of the current-current operators. The error labelled

“SF” is connected with the subleading shape function effects as discussed above. Finally

we have added an uncertainty estimate for the approximation made by pulling out the

slowly varying function h
[0]
A (q2

0 , p
+
X) out of the p+

X integral in (70). We estimate this error

rather generously by varying 〈p+
X〉 from pcut

X /4 to 3pcut
X /4. The total error is obtained by

adding all these uncertainties in quadrature.

We note that the value of the asymmetry zero in semi-inclusive b → sℓ+ℓ− decay

is significantly smaller than for the exclusive case [29], where spectator scattering is

responsible for a positive shift as is the fact that in this case 〈p+
X〉 = 0 in (73). On the

other hand the semi-inclusive zero is in the same region as in the inclusive case [39],

where virtual effects together with hard gluon bremsstrahlung encoded in functions ω710

and ω910 [40] also induce a negative shift on the zero.

6 Conclusion

In this paper we completed the two-loop matching calculation for heavy-to-light currents

from QCD onto SCET for the complete set of Dirac structures. These matching co-

efficients enter several phenomenological applications, of which we have discussed their

effects on heavy-to-light form factor ratios, exclusive radiative and semi-leptonic decays,

as well as the inclusive decay B̄ → Xsℓ
+ℓ− in the shape-function region. The two-loop
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corrections are generally relatively small, in the few percent range. However, one ratio,

R⊥ = c7
1(u, µ)/c9

1(u, µ), which is also the most important for phenomenology, since it en-

ters the comparison of radiative and semi-leptonic decays as well as the forward-backward

asymmetry in exclusive and semi-inclusive b → sℓ+ℓ− transition, exhibits a two-loop cor-

rection that is larger than the one-loop term. The two-loop term alone shifts the location

of the asymmetry zero by about −0.1 GeV2, comparable to the effect of 1/mb suppressed

shape functions estimated in [37]. We showed that the location of the asymmetry zero in

semi-inclusive B̄ → Xsℓ
+ℓ− with an invariant mass cut is to a very good approximation

independent of the long-distance physics below the scale mb contained in the jet function

and the non-perturbative shape function, and obtain q 2
0 = (3.34+0.22

−0.25) GeV2 for an invari-

ant mass cut mcut
X = 2.0 GeV as our best estimate for the asymmetry zero. Moreover,

we confirm the discrepancy between QCD sum rule and SCET results for the form fac-

tor ratio T1/V in the low q2 region discussed in [14] and suggest that a dedicated QCD

sum rules analysis of deviations from the symmetry limit (rather than the form factors

themselves) should be done to clarify the situation.
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A NLO coefficient functions

In Section 3.1 we introduced the following set of one-loop coefficient functions,

g0(u) = −
5

2
+ 2 ln(u),

g1(u) = −
π2

12
+

2

ū
ln(u) − 2 ln2(u) − 2Li2(ū),

g2(u) =
π2

24
+

1

3
ζ3 +

12(1 + ū) + π2ū

6ū
ln(u) −

2

ū

(

ln2(u) + Li2(ū)
)

+
4

3
ln3(u)

+ 4 ln(u)Li2(ū) − 2Li3(ū) + 4S1,2(ū),

g3(u) = −
π4

160
−

1

6
ζ3 +

48(1 + ū) + 2π2 − 8ūζ3

12ū
ln(u) −

2

3
ln4(u) − 4 ln2(u)Li2(ū)

−
12(1 + ū) + π2ū

6ū

(

ln2(u) + Li2(ū)
)

− 8 ln(u)S1,2(ū) + 4 ln(u)Li3(ū) − 2Li4(ū)

+
2

ū

(

2

3
ln3(u) + 2 ln(u)Li2(ū) − Li3(ū) + 2S1,2(ū)

)

− 8S1,3(ū) + 4S2,2(ū),
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g4(u) = g1(u) − 6 −
4u

ū
ln(u),

g5(u) = g2(u) − 10 −
π2

3
−

2u

ū

(

3 ln(u) − 2 ln2(u) − 2Li2(ū)
)

,

g6(u) = g3(u) − 18 −
π2

2
+

4

3
ζ3 −

2u

ū

(

30 + π2

6
ln(u) − 3 ln2(u) − 3Li2(ū) +

4

3
ln3(u)

+ 4 ln(u)Li2(ū) − 2Li3(ū) + 4S1,2(ū)

)

,

g7(u) = −
2

ū
−

2u

ū2
ln(u),

g8(u) = −
6

ū
−

2u

ū2

(

2 ln(u) − ln2(u) − Li2(ū)
)

,

g9(u) =
2u

ū
ln(u),

g10(u) =
u(1 + 4ū)

ū2
ln(u) +

u

ū

(

1 − 2 ln2(u) − 2Li2(ū)
)

,

g11(u) =
6u(2 + 7ū) + π2uū

6ū2
ln(u) −

u(1 + 4ū)

ū2

(

ln2(u) + Li2(ū)
)

+
u

ū

(

3 +
4

3
ln3(u) + 4 ln(u)Li2(ū) − 2Li3(ū) + 4S1,2(ū)

)

,

g12(u) = g7(u) + 2,

g13(u) = g8(u) + 6 +
2u

ū
ln(u). (77)

B NNLO coefficient functions

The finite parts of the two-loop form factors involve the following coefficient functions,

h1(u) = −
2(7 − 2ū + 3ū2)

u2
Li4(ū) −

4(11 + 2ū + 3ū2)

u2
S2,2(ū) + 8S1,3(ū) − 8 ln(u)Li3(ū)

+
2(3 + ū2)

u2
Li2(ū)2 + 16 ln(u)S1,2(ū) +

16

3
ln4(u) + 16 ln2(u)Li2(ū)

−
6 + 47ū − 5ū2

3uū
Li3(ū) −

2(42 − 29ū)

9ū
ln3(u) +

2(6 − 115ū + 13ū2)

3uū
S1,2(ū)

−
2(12 + ū + 11ū2)

3uū
ln(u)Li2(ū) +

36 − 87ū − 250ū2 + 18π2ū2

9ū2
ln2(u)

−

(

33 + 109ū − 322ū2

9uū
−

(7 − 2ū + 3ū2)π2

u2

)

Li2(ū) +
(2815 + 353ū)π2

432u
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+

(

1173 + 241ū

27ū
−

(9 + 46ū + 17ū2)π2

9uū
−

56

3
ζ3

)

ln(u)

−
(509 + 278ū + 77ū2)π4

720u2
+

76

9
ζ3 +

30331

1296
− 2h2(u),

h2(u) =
2(1 + ū)2

3uū

(

12H1(ū) + π2 ln(2 − u)
)

+
1

3

(

24H2(ū) − 2π2Li2(−ū)
)

−
8

u2
S2,2(ū) −

2

u2
Li4(ū) − 8 ln(u)Li3(ū) −

(u − ū)(3 − 2ū)

u2
Li2(ū)2

−
40 − 56ū + 7ū2

3u2
Li3(ū) +

14 − 40ū + 17ū2

3u2
S1,2(ū) +

29 − 35ū

3u
ln(u)Li2(ū)

+
44

9
ln3(u) −

(

66 + 122ū − 89ū2

9uū
−

(7 − 8ū + 4ū2)π2

3u2

)

Li2(ū)

−
78 + 223ū − 12π2ū

18ū
ln2(u) +

(13 − 62ū + 31ū2)π4

120u2

+

(

2(354 + 121ū)

27ū
−

(24 − 71ū + 65ū2)π2

18uū
− 14ζ3

)

ln(u)

+
3(2 − ū)2

u2

(

Li3(−u) − ln(u)Li2(−u) −
ln2(u) + π2

2
ln(1 + u)

)

+
5405

1296

+
(877 + 239ū)π2

216u
+

469 − 73ū

18u
ζ3 −

2(3 + ū)π2

u
ln(2),

h3(u) =
8

3
Li3(ū) +

8(1 + ū)(3 + 11ū − 11ū2 + 5ū3)

9u3ū
Li2(ū)

−
2(96 + 208ū − 224ū2 + 112ū3 + 3ūu2π2)

27u2ū
ln(u) +

3773 − 4954ū + 2333ū2

81u2

−
(265 − 315ū + 219ū2 − 41ū3)π2

54u3
−

28

9
ζ3,

h4(u) = h1(u) + 2h2(u) +
12(1 + ū)2

u3

(

8S2,2(ū) + 2Li4(ū) − Li2(ū)2 +
3π4

20

)

+
4(1 + ū)(1 + 10ū + ū2)

u2ū
Li3(ū) +

56u

3ū
ln3(u) −

8(1 − 31ū − 13ū2 − 5ū3)

u2ū
S1,2(ū)

+
8(2 + ū + 10ū2 − ū3)

u2ū
ln(u)Li2(ū) −

4(3 − 4ū − 46ū2 + 11ū3)

3uū2
ln2(u)

+

(

4(4 + 3ū − 72ū2 − 7ū3)

3u2ū
−

12(1 + ū)2π2

u3

)

Li2(ū) −
(359 + 362ū + 143ū2)π2

18u2

−

(

611 − 251ū

9ū
−

2(3 + 32ū + 35ū2 + 2ū3)π2

3u2ū

)

ln(u) −
4

3
ζ3 −

3050

27
− 2h5(u),

31



h5(u) = h2(u) −
4(1 + ū)

3ū

(

12H1(ū) + π2 ln(2 − u)
)

+
4(12 − 21ū + 18ū2 − 8ū3)

3u3
Li3(ū)

+
2(1 + 3ū2)

u3

(

8S2,2(ū) + 2Li4(ū) − Li2(ū)2 +
3π4

20

)

+
16(1 + ū + ū2)

3u2
ln(u)Li2(ū)

+
4(14 + 15ū − 24ū2 − 6ū3)

3u3
S1,2(ū) −

(

472u

9ū
−

8(1 − 2ū + 4ū2)π2

3u2ū

)

ln(u)

+

(

4(11 − 21ū + 4ū2 − 5ū3)

3u2ū
−

2(1 + 3ū2)π2

u3

)

Li2(ū)

−
4(2 − ū)(5 − 8ū + 2ū2)

3u3

(

Li3(−u) − ln(u)Li2(−u) −
ln2(u) + π2

2
ln(1 + u)

)

+
2(13 − 18ū + 16ū2)

3uū
ln2(u) −

2(13 + 4ū + 16ū2)π2

9u2
−

16

u
ζ3 −

5219

54
,

h6(u) = −
8u

3ū
ln(u) +

10

3
ζ3 +

11π2

18
−

1381

324
,

h7(u) = h3(u) −
16(1 + ū)3

3u2ū
Li2(ū) +

128(1 + ū + ū2)

9uū
ln(u) +

32(1 + ū)π2

9u2

−
2(251 + 325ū)

27u
,

h8(u) = −
2(3 + 20ū + 13ū2)

u3

(

8S2,2(ū) + 2Li4(ū) − Li2(ū)2 +
3π4

20

)

−
28u

3ū
ln3(u)

−
2(1 + 17ū + 51ū2 + 3ū3)

u2ū
Li3(ū) +

4(1 − 43ū − 93ū2 − 9ū3)

u2ū
S1,2(ū)

−
8(1 + 2ū + 15ū2)

u2ū
ln(u)Li2(ū) +

9 + 13ū − 209ū2 − 29ū3

3uū2
ln2(u)

+

(

3 − 14ū − 84ū2 + 402ū3 + 125ū4

3u2ū2
+

2(3 + 20ū + 13ū2)π2

u3

)

Li2(ū)

−

(

81 − 539ū + 242ū2

18ū2
+

(1 + 17ū + 51ū2 + 3ū3)π2

u2ū

)

ln(u)

+
2(14 + 77ū + 17ū2)π2

3u2
−

11 − 3ū

2ū
− 2h9(u),

h9(u) =
1

2
h2(u) −

1

2
h5(u) −

2ū(1 + 3ū)

u3

(

8S2,2(ū) + 2Li4(ū) − Li2(ū)2 +
3π4

20

)

−
2(3 + 21ū − 24ū2 + 2ū3)

3u3
Li3(ū) −

4(1 + 7ū + 4ū2)

3u2
ln(u)Li2(ū)

−
2(1 + 69ū − 48ū2 − 24ū3)

3u3
S1,2(ū) +

(

4 +
2(1 − 11ū − 2ū2)π2

3u2

)

ln(u)
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−

(

2(9 − 13ū − 18ū2)

3u2
−

2ū(1 + 3ū)π2

u3

)

Li2(ū) −
7 + 15ū

3u
ln2(u)

−
2(1 − 3ū + 6ū2 − 2ū3)

3u3

(

Li3(−u) − ln(u)Li2(−u) −
ln2(u) + π2

2
ln(1 + u)

)

+
(11 + 17ū + 38ū2)π2

9u2
+

4(3 − ū)

u
ζ3 − 4π2 ln(2) −

5435

108
,

h10(u) =
1

2
h3(u) −

1

2
h7(u) −

8π2

9
+

181

27
. (78)

Moreover, for the ratios RX in (58) we need the following auxiliary functions,

j1(u) =
4(u − 2) (u2 + 2u − 2)

3u2ū
s1(u) +

16ū

3u3
s2(u) +

8(2u − 7)ū

3u3
s3(u) −

4u

3ū
s4(u)

+
2(u + 3) (u2 − 1)

u3
s5(u) −

16(2u − 3)ū Li4(ū)

u3
−

4 (u2 − 36u + 25) Li2(ū)

u2

+
4 (4u3 − 8u2 + 5u + 3) (Li3(ū) − ζ(3))

u3
+

4 (7u3 + 85u2 − 111u + 3) Li3(u)

u3

+
8π2(6u − 17)ū Li2(ū)

3u3
+

6u Li2(ū)

ū
−

4 (5u3 + 63u2 − 83u + 3)Li2(u) ln(u)

u3

−
2π4(20u − 33)ū

45u3
−

8 (u2 + 51u − 62) ζ(3)

u2
−

2π2 (9u2 − 73u + 59)

3u2

−
32π2(5u − 6) ln(u)

3u2
−

2 (3u3 + 41u2 − 55u + 3) ln2(u) ln(ū)

u3

+
4(2u − 1)2 ln2(u)

ū2
+

(9u − 4) ln(u)

ū
−

2(11u − 25) ln2(u)

u
− 1 ,

j2(u) = −
2(u − 2) (u2 + 2u − 2)

3u2ū
s1(u) −

8ū

3u3
s2(u) +

2(4u − 7)ū

3u3
s3(u)

−
(u + 3) (u2 − 1)

u3
s5(u) +

2π2(12u − 29)ū Li2(ū)

3u3
−

4(4u − 15)ū Li4(ū)

u3

−
2 (25u2 − 99u + 51)Li2(ū)

3u2
−

2 (3u3 + 29u2 − 37u + 3) (Li3(ū) − ζ(3))

u3

−
2 (11u3 − 63u2 + 57u + 3)Li3(u)

u3
+

2 (8u3 − 48u2 + 43u + 3)Li2(u) ln(u)

u3

−
22Li2(ū)

3ū
−

4π4(5u − 18)ū

45u3
+

2 (7u2 − 83u + 86) ζ(3)

u2
−

π2 (8u2 − 69u + 67)

3u2

+
4π2 (2u2 − 17u + 18) ln(u)

3u2
+

(5u3 − 33u2 + 29u + 3) ln2(u) ln(ū)

u3
−

13 ln2(u)

3ū

−
4π2 ln(u)

3ū
+

203 ln(u)

9ū
−

(8u − 51) ln2(u)

3u
−

257 ln(u)

9
+

269

9
,

33



j3(u) = −
26

9
g9(u) +

8u

3ū

[

ln2(u) + Li2(ū)
]

−
76

9
,

j4(u) =
32π2(u + 2)ū

9u2
+

32ū(Li3(ū) − ζ(3))

u3
−

8(u − 2) (u2 + 2u − 2) Li2(ū)

3u2ū

−
52u ln(u)

9ū
−

104

3u
+

80 ln(u)

3u
+

236

9
,

j5(u) = −
4(u − 2) (u2 − 2u + 2)

3u2ū
s1(u) +

16ū

3u3
s2(u) −

8(2u2 − 12u + 11)

3u3
s3(u)

+
4

3ū
s4(u) −

2(u + 1) (u2 + 2u + 7)

3u3
s5(u) +

16(2u2 − 8u + 7)Li4(ū)

u3

−
2 (51u2 − 328u + 250) Li2(ū)

3u2
−

4 (u3 + 48u2 − 69u − 7) (Li3(ū) − ζ(3))

3u3

+
4 (3u3 + 315u2 − 519u + 7) Li3(u)

3u3
−

8π2(6u2 − 32u + 29)Li2(ū)

3u3
−

2Li2(ū)

ū

+
4 (2u3 − 237u2 + 387u − 7) Li2(u) ln(u)

3u3
+

2π4(20u2 − 83u + 73)

45u3

+
8(4u2 − 183u + 306)ζ(3)

3u2
−

π2(11u2 − 206u + 218)

3u2
+

8π2(u2 − 72u + 120) ln(u)

9u2

+
2 (7u3 − 159u2 + 255u − 7) ln2(u) ln(ū)

3u3
+

4 ln2(u)

ū
+

ln(u)

ū
− 13 ln(u)

−
2(27u − 125) ln2(u)

3u
− 8π2 ln(2) +

563

24
,

j6(u) =
2(u − 2) (u2 − 2u + 2)

3u2ū
s1(u) −

8ū

3u3
s2(u) −

2(7u2 − 17u + 11)

3u3
s3(u)

+
(u + 1) (u2 + 2u + 7)

3u3
s5(u) +

4(7u2 − 25u + 19)Li4(ū)

u3

−
2 (35u2 − 133u + 73)Li2(ū)

3u2
+

2 (7u3 − 99u2 + 129u − 7) (Li3(ū) − ζ(3))

3u3

−
2 (45u3 − 273u2 + 273u + 7)Li3(u)

3u3
−

2π2(21u2 − 59u + 41)Li2(ū)

3u3
+

22Li2(ū)

3ū

+
2 (28u3 − 204u2 + 207u + 7)Li2(u) ln(u)

3u3
+

π4(35u2 − 122u + 92)

45u3

+
2(40u2− 369u + 378)ζ(3)

3u2
−

π2(68u2 − 279u + 267)

9u2
+

4π2(8u2 − 75u + 78)ln(u)

9u2

+
(11u3 − 135u2 + 141u + 7) ln2(u) ln(ū)

3u3
+

13 ln2(u)

3ū
−

269 ln(u)

9ū
+

4π2 ln(u)

3ū

+
215 ln(u)

9
−

(40u − 73) ln2(u)

3u
+ 4π2 ln(2) −

4421

216
,

34



j7(u) =
38

9
g9(u) −

8u

3ū

[

ln2(u) + Li2(ū)
]

+
4π2

9
+

205

54
,

j8(u) = −
8π2(u2 + 8u − 16)

9u2
+

32ū(Li3(ū) − ζ(3))

u3
+

8(u − 2) (u2 − 10u + 10)Li2(ū)

3u2ū

+
76 ln(u)

9ū
−

232

3u
−

4(19u − 156) ln(u)

9u
+

1429

54
,

j9(u) = −
5π2(5u + 4)

6u
−

16ū(Li3(ū) − ζ(3))

u2
−

2(u − 2)Li2(ū)

u
+

u2 ln2(u)

ū2

− 12 ln(u) − 6ζ(3) + 4π2 ln(2) +
563

16
,

j10(u) =
4π2(u + 1)

3u
+

8ū(Li3(ū) − ζ(3))

u2
+ 4 ln(u) + 3ζ(3)− 2π2 ln(2) −

5141

144
, (79)

with

s1(u) = 12H1(ū) + π2 ln(2 − u) ,

s2(u) = 12H2(ū) − π2Li2(−ū) ,

s3(u) = 3Li22(ū) − 24S2,2(ū) −
17π4

60
,

s4(u) = 6Li3(u) − 3Li2(u) ln(u) + 3Li3(ū) − 2π2 ln(u) − 6ζ(3) ,

s5(u) = −2Li3(−u) + 2Li2(−u) ln(u) + ln(u + 1) ln2(u) + π2 ln(u + 1) . (80)
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