Matching QCD and HQET at three loops
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QCD/HQET matching for the heavy-quark field [1] and heavy-light quark currents [2] with three-loop accuracy

is discussed.

1. Heavy-quark field

QCD problems with a single heavy quark @) can
be treated in a simpler effective theory — HQET,
if there exists a 4-velocity v such that the heavy-
quark momentum is p = mv+k (m is the on-shell
mass) and the characteristic residual momentum
is small: £ < m. QCD operators can be written
as series in 1/m via HQET operators; the coeffi-
cients in these series are determined by matching
on-shell matrix elements in both theories.

At the tree level, the heavy-quark field @Q is re-
lated to the corresponding HQET field @, (satis-

fying Q. = Q) by [3,4]

Q(.’L‘) — e—imv»z (1 4 % + .- ) Qv(x),
Dl =D" —v*v-D. (1)

The matrix elements of the bare fields between
the on-shell quark with momentum p = mv + k
and the vacuum in both theories are given by the
on-shell wave-function renormalization constants:

<0|QolQ(p)> = (28)"" ulp)

<0[Qul®> = (23)" uh) 2)

(HQET renormalization constants are denoted by

7). The Dirac spinors are related by the Foldy—
Wouthuysen transformation

u(mv + k) = [1 + 2£ +0 (:1—22)} uy (k).

m

Therefore, the bare fields are related by

2m

TES

where the bare matching coefficient is

Qufa) = e |53 (1484 ) Quao)

Zé)gs(g(()nlJrl), aé’ﬂﬂrl))
0T T s ) ()
Zé)gs(go yay )

(4)

(we use the covariant gauge: the gauge-fixing
term in the Lagrangian is —(9,Ag")/(2a0), and
the free gluon propagator is (—i/p?)(gu, — (1 —
ao)pupy/p?); the number of flavours in QCD is
ny = n; + 1). The O(1/m) matching coeflicient
in (3) is equal to the leading one, zp; this re-
flexes the reparametrization invariance [5]. The
MS renormalized fields are related by the formula
similar to (3), with the renormalized decoupling
coefficient

o = Za(d™ (), a" ()
e Zg(al" D (), a1 () ®)

If there are no massive flavours except @,
then Z%S = 1 because all loop corrections
are scale-free. The QCD on-shell renormal-
ization constant Z¢ contains the single scale
m in this case; it has been calculated [6] up
to three loops. The three-loop MS anoma-
lous dimensions of @, [6,7] and @ [8] are also
known. We have to express all three quantities
250" af" ™), Za(al TV (), a® ),

Zo(al™ (1), a™) (1)) via the same variables, say,



agm)(,u), a™) (1), see [9]. The explicit result for

the renormalized matching coefficient z(u) can
be found in [1]. Gauge dependence first appears
at three loops, as in Zg [6]. The requirement
of finiteness of the renormalized matching coeffi-
cient (5) at ¢ — 0 has allowed the authors of [6)
to extract ZQ from their result for Zg'.

In the large-Gy limit (see Chapter 8 in [10] for
a pedagogical introduction):

z<u>1+/f%<%>%)

4 i/ due="/3S(u) + O (%) . (6)
Bo Jo By

where 8 = foas/(47), ¥ = yoas/(4m) + - -+ (dif-
ferences of n;-flavour and (n; + 1)-flavour quan-
tities can be neglected at the 1/8y order). The
difference of the QCD and HQET anomalous di-
mensions vy = yg—79¢ (it is gauge invariant at this
order) and the Borel image S(u) are [11,12,10]

_ 9B g0 =
V(B) = 250F( B3,0) =

0o (1+8)(1+20)
"Bo B2+ 8,2+ BT3B+ /)1 - )’
S(u) = F(0,u) — F(0,0) _ )

u

I(u)[(1 — 2u) 1
_ (L+5/3ut WL = 20) 00 2y 1
6Cr | I'(3—u) A=w) =5

This Borel image has infrared renormalon poles at
each positive half-integer v and at u = 2. There-
fore, the integral in (6) is not well defined. Com-
paring its residue at the leading pole u = 1/2
with the residue of the static-quark self-energy at
its ultraviolet pole u = 1/2 [13], we can express
the renormalon ambiguity of z(u) as

3 AA
Ax(n) = 5= (5)
(A is the ground-state meson residual energy).
The matching coefficient is gauge invariant at the
order 1/8y. Expanding v(8) and S(u) and inte-
grating, we obtain confirm the contributions with
the highest power of n; in each term in our three-
loop result, and predict such a contribution at

4
Q.

Numerically, in the Landau gauge at n; =4

(4)
s(m) =1 — 205 (m)
3 9w
(4) 2
— (16.6629 — 4.5421) <O‘7(m)>
e

(4) 3
— (153.4076 + 42.6271 — 61.5397) (O‘T(m)>
(4) 4
— (1953.4013 + - --) <O‘T(m)> ¥

(4) (4) 2
=1 éL(m) —12.1208 (M)
T s

3
4 3
— 134.4950 <O‘T(m)>
aMm)\’
_(1953'4013+”')<T> T 9)

(Bo is for n; = 4 flavours). Naive nonabelian-
ization [11] works rather well at two and three
loops. Numerical convergence of the series is very
poor; this is related to the infrared renormalon at
u=1/2.

Now let us consider the relation between the
MS renormalized electron ficld in QED and the
Bloch—Nordsieck electron field. The bare match-

ing coefficient zy = Zy> is gauge invariant
to all orders, see [6]. In the Bloch-Nordsieck
model, due to exponentiation, logZ, = (3 —

a®)al® /(47e) (where the O-flavour () is equal
to the on-shell @ ~ 1/137). In the full QED,
it is supposed that logZ, = aMa®/(47e) +
(gauge-invariant higher terms) (this is equivalent
to the similar statement for the anomalous dimen-
sion v, because dlog(aMaM)/dlog u = —2¢ ex-
actly). This has been demonstrated up to four
loops by the direct calculation [14], but there is no
general proof. The gauge dependence cancels in
log(Zy/Zy) because of the QED decoupling rela-
tion aMa?) = ¢ (), Therefore, the renormal-
ized matching coefficient z(u) in QED is gauge
invariant at least up to four loops. The three-
loop result is presented in [1].



2. Heavy-light currents

Now we shall consider [2] MS renormalized
heavy-light QCD quark currents

i) = Z;7 (Wi, jo = qI'Qo, (10)

where I is a Dirac matrix. They can be expressed
via operators in HQET

+—ZB

+o<%§, (11)

i) =Z;7 (wjo,  Jo = 3T Quo, (12)

and O; are dimension-4 HQET operators with ap-
propriate quantum numbers.

There are 8 Dirac structures giving non-
vanishing quark currents in 4 dimensions:

r=1, ¢, ¢, 717, (13)

5
Aoyl By e B ey

J(p) =Cr(p

where ¥¢ = 4® — gv®. The last four of them
can be obtained from the first four by multiplying
by the 't Hooft—Veltman iV, We are concerned
with flavour non-singlet currents only, therefore,
we may also use the anticommuting fy?c (there
is no anomaly). The currents renormalized at a
scale p with different prescriptions for 75 are re-
lated by [15]

(@3°Q), = Zr(w (21" Q), , (14)
(@49 Q), = Zalw) (1" 7*Q), -
“y%1Q),, = Zr(u) (7 11*71Q)

where the finite renormalization constants Zp 4 1
can be reconstructed from the differences of the
anomalous dimensions of the currents. Multiply-
ing T by 72C does not change the anomalous di-
mension. In the case of I' = yl*¢f multiplying
it by iV just permutes its components, and also
does not change the anomalous dimension, there-
fore,

Zr(p) =1; (15)

(‘TYE) Y

Zp A(p) are known up to three loops [15].

The anomalous dimension of the HQET cur-
rent (12) does not depend on the Dirac structure
I'. Therefore, there are no factors similar to Zp 4
in HQET. Multiplying I" by ~; £C does not change
the matching coefficient. Therefore, the match-
ing coeflicients for the currents in the second row
of (13) can be obtained from those for the first
row. In the v rest frame

Zp(p) = Copcl) ___Ciw) :
C'yflfv (M) C’y"'yl'yz'ys (M)
s o) ol
C'y}f"'yo (1) Chayzya(p)
Cop 'YS(M) _ Cos (1)
Convas (i) Cyoqipe(n)’
T () = Clpcqoq (1) _ Croq1 (1)
Convayoni () Cy2qa(p)
_ Chpcazya () Chags(p) 1 (16)
Convazas(p)  Cyoqn(p)
(

In particular, C,, 4(p) = C’Y[f’yf] w1). In the fol-

lowing we shall consider only the matching coef-
ficients for the first 4 Dirac structures in (13).

In order to find the coefficients Cr(u), we
equate matrix elements of the left- and right-hand
side of (11) from the heavy quark with momen-
tum p = mwv + k to the light quark with momen-
tum kgy:

<q(kg) |7 (1)|Q(mv + k)> =
Crl<all) Q. (k> +0 (1) - am

The on-shell matrix elements are
<q(kg) i (W)[Q(p)> = g (kq)T (p, kg)u(p)
x 27N (w22},
= g (kg )T (k. Fiq o (k)
x 27N w2y 7z, (18)

<q(kq) |7 (1) |Qu (k)>

where T'(p,k,) and T'(k,k,) are the bare vertex
functions, and Zq differs from Z, because there
are no @ loops in HQET. The difference between
u(muv + k) and wu, (k) is of order k/m, and can be



neglected. It is most convenient to use k = k; =
0, then the O(1/m) term is absent. The QCD
vertex has two Dirac structures:

I'(mv,0) =T - (A+ By).
This leads to
w@(0)I (mw, 0)u(mv) = T'(mw,0) 4(0)Tu(mv),

I'(mv,0) = A+ B.

The HQET vertex has just one Dirac structure.
Therefore,

ot [(mw,0)Z; (1) 25> 24" »
F(N)— ~ 51 51/2 51/2 ( )
F(OaO)Zj (M)ZQ Zq

If all flavours except () are massless, all loop
corrections to f‘(0,0), ZQ, and Zq contain no
scale and hence vanish: I'(0,0) = 1, ZQ = 1,
Z, = 1. The quantities T'(mv,0), Zg, and Z,
contain a single scale m; Zg has been calculated
up to 3 loops in [6], Z, in [9], and I'(mv,0) in
the present work [2]. The MS renormalization
constants Z; [7] and Z; [16] (for all T') are also
known to 3 loops.

If there is another massive flavour (¢ in b-quark
HQET), then I'(0,0), ZQ, and Zq contain a sin-
gle scale m.. The first two quantities have been
calculated up to 3 loops in [17]; the last one is
known from [9]. The quantities I'(mwv,0), Zq,
and Z,; now contain 2 scales, and are non-trivial
functions of = m./m. The renormalization con-
stant Zg has been calculated in this case, up to
3 loops, in [18] (the master integrals appearing in
this case are discussed in Ref. [19]). The other
two quantities are found in this work [2].

The bare on-shell QCD quantities T'(mv,0),

Zg, and Z, are expressed via g(()"f) (and mggf)

if it is non-zero; we re-express it via the on-
shell mass m.). They don’t contain y. The MS
QCD renormalization constant Z; is expressed

via ozg"f)(u). The bare on-shell HQET quanti-

ties T'(0,0), Zg, and Z, are expressed via g((,nf_l)
and migfil)

(they are trivial at m. = 0); we re-

express migf ~Y Via the on-shell mass m, (which
is the same in both theories). These bare quan-

tities also don’t contain p. Finally, the MS

HQET renormalization constant Zj is expressed

via al™f _1)(,u). We re-express all the quantities

in (19) via a{™ "V (1), see [9].
From equation of motion we have

iaaja = Z.aaj(()l = mOjO = m(ﬂ)](:u) ) (20)

where m(u) is the MS mass of the heavy quark
Q. Taking the on-shell matrix element between
the heavy quark with p = mv and the light quark
with k4 = 0 and re-expressing both QCD matrix
elements via the matrix element of the HQET
current with I' = 1, we obtain [11]

mCy(p) = m(u)C1(p) - (21)

The ratio m(u)/m has been calculated at three
loops in [20] (for m. # 0 in [18]).

The matching coefficients have been calculated
up to 2 loops in [11], and to 3 loops in the present
work [2]. Analytical expressions are long; numer-
ically, at m, = 0 and p = m we have

C® =755+ 1.09=28.64,

CY) = —5A47+3.06 = —2.41,

2
C{?) = —9.87+1.53 = —8.34,

c® = 14134242 = —11.70,
yLp

) = 64.74 4 75.34 — 38.16 = 101.92,

O = —37.25 — 10.72 + 29.74 = —18.23,

C3) = —88.92 — 46.34 + 45.34 = —89.92,

Cfl)ﬁ = —123.61 — 63.57 + 63.22 = —123.96

(in the middle part of each formula, terms with
descending powers of ﬂ(()nf D are shown sepa-
rately). Naive nonabelianization [11] works rea-
sonably well.

At m. # 0, results are expressed via the mas-
ter integrals depending on x = m./m [19]. Their
status is summarized in the Tables 1-4 in this
paper. In the present work [2], we were able to
obtain exact analytical expressions (via harmonic
polylogarithms of ) for O(1) terms in the mas-
ter integrals 5.2, 5.2a, from the requirement of
finiteness of the matching coefficients. Therefore,
the Table 3 in [19] should be now replaced with



the following Table 1 (DE means the method of
differential equations, and MB the Mellin—Barnes
representation). Unfortunately, O(¢) terms in 4
master integrals are still known only as truncated
series in z (the entries x in the table). Therefore,
the m. corrections to the 3-loop matching coeffi-
cients are also known only as truncated series in
2 (or numerical approximations).

We let’s apply our results to the matrix ele-
ments between a B or B* meson with momentum
p and the vacuum:

<0/ (995°Q) , |B> = —imp f§ (1), (22)
<0|gy*°Q|B> =i fsp®,

<0|gy*Q|B*> = imp-« fp-e”,

<0|(30°°Q) , I1B*> = f5- () (p™e” — p7e”).

The corresponding HQET matrix elements in the
v rest frame are

<0 (772°Qu) , IB(k)>,, = —iF (),

nr

<0[(q7Qu),, |B*(k)>, = iF(p)e, (23)

nr

where the single-meson states are normalized by
the non-relativistic condition

—

<B(k"|B(k)>, = (@2r)*6(k' —k).

nr

These two matrix elements are characterized by a
single hadronic parameter F'(u) due to the heavy-
quark spin symmetry. From (20) we have [11]

fEm) _ mp
fB m(u)

; (24)

where we may replace mp by the on-shell b-quark
mass m, neglecting power corrections.
Our main result is the ratio fp+/fp. At me =0

E_l_lc ag4)(m)
fB N 2 F ™

™

(4)
(Cprr 4+ Cara + Trryr + Trry) Cr <as (m))

+ (C%TFF + CFCATFA + C%TAA + CFTFanFl
+ CrTrren + CaTrnrar + CaTrran

(4)
as’(m
+ T}%n%m + T%mmh + T%Thh)C’F (#)

A
rofat). (25)
m
where
31
TF:—7T210g2*§<3*§ 2+E7
1 263
_ 1 9 1 1 o9 40O
rA = 67T 10g2+443+67r i1
19 1, 41
T 5 Th = T — 57,
36 9 36
rFF:f§a4fllog427 7r21og22
3 9

19 , %5 1, 11
o 2l002 4 e 2 -
+ 5™ log +12C5 i Gz + 8(3
43, 43, 289
e O e B i

1080 24 192’

20 5 4. 5 o
= 2 logt 2 — 2210622
TFA 9 aq 24 Og 277T Og
305 115 1, 899
20 21609 — 22 il _ o
TR T T U Rk Yy LS

n 817 o 2233ﬂ_2 4681
12960 648 864 ’

16 2 4

rAA = §a4+§1og42+§ﬂ210g22
119 , 5 11, 343

Tpp T le2H g6 TGt TG
17 , 2839 , 48125

T 32407 T 17287 T BIs4
16 2 4
rE; = §a4 + 2—7 1Og4 2+ 2—771'2 1Og2 2

2 2 11 1 1
*—87T210g2+§5§3*— 4+£ﬂ_2 815

27 324" " 162 864
32 4 4
rFR = 75(14 — 2—7 10g4 2+ 2—771'2 1Og2 2
46 1, 1439 , 119
22 log2 +5Cs — ——7t — g2 22
+opm 1082456 = 7™ — 1050 T 36
8 1 2
rAl = §a4 ~ 97 log* 2 — §7T2 log? 2
14 13 13, 17 422
221009 - 22 Bt e S Bt
tormloe2 - RGt n™ T TR
16 2 2
AR = §a4 + Elog42 — Eﬂj 1og22
86 55 31 , 43
_ 2229009 4 20 20 =
577 1082+ 26— o™ Gt 3G
L8 4, 5T, 12
8 4 07T 5, 121
105 270 648
1, 203 5 , 101
= —55 Tih = o™

27" 324" 81" 162"



Table 1
Master integrals with 5 lines

\ . / N \ AN VA N

5.1, 5.1a 5.2, 5.2a 5.3, 5.3a 5.4, 5.4a
=3 DE DE DE DE
e2 DE DE DE DE
el DE DE DE DE
1 DE NEW MB DE
€ DE x x DE
g? DE

8 8 , 277 my (1)

= g% T 105" T 3m . (E)L:_s/s ' (26)

(ay = Lig(1/2)). The result for fL.(m)/fp- is
similar.
Numerically,

Naive nonabelianization [11] works reasonably
well.

Asymptotics of the perturbative coefficients for
the matching coefficients at a large number of
loops I > 1 have been investigated in Ref. [21]
in a model-independent way. The results contain
three unknown normalization constants Ng 12 ~
1. The asymptotics of the perturbative coeffi-
cients for fp-/fp contain Ny and Na; in the case
of m/m it contains only Ny:

)" <o ()
(fB L:—5/37 27 + n

2 /50 \“V* 1\ N,
+?(?") [”"(ﬁ)h}

The coefficient of Ny/Ny is about 0.08 at n = 2,
and it seems reasonable to neglect this contri-
bution. Neglecting also 1/n corrections, we ob-
tain [21]

()
(fB*> _ 1 s637— 9093,
fB L=-5/3 27

Our exact result —37.787 agrees with this predic-
tion reasonably well. However, 1/n corrections
are large and tend to break this agreement. It is
natural to expect that 1/n? (and higher) correc-
tions are also substantial at n = 2.
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