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Sector decomposition in its practical aspect is a constructive method used to evaluate Feynman

integrals numerically. We present a new program performingthe sector decomposition and in-

tegrating the expression afterwards. The program can be also used in order to expand Feynman

integrals automatically in limits of momenta and masses with the use of sector decompositions

and Mellin–Barnes representations. The program is parallelizable on modern multicore com-

puters and even on multiple computers. Also we demonstrate some new numerical results for

four-loop massless propagator master integrals.
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1. Introduction

Originally sector decomposition was used as a tool for analyzing the convergence and prov-
ing theorems on renormalization and asymptotic expansionsof Feynman integrals [1, 2, 3, 4, 5].
After [6], the sector decomposition approach has become an efficient tool for numerical evaluating
Feynman integrals (see Ref. [7] for a recent review). At present, there are two public codes per-
forming the sector decomposition [8] and [9]. The latter onewas developed by the present authors;
it is namedFIESTA which stands for “Feynman Integral Evaluation by a Sector decomposiTion
Approach”. RecentlyFIESTA was greatly improved in various aspects [10].

During the last yearFIESTA was widely used, some of application are listed in [11]. In [12]
we usedFIESTA in order to confirm numerically the recent analytic results for master integrals
(MI’s) for four-loop massless propagators which recently were analytically evaluated in [13]. Here
we provide some more numerical results for extra orders in epsilon expansions for these MI’s.

2. Theoretical background and software structure

FIESTA calculates Feynman integrals with the sector decomposition approach. After per-
forming Dirac and Lorentz algebra one is left with a scalar dimensionally regularized Feynman

integral [14]F(a1, . . . ,an)
∫

· · ·
∫ dd

k1...d
d
kl

E
a1
1 ...Ean

n
, whered = 4−2ε is the space-time dimension,an are

indices,l is the number of loops and 1/En are propagators. We work in Minkowski space where
the standard propagators are the form 1/(m2

− p2
− i0). Other propagators are permitted, see [9].

Substituting 1
E

ai
i

= eaiπ/2

Γ(a)

∫ ∞
0 dααai−1e−iEiα , after usual tricks [9], performing the decomposition of

the integration region into the so-calledprimary sectors[6] and making a variable replacement,
one results in a linear combination of integrals

∫ 1
xj=0dxi . . .dxn′

(

∏n′
j=1x

aj−1
j

)

UA−(l+1)d/2

FA−ld/2

If the functionsUA−(l+1)d/2

FA−ld/2 had no singularities inε , one would be able to perform the expansion
in ε and perform the numerical integration afterwards. However, in general one has to resolve
the singularities first. Thus, one starts a process the sector decomposition aiming to end with a
sum of similar expressions, but with new functionsU andF which have no singularities (all the

singularities are now due to the part∏n
j=1 x′

a′j−1
j ). The way sector decomposition is performed is

called asector decomposition strategy([6, 8, 9]) and is an essential part of the algorithm (let us
also mention a geometrical approach to sector decomposition [15] which is rather complicated in
implementation as a strategy on a computer but promises to bethe optimal one).

After the sector decomposition one resolves the singularities by evaluating the first terms of
the Taylor series: in those terms one integration is taken analytically. Afterwards theε-expansion
can be performed and finally one can do the numerical integration.

FIESTA is written in Mathematica [17] and C. The user is not supposed to use the C
part directly as it is launched fromMathematica via the Mathlink protocol in order to per-
form a numerical integration. To runFIESTA, the user has to load theFIESTA package into
Mathematica 6 or 7. In order to evaluate a Feynman integral one has to use the command
SDEvaluate[UF[loop_momenta,propagators,subst], indices,order], where
loop_momenta is a list of all loop momenta,propagators is a list of all propagators,subst
is a list of substitutions for external momenta, masses and other values. For example,
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SDEvaluate[UF[{k},{-k2,-(k+p1)2,-(k+p1+p2)2,-(k+p1+p2+p4)2},

{p2
1 →0,p2

2 →0,p2
4 →0, p1 p2 →-s/2,p2 p4 →-t/2,p1 p4 →-(s+t)/2,

s→-3,t→-1}], {1,1,1,1},0]

evaluats the massless on-shell box diagram with Mandelstamvariables equal to−3 and−1.

3. Numerical results for four-loop massless propagators

M61, ε1 M62, ε0 M63, ε0 M51, ε1 M41, ε1

M42, ε1 M44, ε0 M45, ε1 M34, ε3 M35, ε2

M36, ε1 M52, ε1 M43, ε1 N0,ε2

Figure 1: M61–M43: the thirteen complicated four-loop master integrals according to [13]. The two MI’s
M52 andM43 can be identically expressed through the three-loop nonplanar MI N0.

In [18] a full set of four-loop massless propagator-like MI’s was identified. There are 28 inde-
pendent MI’s. Analytical results for these integrals were obtained in [13]. The most complicated
MI’s are demonstrated on Fig. 1.εm afterMi j stands for the maximal term inε-expansion ofMi j

which one needs to know for evaluation of the contribution ofthe integral to the final result for a
four-loop integral after reduction is done, see [13]. Two ofthe complicated integrals (M43 andM52)
are related by a simple factor with the three-loop MIN0 [12] so it is enough to evaluate remaining
eleven complicated MI’sM61–M36 as well as first three terms of theε-expansion ofN0.

We calculated them (forq2 = −1) usingFIESTA with theCuba[16] Vegas integrator and
1 500 000 sampling points for integration. Our results alongside with the corresponding analytical
expressions (transformed to the numerical form) from [13] look like follows1:

M34 ε−4: 0.08333± 0 (0.08333);ε−3: 0.916667± 0.000018 (0.91666);ε−2: 5.64251± 0.00022
(5.6425109);ε−1: 27.6413± 0.00077 (27.6412581);ε0: 98.638± 0.0034 (98.637928);ε1:
342.736± 0.012 (342.7349920);ε2: 857.88± 0.048 (857.8735165);ε3: 2659.84± 0.19
(2659.825402);ε4: 4344.28± 0.75 (unknown);ε5: 17483.1± 5.7 (unknown).

M35 ε−2: 0.601028± 0.000012 (0.601028);ε−1: 7.4231± 0.00024 (7.423055);ε0: 44.9127±
0.00073 (44.91255);ε1: 217.023± 0.0037 (217.0209);ε2: 780.436± 0.013 (780.432);ε3:
2678.13± 0.053 (unknown);ε4: 7195.9± 0.3 (unknown).

1Please, note that the overall normalization used byFIESTA is differentfrom the one employed by the authors of
[13], see [12].
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M36 ε−1: 5.184645± 0.000042 (5.1846388);ε0: 38.8948± 0.00039 (38.8946741);ε1: 240.069
± 0.0019 (240.0684359);ε2: 948.623± 0.0091 (unknown);ε3: 3679.77± 0.06 (unknown).

M41 ε−1: 20.73860± 0.00023(20.7385551);ε0: 102.033± 0.003 (102.0326759);ε1: 761.60±
0.011 (761.5969858);ε2: 2326.18± 0.062 (unknown);ε3: 12273.6± 0.4 (unknown).

M42 ε−1: 20.73860± 0.00024 (20.7385551);ε0: 145.381± 0.0029 (145.3808999);ε1: 985.91
± 0.014 (985.9082306);ε2: 3930.65± 0.076 (unknown);ε3: 17486.6± 0.6 (unknown).

M44 ε0: 55.58537± 0.00031 (55.5852539);ε1: 175.325± 0.004 (unknown);ε2: 1496.52± 0.02

M45 ε0: 52.0181± 0.0003 (52.0178687);ε1: 175.50± 0.0036 (175.496447);ε2: 1475.272±
0.0098 (unknown);ε3: 2623.5± 0.1 (unknown).

M51 ε−1: -5.184651± 0.000048 (-5.184638);ε0: -32.0962± 0.00057 (-32.09614);ε1: -91.158
± 0.0052 (-91.1614);ε2: 119.06± 0.043 (unknown);ε3: 2768.6± 0.45 (unknown).

N0 ε0: 20.73857± 0.00026 (20.7385551);ε1: 190.60± 0.0023 (190.600238);ε2: 1049.20±
0.014 (1049.194196);ε3: 4423.84± 0.072 (unknown);ε4: 16028.8± 0.5 (unknown).

M61 ε−1: -10.36931± 0.00006 (-10.3692776);ε0: -70.990± 0.0011 (-70.99081719);ε1: -
21.650± 0.013 (-21.663005);ε2: 2832.69± 0.096 (unknown).

M62 ε−1: -10.36933± 0.00006 (-10.36927);ε0: -58.6187± 0.0013(-58.6210);ε1: 244.681±
0.015 (unknown).

M63 ε−1: -5.18467± 0.000042 (-5.184638);ε0: 14.3989± 0.00081 (14.39739);ε1: 739.979±
0.0099 (unknown).

Here for each MI we provide our numerical result for coefficients ofε-expansion in comparison (in
parentheses) with the known from [13] analiycal results (ifany). As we can see, our calculations
reproduce the result of [13] with 3-4 correct digits. The extra terms in theε-expansion of each MI
which are currently unavailable analytically but are necessary for future five-loop calculations.

4. Conclusion

Usually, analytical evaluation of multiloop MI is a kind of art. It requires a lot of efforts (and
CPU time). In many situations, independent checkup is hardly any possible in reasonable time.
That is why the simple in use tools for numerical evaluation like FIESTA are important.
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sian Foundation for Basic Research through grant 08-02-01451.
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