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Abstract

The old ”glue–and–cut” symmetry of massless propagators, first established in Ref. [1], leads

— after reduction to master integrals is performed — to a host of non-trivial relations between

the latter. The relations constrain the master integrals so tightly that they all can be analytically

expressed in terms of only few, essentially trivial, watermelon-like integrals. As a consequence we

arrive at explicit analytical results for all master integrals appearing in the process of reduction

of massless propagators at three and four loops. The transcendental structure of the results

suggests a clean explanation of the well-known mystery of the absence of even zetas (ζ2n) in the

Adler function and other similar functions essentially reducible to massless propagators. Once a

reduction of massless propagators at five loops is available, our approach should be also applicable

for explicitly performing the corresponding five-loop master integrals.
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1. Introduction

Within perturbation theory quantum-theoretical amplitudes are described by Feynman Inte-

grals (FI’s). The evaluation of the latter has seen quite a lot of progress during last three decades.

In fact, it has been elevated from a collection of loosely related prescriptions to a solid part of

mathematical physics as was recently certified by the appearance of Smirnov’s bestseller books

“Evaluating Feynman integrals” and (even!) “Feynman integral calculus” [2, 3].

A significant number of higher order calculations are performed according to the following

“standard” scenario. First, the Feynman amplitudes are reduced to a limited set of so-called

master integrals (MI’s). The particular way of implementing the reduction is not unique and not

essential for our discussion1. At the second and final step the resulting master integrals should be

computed.

An important feature of the standard scenario is that the resulting set of master integrals

should be computed only once and forever due to the well-established2 property of universality:

1The so-called Laporta approach [4–6] seems to be most often utilized but a few other promising methods are

being now actively developed [7–12].
2At least well-established in practice. See below for an instructive particular example of a class of massless

propagators and also [13, 14] for an attempt to formalize the concept of the masters integrals and to prove the

universality property in general. A related discussion could be found in [15–18].
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for every given class of Feynman amplitudes characterized by the number of loops and the pattern

of external momenta and masses the corresponding set of master integrals is universal in the

following sense:

(a) Every (even extremely complicated) amplitude from the class can be expressed in terms of

one and the same (finite!) set of masters integrals.

(b) The knowledge of MI’s up to some properly fixed order in the ε-expansion is enough to

calculate the finite part of the amplitude. Let us consider an L-loop integral P . The reduction to

masters leads to an identity of the form:

P =
∑

i

Ci(ε = 2 − D/2)Mi, (1)

where sum goes over all relevant master integrals and Ci(ε) is a rational function of the space

time dimension D = 4− 2ε and kinematical parameters likes masses, external momenta, etc. The

functions could be singular at the point D = 4. The corresponding poles in ε are customarily

referred to as spurious ones. While the coefficients Ci(ε) depend, obviously, on the initial integral

P , the maximal powers, pi, of the spurious poles inside a given Ci(ε) depend only on the choice of

the basis of master integrals3.

Thus, within the standard scenario, to evaluate an L-loop amplitude F one proceeds in three

main steps:

(i) Choose a set of master integrals.

(ii) Reduce every Feynman integral contributing to the amplitude F to form (1).

(iii) Compute the ε → 0 expansion of each master integral Mi up to (and including) the term of

order εpi .

The steps (i) and (ii) are, in fact, strongly interrelated. In (almost) all approaches to reduction

one first tries to use the traditional method of Integration By Part (IBP) identities4 in order to

reduce (read simplify) initial integrals as much as possible. The remaining basis set of further

irreducible (at least in practice) integrals is considered as the set of MI’s. As this final set is

usually rather small it is not of any practical importance whether the corresponding integrals are

really independent or not5.

Once the set of MI’s Mi is fixed, then the corresponding powers pi can be easily read off from

the results of reduction of some test set of initial FI’s. Of course if a set of input FI’s is too

limited, it might happen that a in few cases an ”experimentally” determined power pi will be

smaller than its true value. Luckily, the basis set of MI’s (together with corresponding maximal

values of spurious poles in their coefficient functions) is usually determined in early stage after

calculation of relatively small subset of all FI’s to be computed.

The choice of MI’s is not unique. One of the basic criteria is simplicity of the calculation of

MI’s. For example, in view of an analytical evaluation it is natural to seek for MI’s with minimal

number of propagators. On the other hand, for a numerical evaluation it is often advisable to

consider more complicated but less singular MI’s (see, e.g. [19]).

The standard scenario was first developed for massless propagators [21, 22, 1]. It is no wonder

that our understanding of reduction and MI’s is most advanced for this case. Indeed, at three-loop

level there is an explicit algorithm of reduction [1] to MI’s (see, Fig. 1). The existence of such

3It was proven in [19] that there always exists such a set master integrals that all coefficient functions will be

regular at ε around zero.
4In addition to the IBP identities the so-called Lorentz-invariance ones [6] are also often employed in practical

calculations. In fact, the second set of identities has been proved [12] to be a consequence of the first one.
5In addition, sometimes there are implicit confirmations of the independence. For instance, if one computes a

gauge invariant combination of Feynman integrals, then the gauge independence of a coefficient function of a MI

could be only guaranteed if the latter is independent from all the others, see, e.g. [20].
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an algorithm proves (a)-universality while the (rather tedious) analysis of the structure of the

algorithm demonstrates that (b)-universality is also valid [1].

T1, ε
2 T2, ε

N0, ε
0 L1, ε

2 P1, ε
3 P2, ε

3 P3, ε
4 P4, ε

2

Figure 1: two- and three-loop master p-integrals. εm after a master label stands for the maximal term in ε-expansion

of the master integral which one needs to know for evaluation of the contribution of the integral to the final result.

Let us consider the next loop level in the same class, that is four-loop massless propagators.

Here the full set of independent MI’s was theoretically constructed in [14]. Then a special procedure

of reduction, based on 1/D expansion of the coefficient functions of MI’s was developed by one of

the present authors [14, 23] with the help of a special parametric representation of FI’s, elaborated

in [7–9]. The 1/D method of reduction has been heavily exploited in a series of publications [24–30]

in order to compute a number of important physical observables in pQCD. We can not go here

into the technical details of the four-loop reduction except for the one: it requires huge computer

storage resources and their effective management. As a consequence its practical implementation

would hardly be feasible without excellent possibilities for dealing with gigantic data streams

offered by the computer algebra language FORM [31] and, especially, its versions ParFORM [32–

34] and TFORM [35].

Thus, we conclude that the reduction problem for the four-loop massless propagators is solved

in the practical sense. Analytical evaluation of the corresponding MI’s is the central theme of the

present work.

The plan of the paper is as follows. Next two sections provide the reader with general infor-

mation about the problem. Section 4 explains the essence of our approach in detail on the (now

easy) example of three-loop master integrals. The really new results are described in section 5. It

is there we send an expert in multiloop calculations directly. Section 6 discusses perspectives of

our method as for its extensions to more loops and other kinematical situations. In section 7 we

demonstrate some peculiar properties of our results which help to solve an old puzzle of absence

of even zetas from some quantities, like the Adler function, expressible in terms of p-integrals. A

discussion of our results is put in section 8. In the last section 9 we summarize the content of the

paper and express our gratitude to people and organizations who (which) have been continuously

supporting us during the painfully long period of preparation of the present publication.

Our results for all four-loop MI’s (together with some auxiliary information) are available (in

computer-readable form) in

http://www-ttp.physik.uni-karlsruhe.de/Progdata/ttp10/ttp10-18.
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2. Massless Propagators

Propagators — that is Feynman integrals depending on only one external momentum — ap-

peared in Quantum Field Theory from its very origin and since then form an important class of

FI’s. Within perturbation theory, every two-point Green function

G(q) =

∫

dx eiqx Ĝ(x), Ĝ(x) ≡ 〈0|T [j2(x) j1(0)] |0〉, (2)

with j1 and j2 being in general either elementary fields or (local) composite operators, is expressed

in terms of propagators. If the momentum transfer q is considered as large with respect to all

relevant masses, the propagators contributing to G(q) can be effectively considered as massless.

In what follows we will customarily refer to massless propagator-type FI’s as p-integrals.

p-Integrals appear in many important physical applications. Below we briefly mention some

most known/important ones (for more details and examples see, e.g. reviews [36, 37]).

• The total cross-section of e+e− annihilation into hadrons, the Higgs decay rate into hadrons,

the semihadronic decay rate of the τ lepton and the running of the fine structure coupling are

all computable in the high energy limit in terms of p-integrals. This is because these quan-

tities are either defined in terms of a two-point function (2) with properly chosen currents

j1 and j2 or can be reduced to this form via the optical theorem.

Note, that by high-energy limit we understand not only the case when all masses can be

neglected but also the possibility to take into account mass effects by exploiting a small

mass expansion. As a suitable example one could mention the calculation of the power

suppressed (of order m2
q/s, m4

q/s2 and so on) corrections for the correlators of (axial)vector

quark currents in higher orders of pQCD [38–42].

• Coefficient functions of short distance Operator Product Expansion (OPE) of two composite

operators can be always expressed in terms of p-integrals with the help of so-called method

of projectors [43, 44]. A good example of an early multiloop OPE calculation is the one

of the α3
s corrections to the Bjorken sum rule for polarized electroproduction and to the

Gross-Llewellyn Smith sum rule [45].

• p-Integrals are extremely useful in Renormalization Group (RG) calculations within the

framework of Dimensional Regularization [46–48] and Minimal Subtractions (MS) schemes

[49].

The naturalness and convenience of the MS-scheme for RG calculations comes from the fol-

lowing statement [50]:

Theorem 1. Any UV counterterm for any FI integral and, consequently, any RG function in

an arbitrary minimally renormalized model is a polynomial in momenta and masses.

This observation was effectively employed by A. Vladimirov [51] to simplify considerably the calcu-

lation of the RG functions. The method was further developed and named Infrared Rearrangement

(IRR) in [21]. It essentially amounts to an appropriate transformation of the IR structure of FI’s

by setting zero some external momenta and masses (in some cases after the differentiation is

performed with respect to the latter). As a result the calculation of UV counterterms is much

simplified by reducing the problem to evaluating p-integrals. The method of IRR was ultimately

refined and freed from unessential complications by inventing a so-called R∗-operation [52, 53].

The main use of the R∗ -operation is in the proof of the following statement [53]:

Theorem 2. Any (L+1)-loop UV counterterm for any Feynman integral may be expressed in

terms of pole and finite parts of some appropriately constructed L-loop p-integrals.

Theorem 2 is a key tool for multiloop RG calculations as it reduces the general task of evaluation
5



of (L+1)-loop UV counterterms to a well-defined and clearly posed purely mathematical problem:

the calculation of L-loop p-integrals. In the following we shall refer to the latter as the L-loop

Problem.

The one-loop Problem is trivial (see eq. (4) in the next section). The two-loop Problem was

solved after inventing and developing the Gegenbauer polynomial technique in x-space (GPTX)

[21]. In principle GTPX is applicable to compute analytically some quite non-trivial three and

even higher loop p-integrals6 (for a review see [57]). However, in practice calculations quickly get

clumsy, especially for diagrams with numerators. The main breakthrough at the three-loop level

happened with elaborating the method of integration by parts [22, 1] of dimensionally regularized

integrals. All (about a dozen) topologically different families of three-loop p-integrals were neatly

analyzed in [1] and a explicit calculational algorithm was suggested for every case. As a result the

algorithm of integration by parts for three-loop p-integrals was established. Later the algorithm

was implemented (and named MINCER) within the computer algebra languages SCHOONSCHIP

[58] and FORM [31] (see Refs [59] and [60] respectively). The most recent FORM version of

MINCER is freely available from http://www.nikhef.nl/~form.

During last two decades MINCER has been used intensively to perform a number of impor-

tant calculations of higher order radiative corrections in various field theories. As a couple of

outstanding examples, characterizing the issue, we mention the analytical evaluation of the O(α3
s)

correction to the ratio R in massless QCD [61, 62] and recent analytical calculations of three-loop

deep-inelastic structure functions7 [63–65].

Note, that every L-loop Problem is naturally decomposed in two: (A) reduction of a generic

L-loop p-integrals to masters and (B) evaluation of the latter. As A-problem has already been

discussed, we proceed now to B-problem. For L equal to 1 or 2 problem B degenerates to a trivial

one due to the fact that all masters, being primitive ones, are easily evaluated in terms of Γ-

functions. At three-loop level there exist only two non-trivial8 master integrals whose evaluation

was rather simple with the help of GPTX and, in fact, was performed well before the algorithm of

reduction of three-loop p-integrals was discovered. Thus, in three-loops A and B problems could

be considered as two separate ones.

The situation is different in four loops. In this case there exist [14] twenty eight master integrals

pictured on Fig. 2 and only 15 of them (all after M43) are simple. We call a four-loop p-integral

simple if it is either primitive or reducible to the so-called generalized two-loop F-diagram with

insertions, F (n1 + a1ε, . . . ) pictured on Fig. 3. The corresponding F-integral has been intensively

studied since work [66] and is now in some sense analytically known [67]. The remaining 13 masters

(from M61 till M43, reading the table from left to right and the from top to bottom) happen to

be quite difficult to deal with even numerically, not speaking about analytical evaluation.

The aim of the present work is to demonstrate that there exists a remarkable bootstrap-like

connection between parts A and B for the L-loop Problem irrespectively the specific value of L.

The connection is powerful enough to result in an explicit solution of problem B for L equal to

three and four (which we will demonstrate explicitly) and, in all probability, for L equal to five

(we will provide the reader with a strong argument for it).

The only prerequisite for our considerations is the solution of problem A for the corresponding

number of loops.

6The GPTX is also ideally suited for high-precision numerical calculations of finite p-integrals (with simple or,

better, without numerators) with really many loops. See [54–56] for a number of spectacular examples in four, five,

six and even seven loops.
7These calculations, in fact, have required development and application of a number of additional technical tools

(including highly advanced version of integration by parts algorithm) than just the use of MINCER and the method

of projectors; please consult the original works for further details.
8More precisely, we mean non-primitive p-integrals, see definitions below in section 3.
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M61, ε1 M62, ε0 M63, ε0 M51, ε1

M41, ε1 M42, ε1 M44, ε0 M45, ε1

M34, ε3 M35, ε2 M36, ε1 M52, ε1

M43, ε1 M32, ε3 M33, ε3 M21, ε4

M22, ε4 M26, ε4 M27, ε4 M23, ε4

M24, ε4 M25, ε4 M11, ε5 M12, ε5

M13, ε5 M14, ε5 M01, ε6 M31, ε3

Figure 2: all master p-integrals for the four-loop Problem. In Mij the digit i stands for the number of (internal)

lines in the integral minus five and j numerates different integrals with the same value of i. The integrals are ordered

(if read from left to right and then from top to bottom) according to their complexity. εm after Mij stands for the

maximal term in ε-expansion of Mij which one needs to know for evaluation of the contribution of the integral to

the final result for a four-loop p-integral after reduction is done. In other words, m stands for the maximal power

of a spurious pole 1/εm which could appear in front of Mij in the process of reduction to masters.
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Figure 3: the generalized two-loop p-integral; indexes besides lines show the powers of corresponding massless

propagators. ni and ai are assumed to be integers.

We will describe how the good old ”glue–and–cut” symmetry of massless propagators [21] leads

— after the reduction to master integrals is performed — to non-trivial relations between the latter.

The relations constraint the masters integrals so tightly that they can all be analytically expressed

in terms of only few, essentially trivial, watermelon-like integrals (see diagrams M31, M01, M12, M11

and M23 on Fig 2). This provide us with explicit analytical results for all master integrals appearing

in the process of reduction of massless propagators at three and four loops. By an analytical result

we mean, of course, not an analytical expression for a master integral taken at a generic value

of the space-time dimension D (which is usually not possible except for the simplest cases), but

rather the one for proper number of terms in its Laurent expansion in D around the physical value

D = 4 as it was discussed in detail above in section 1.

Note, that for our aims it is completely irrelevant how exactly the part A (reduction to mas-

ters) is performed/implemented. In fact, we only need the reduction for relatively simple cases

of p-integrals: namely, no squared propagators and relatively low powers of scalar products in

numerators. In particular, no knowledge of (admittedly rather complicated) reduction techniques

based on the asymptotic 1/D expansion is necessary. For understanding of all considerations of

the paper it is enough to assume that the reduction (problem A) is done with some implementation

of the Laporta algorithm.

3. Recursively one-loop integrals

Without loss of generality we will consider the scalar p-integrals defined in Euclidean space-

time. Let F (q, ε) be a dimensionally regulated scalar L-loop p-integral depending on external

momentum q and the space-time dimension D = 4 − 2 ε. Its dependence on q can be written as

F (q, ε) = f(ε) (q2)ω/2−Lε (3)

where ω is the canonical mass dimension of F (q, 0) and f(ε) is a meromorphic function of ε.

The complexity of computing of the function of f(ε) depends on the loop number L. At one

loop level the result for the generic integral

∫

d ℓ

(ℓ2α)(q − ℓ)2β
= (q2)2−ε−α−βG(α, β) (4)

is known since long (see, e.g. [21]) and reads9

G(α, β) =
Γ(α + β − 2 + ε)

Γ(α)Γ(β)

Γ(2 − α − ε) Γ(2 − β − ε)

Γ(4 − α − β − 2ε)
. (5)

9We provide every loop integration dDl with an extra normalization factor 1/πD/2 and write dℓ = dD ℓ
πD/2

.
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Here “generic” means that the powers α and β could be not only integers but functions of ε. The

most useful in applications case is

α = m + aε, β = n + bε (6)

with n, m being arbitrary integers, a, b nonnegative ones. Note that negative values of a and/or b

might lead to ε independent singular factor(s) like Γ(0) within the corresponding G-function. On

formal grounds G(α, β) is not defined in this situation10. The reduction formula for G-functions

G(α, β) =
(α + β − 3 + ε)(4 − α − β − 2ε)

(β − 1)(2 − β − ε)
G(α, β − 1) (7)

as well as the expansion

G(1 + aε, 1 + bε) =
G0(ε)

ε(1 + a + b)

(

1 + (a + b)ε + (a + b)(a + b + 2)ε2 + . . .
)

, (8)

G0(ε) ≡ ε G(1, 1) = 1 + ε (2 − γE) + . . . (9)

allows for a convenient evaluation of G(n + aε, m + bε) without any reference to the awkward

formula (5). In fact, the well-known freedom in the definition of the dimensional regularization11

allows to tune the function G0(ε) at will (provided G0(0) = 1). The most natural choice

G(1, 1) ≡
1

ε
(10)

or, equivalently,

G0(ε) ≡ 1 (11)

fixes the so-called G-scheme [21] and will be adopted here. Note that the G-scheme is not only

extremely convenient from purely calculational point of view; it is also “natural” in the realm of

massless propagators. There is evidence that results expressed in the G-scheme usually tend to

display a better pattern of “apparent” convergence in comparison to the MS scheme.

In view of eqs. (3) and (4) any recursively one-loop p-integral can be easily performed analyti-

cally [21]. We will denote such integrals primitive ones. For example, the two-loop MI’s T1 and T2

(see Fig. 1) are both primitive ones, their ε-expansions (with accuracy necessary for the-two-loop

calculation) can be easily computed via G-functions:

T1 = −
1

4 ε
−

5

8
−

27ε

16
+ ε2

(

−
153

32
+

3 ζ3

2

)

+ O(ε3), (12)

T2 =
1

ε2
+ O(ε2), (13)

with ζn ≡
∑

i≥1
1
in . Here and almost everywhere below we set q2 = 1.

For future reference we provide below expressions in terms of G-functions for the four watermelon-

like primitive three-loop master integrals which serve as building blocks for all other (three-loop)

masters (see section 4). To make the formulas shorter we always use the G-scheme defining relation

(10) and write everywhere 1/ε instead of the G(1, 1):

P1 =
1

ε2
G(2ε, 1), P2 =

1

ε2
G(ε, 1),

P3 =
1

ε2
G(ε, ε), P4 =

1

ε3
. (14)

10See, however, [68] for a significantly deeper discussion of such cases.
11The freedom amounts to the multiplication of every L-loop integral by a factor n(ε)L, with n(ε) = 1+O(ε) being

a regular (at least in a vicinity of the point ε = 0) function of ε [69]. Thus, the formulas (10) and (11) below should

be understood in the sense that n(ε) is chosen as follows n(ε) = 1/(ε G(1, 1)) ≡ Γ(2 − 2ε)/(Γ(1 + ε)Γ(1 − ε)2).
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4. Three-loop integrals

In this section we discuss the main idea of our method on a first non-trivial example of three-

loop massless propagator-like integrals.

4.1. Three-loop finite p-integrals and glueing

It is easier to explain the glue-and-cut symmetry on a real-life example. Almost exactly thirty

years ago one of the present authors was strongly puzzled by the following facts (resulting from

first calculations made with the help of just discovered technique of Gegenbauer polynomials in

the position space [21]):

L0 = (q2)−2−3ε 20 ζ5 + O(ε), N0 = (q2)−2−3ε 20 ζ5 + O(ε),

N1 = (q2)−1−3ε 20 ζ5 + O(ε), N2 = (q2)−1−3ε 20 ζ5 + O(ε), (15)

where L0, N0, N1 and N2 are scalar three-loop p-integrals (see Fig. 4).

L0

ε=0
===
q2=1

N0

ε=0
===
q2=1

N1

ε=0
===
q2=1

N2

= 20 ζ5

Figure 4: Four finite three-loop p-integrals displaying a remarkable feature of being equal at ε = 0 and q2 = 1.

Indeed, a short look on eqs. (15) immediately leads to an obvious question: why on the Earth

four quite different (but all finite) p-integrals have identical values at D = 4 (if one set q2 = 1)?

Incidentally, by that time a pioneering12 calculation of the four-loop β-function in the φ4-model

[70] had been just finished. One of its results was the UV divergence of the following four-loop

vertex-type integral

UV





























=
5 ζ5

ε
. (16)

The suspicious appearance of one and the same irrational constant ζ5 with very simple coeffi-

cients in eqs. (15) and (16) was suggesting some mysterious connection between three-loop finite

p-integrals L0, N0, N1, N2 and the divergent part of the four-loop vertex-type integral E4. In

addition, a closer inspection of all five diagrams revealed that the four propagators-type diagram

could be formally produced from the vertex graph in two steps (see Fig 5):

(i) Delete all four external lines from the vertex diagram (transforming it, thus, to a vacuum one).

(ii) Cut in the resulting vacuum diagram either a line (there exist only two non-equivalent choices,

leading to N1 and N2) or delete the central vertex13 (again, one could do it in two ways, leading

to N0 and L0).

12To our knowledge it was the first full calculation of the β-function in a four-dimensional model in four loops.
13The operation of deleting of a vertex means that one first transforms the vertex into two new ones by introducing

a fictitious line (with the unit propagator) and then cutting the new line. Note that deleting a three-linear vertex

does not produce any new diagrams in addition to those coming from cutting the corresponding three incident

lines. In general, one can cut a four-linear vertex by a three non-equivalent ways a shown by Fig 5(d,e,f). Due to

the high symmetry of the envelope E4 diagram the possibility (d) and (e) lead to one and the same result.
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Figure 5: Two ways of cutting a line in the graph E4 (a,b). The generic four-linear vertex (c) and three ways

transforming it into a pair of the three-linear ones connected by an auxiliary propagator (d,e,f).

The puzzle was finally understood after the geometrical construction was provided with an-

alytical content. As a result the Glue-and-Cut (GaC) symmetry of massless propagators was

established. Below we prove a theorem [1] which solves the puzzle.

Let 〈Γ〉(ε) be a dimensionally regulated massless scalar L+1 loop vacuum Feynman amplitude

without any subdivergences and with the superficial divergence index ωΓ = 0 at four-dimensions.

Surely, every expert would cry at this point that such an object is identical zero due to absence

of any intrinsic scale which is true, beyond any doubts14. Please, be patient! In fact, by a

Feynman amplitude we understand a formal triplet consisting of the corresponding Feynman graph

Γ, properly constructed Feynman integrand and, at last, a function of kinematical parameters

(external momenta and masses) resulting after evaluation the integrand. It means that even if the

function vanishes for some particular choice of the kinematical parameters it may become nonzero

after some modification of the latter.

Without essential loss of generality we assume that the graph Γ contains only triple vertexes.

Consider an arbitrary line of ℓ of Γ with

Pℓ(q) =
P(q, . . . )

q2

being the corresponding propagator of Γ and P(q) being some polynomial in the line momentum q.

We allow the integral 〈Γ〉 to contain non-trivial numerator; in the case of the line ℓ being a fictitious

one with the unit propagator, one can always redefine the propagator as follows:

Pℓ(q) =
P ′(q)

q2
with P ′(q) = q2.

Let 〈Γ〉(m0, ε) be the Feynman amplitude obtained from 〈Γ〉(ε) by introducing an auxiliary non-

14By the way, a real mathematical justification why one could self-consistently set zero such massless vacuum

integrals within dimensional regularization was to best of our knowledge performed only in [71]. It requires first

of all a self-consistent and mathematically solid definitions of the very dimensional regularization which, in turn,

demands a heavy use of various parametric representations.
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zero mass m0 into the selected propagator, as an infrared regulator, that is,

Pℓ(q) → Pℓ(q)
q2

q2 + m2
0

=
P ′(q, . . . )

q2 + m2
0

.

Assuming that the loop momenta in 〈Γ〉 are chosen in such a way that the momentum q is the

loop one, we can formally present the integral 〈Γ〉(m0, ε) as a convolution

〈Γ〉(m0, ε) =

∫

〈Γ\ℓ〉(q, ε)
dqD

q2 + m2
0

, (17)

where 〈Γ\ℓ〉(q, ε) is the L-loop p-integral obtained from 〈Γ〉(m0, ε), first, by “freezing” integration

over q and, second, by multiplying the result by (q2 + m2
0).

Theorem 3. Under the above listed conditions the following statements are true

(a) The vacuum integral 〈Γ〉(m0, ε) is IR finite and its UV divergence is a simple pole, that is

〈Γ〉(m0, ε) =
C

(L + 1)ε
+ O(ε0), (18)

with C being a constant;

(b) for every choice of the line ℓ the p-integral 〈Γ\ℓ〉(q, ε) is finite and its value at D = 4 meets

the condition

lim
ε→0

〈Γ\ℓ〉(q, ε) =
C

q2
. (19)

Proof.

(a) Due to the assumed absence of any subdivergences, the insertion of a mass does not influence

the UV divergence, but removes the only possibility for the IR one (related with integration

over the region of all loop momenta being small). On dimensional grounds we have

〈Γ〉(m0, ε) = (m2
0)

−(L+1)ε f(ε), (20)

with f(ε) depending only on ε. Without any UV subdivergences, the (minimal) UV coun-

terterm corresponding to the integral 〈G〉(m0, ε) as a whole reduces to its pole part. If f(ε)

would contain a non-simple pole it would lead to appearance a non-polynomial dependence

on the mass m0 of the counterterm in the direct violation of Theorem 1. Thus,

C = (L + 1) lim
ε→0

ε f(ε). (21)

(b) The (scalar) p-integral 〈Γ\ℓ〉 has a homogeneous dependence on q2, namely

〈Γ\ℓ〉(q, ε) = (q2)−1−Lε g(ε) (22)

with g(ε) depending only on ε. As a consequence, the integral over q in (17) can be easily

performed with the help of a textbook formula (see, e.g. [2]):

∫

dDℓ

(m2 + ℓ2) (ℓ2)1+n ε
=

(m2)D/2−2−nε Γ((n + 1) ε) Γ(1 − (n + 1) ε)

Γ(2 − ε)
=

1

(n + 1)ε
· (1 + O(ε))

with the result

〈Γ〉(m0, ε) =
g(ε)

(L + 1) ε
+ O(ε0). (23)
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A comparison of eqs. (20,21) and (23) directly leads to eq.

lim
ε→0

g(ε) = C

which is equivalent to eq. (19). 2.

The GaC symmetry, proven in Theorem 3, clearly explains the origin of relations displayed

in Fig. 4. Still, considered by itself, it is not especially useful as it does not provide us with the

value of the constant C.

4.2. Three-loop master integrals from glueing

The situation is radically changed if one utilizes the GaC symmetry together with the reduction

to masters15. Indeed, let us forget for the moment about eqs. (15) and use only the GaC symmetry

for the p-integrals shown on Fig. 4 . This leads to four equations, namely:

N0 = L0 + O(ε), N0 = N1 + O(ε), N0 = N2 + O(ε), N0 = O(ε0). (24)

On the other hand the reduction of three reducible p-integrals in eq. (24) to masters gives:

L0 =
3 (3D − 10) (D − 3)

(D − 4)2
L1 +

4 (D − 3)2

(D − 4)2
P4 +

32 (2D − 7) (D − 3)2

(D − 4)3
P1 (25)

−
12(3D − 8) (3D − 10) (D − 3)

(D − 4)3
P2 +

4(9D2 − 65D + 118) (3D − 8) (2D − 5)

(D − 4)4
P3,

N1 =
(3D − 10) (D − 3)

(D − 4)2
L1 +

8(2D − 7) (D − 3)2

(D − 4)3
P1 (26)

−
2(3D − 8) (3D − 10) (D − 3)

(D − 4)3
P2 +

4(3D − 8) (2D − 5)

(D − 4)2
P3,

N2 = −
16(2D − 7) (D − 3)2

(D − 4)3
P1 +

(3D − 8) (3D − 10) (D − 3)

(D − 4)3
P2 (27)

+
10(3D − 8) (3D − 10) (2D − 5) (2D − 7)

(D − 4)4
P3.

Now, it is well-known fact that a maximal order of the pole in ε of a (dimensionally regulated)

L-loop p-integral can not exceed16 L. Thus, we can parametrize the coefficients of the three-loop

master p-integrals as follows17:

N0 =

0
∑

i=−3

N0,i εi + O(ε), L1 =

2
∑

i=−3

L1,i εi + O(ε3),

P1 =

3
∑

i=−3

P1i εi + O(ε4), P2 =

3
∑

i=−3

P2,i εi + O(ε4),

P3 =

4
∑

i=−3

P3,i εi + O(ε5), P4 =
P4,−3

ε3
, P4,−3 = 1. (28)

Note that the higher term in ε, not shown explicitly on (28), at any case can not, obviously, be

constrained by eqs. (28). In addition, they could contribute only to terms of order ε or higher

15Unfortunately, this step was overlooked thirty years ago, presumably, because the problem of evaluation of

three-loop p-masters had been already solved before the idea of glueing appeared.
16In [53] the statement was proved for an arbitrary euclidean Feynman integral.
17Below the explicit result for the simplest master integral, P4 is taken as granted; this fixes the global normal-

ization of all remaining integrals.
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to the value of an arbitrary three-loop p-integral (this statement follows from the knowledge of

maximal power of spurious pole in ε which might appear in front of a master integral in the process

of reduction, see Fig. 1).

After substitution of eqs. (28), eqs. (24) produce some non-trivial constraints on coefficients

of the ε-expansion of our master p-integrals. To be specific, let consider first eq. from (24). Its

expanded in ε form reads

lim
ε→0

εn(L0 − N0) = 0 (29)

for n ≥ 0. Note that (29) is met identically if n > 7 (because of the fact that the maximal allowed

poles in ε which could appear in eqs. (25,26,27) and eqs (28), are 4 and 3 respectively). For

n = 7, 6, 5 and 4 the resulting equations are18

0 = P3,−3, (30)

0 = 6 P3,−2 + 12 P2,−3 − 4 P1,−3, (31)

0 = −59 P3,−2 + 6 P3,−1 − 78 P2,−3 + 12 P2,−2 + 32 P1,−3 − 4 P1,−2 +
3L1,−3

2
+ 1, (32)

0 = 239 P3,−2 − 59 P3,−1 + 6 P3,0 + 162 P2,−3 − 78 P2,−2 + 12 P2,−1 (33)

−80 P1,−3 + 32 P1,−2 − 4 P1,−1 −
15L1,−3

2
+

3L1,−2

2
− 4. (34)

Already now we can see that eqs. (32) and (34) express two coefficients, L1,−3 and L1,−2, of a

non-primitive integral through the coefficients of primitive ones, namely, P1, P2 and P3. Indeed,

a solution of eqs. (30-34) is

P3,-3 = 0, (35)

P1,-3 =
3P3,-2

2
+ 3P2,-3, (36)

L1,-3 =
22P3,-2

3
− 4P3,-1 − 12P2,-3 − 8P2,-2 +

8P1,-2

3
−

2

3
, (37)

L1,-2 = −
128P3,-2

3
+

58P3,-1

3
− 4P3,0 − 8P2,-3 + 12P2,-2 − 8 P2,-1 − 8P1,-2 +

8P1,-1

3
−

2

3
.(38)

Proceeding in the same vein we arrive eventually to a linear system of 31 equations (not neces-

sarily independent) for 32 coefficients N0,i0 , L1,i1 , P1,j1 , P2,j2 , P3,j3 . One can solve the system by

expressing the coefficients from more complicated masters through those from less complicated

ones. A convenient ordering is given by two rules19

• N0,i0 ≻ L1,i1 ≻ P1,j1 ≻ P2,j2 ≻ P3,j3 ≻ P4,j4 .

• For two coefficients of a master integral the more complicated one is that with larger value

of the second index.

The system is easily solved with the result: coefficients are expressed in terms of only eight

coefficients of three primitive integrals, namely,

P3,−1,, P3,0, P3,1, P3,2, P3,3, P3,4, P2,3, P4,−3. (39)

These eight coefficients are trivially determined from eqs. (14) and, finally, we arrive at the fol-

lowing results for the three-loop master integrals:

18Note, that for brevity in writing eqs. (31-34) we have used eq. 30 to discard the terms proportional to (zero)

coefficient P3,−3.
19The order between primitive integrals is rather arbitrary, except for the natural choice to use P4 as the easiest

one.
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N0, ε
0

= 20 ζ5 + O(ε), (40)

L1, ε
2

=
1

3 ε3
+

1

3 ε2
+

1

3 ε
−

7

3
+

14 ζ3

3
+ ε

(

−
67

3
+

14 ζ3

3
+ 7 ζ4

)

+ ε2

(

−
403

3
+

86 ζ3

3
+ 7 ζ4 + 126 ζ5

)

+ O(ε3), (41)

P1, ε
3

= −
1

3 ε2
−

4

3 ε
−

16

3
+ ε

(

−
64

3
+

16 ζ3

3

)

+ ε2

(

−
256

3
+

64 ζ3

3
+ 8 ζ4

)

+ ε3

(

−
1024

3
+

256 ζ3

3
+ 32 ζ4 + 64 ζ5

)

+ O(ε4), (42)

P2, ε
3

= −
1

4 ε2
−

5

8 ε
−

27

16
+ ε

(

−
153

32
+

3 ζ3

2

)

+ ε2

(

−
891

64
+

15 ζ3

4
+

9 ζ4

4

)

+ ε3

(

−
5265

128
+

81 ζ3

8
+

45 ζ4

8
+

21 ζ5

2

)

+ O(ε4), (43)

P3, ε
4

=
1

36

1

ε
+

35

216
+

991

1296
ε + ε2

(

26207

7776
−

11 ζ3

18

)

(44)

+ ε3

(

670951

46656
−

385 ζ3

108
−

11 ζ4

12

)
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+ ε4

(

16852031

279936
−

10901 ζ3

648
−

385 ζ4

72
−

13 ζ5

2

)

+ O(ε5), (45)

P4, ε
2

=
1

ε3
+ O(ε3), (46)

where we have boxed the eight input coefficients. The comparison with eqs. (14,15) and (25)

demonstrates the all unboxed coefficients have been correctly determined through the gluing pro-

cedure.

A remarkable feature of the above discussed, glue-and-cut based, determination of the three-

loop masters is that the both non-primitive (read non-trivial) master integrals N0 and L1 have

been expressed through essentially trivial (read primitive) FI’s. Even more, as many as eleven

coefficients of the primitive MI’s P1 and P2 (see eqs. (42,43)) have also been fixed through only

eight coefficients listed in (39). Thus, we see that integration by parts identities together with the

glue-and-cut symmetry severely constrain the values of master integrals.

5. Four-loop Integrals

5.1. Four-loop master integrals from glueing

Following the same procedure in the case of four-loop propagator massless integrals, one should

consider all possible cuttings of a set of five-loop vacuum massless diagrams with integrand of mass

dimension twenty and without subdivergences (or, equivalently, superficially and logarithmically

divergent).

Again, as in three-loop case, GaC relations provide us with enough information to express

all the necessary coefficients of the ε-expansions of all MI’s through some trivial integrals. The

number of the input five-loop tadpoles and the resulting relations (around a hundred and a

thousand respectively) are too large to be presented here, so in the equations to follow we give

only the final results.

M61, ε1

= −
10ζ5

ε
+ 50ζ5 − 10 ζ2

3 − 25ζ6

+ ε

(

90ζ5 + 50 ζ2
3 + 125ζ6 − 30 ζ3 ζ4 +

19 ζ7

2

)

+ O(ε2), (47)

M62, ε0

= −
10ζ5

ε
+ 130ζ5 − 10 ζ2

3 − 25ζ6 − 70 ζ7 + O(ε), (48)
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M63, ε0

= −
5ζ5

ε
+ 45ζ5 − 41 ζ2

3 −
25ζ6

2
+

161 ζ7

2
+ O(ε), (49)

M51, ε1

= −
5ζ5

ε
+ 45ζ5 − 17 ζ2

3 −
25ζ6

2

+ ε

(

−195ζ5 + 153 ζ2
3 +

225ζ6

2
− 51 ζ3 ζ4 −

85 ζ7

2

)

+ O(ε2), (50)

M41, ε1

=
20ζ5

ε
− 80ζ5 − 22 ζ2

3 + 50ζ6

+ ε

(

80ζ5 + 88 ζ2
3 − 200ζ6 − 66 ζ3 ζ4 +

4685 ζ7

8

)

+ O(ε2), (51)

M42, ε1

=
20ζ5

ε
− 80ζ5 + 8 ζ2

3 + 50ζ6

+ ε
(

80ζ5 − 32 ζ2
3 − 200ζ6 + 24 ζ3 ζ4 + 520 ζ7

)

+ O(ε2), (52)

M44, ε0

=
441 ζ7

8
+ O(ε), (53)

M45, ε1

= 36 ζ2
3 + ε (108 ζ3 ζ4 − 378 ζ7) + O(ε2), (54)
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M34, ε3

=
1

12 ε4
+

1

4 ε3
+

7

12 ε2
+

1

ε

(

−
17

12
+

25ζ3

6

)

−
377

12
+

25ζ3

2
+

25ζ4

4

+ ε

(

−
3401

12
+

463ζ3

6
+

75ζ4

4
+

465ζ5

2

)

+ ε2

(

−
24497

12
+

3031ζ3

6
+

463ζ4

4
+

1395ζ5

2
−

1247 ζ2
3

6
+

3425ζ6

6

)

+ ε3

(

−
158273

12
+

19663ζ3

6
+

3031ζ4

4
+

6807ζ5

2

−
1247 ζ2

3

2
+

3425ζ6

2
−

1247 ζ3 ζ4

2
+

12503 ζ7

2

)

+ O(ε4), (55)

M35, ε2

=
ζ3

2 ε2
+

1

ε

(

3ζ3

2
+

3ζ4

4

)

+
19ζ3

2
+

9ζ4

4
−

23ζ5

2

+ ε

(

103ζ3

2
+

57ζ4

4
−

69ζ5

2
+

29 ζ2
3

2
− 30ζ6

)

+ ε2

(

547ζ3

2
+

309ζ4

4
−

437ζ5

2
+

87 ζ2
3

2
− 90ζ6 +

87 ζ3 ζ4

2
−

1105 ζ7

4

)

+ O(ε3), (56)

M36, ε1

=
5ζ5

ε
− 5ζ5 − 7 ζ2

3 +
25ζ6

2
+ ε

(

35ζ5 + 7 ζ2
3 −

25ζ6

2
− 21 ζ3 ζ4 +

127 ζ7

2

)

+ O(ε2),

(57)

M52, ε1

=
20ζ5

ε
− 80ζ5 + 68 ζ2

3 + 50ζ6

+ ε
(

80ζ5 − 272 ζ2
3 − 200ζ6 + 204 ζ3 ζ4 + 450 ζ7

)

+ O(ε2), (58)

M43, ε1

= −
5ζ5

ε
+ 45ζ5 − 17 ζ2

3 −
25ζ6

2
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+ ε

(

−195ζ5 + 153 ζ2
3 +

225ζ6

2
− 51 ζ3 ζ4 −

225 ζ7

2

)

+ O(ε2), (59)

M32, ε3

=
1

3 ε4
+

1

3 ε3
+

1

3 ε2
+

1

ε

(

−
7

3
+

14ζ3

3

)

−
67

3
+

14ζ3

3
+ 7ζ4

+ ε

(

−
403

3
+

86ζ3

3
+ 7ζ4 + 126ζ5

)

+ ε2

(

−
2071

3
+

478ζ3

3
+ 43ζ4 + 126ζ5 −

226 ζ2
3

3
+

910ζ6

3

)

+ ε3

(

−
9823

3
+

2446ζ3

3
+ 239ζ4 + 534ζ5 −

226 ζ2
3

3
+

910ζ6

3
− 226 ζ3 ζ4 + 1960 ζ7

)

+ O(ε4),

(60)

M33, ε3

=
1

6 ε4
+

1

3 ε3
+

1

3 ε2
+

1

ε

(

−
17

3
+

31ζ3

3

)

−
197

3
+

62ζ3

3
+

31ζ4

2

+ ε

(

−
1529

3
+

386ζ3

3
+ 31ζ4 + 449ζ5

)

+ ε2

(

−
10205

3
+

2510ζ3

3
+ 193ζ4 + 898ζ5 −

983 ζ2
3

3
+

3290ζ6

3

)

+ ε3

(

−
62801

3
+

15974ζ3

3
+ 1255ζ4 + 4354ζ5

−
1966 ζ2

3

3
+

6580ζ6

3
− 983 ζ3 ζ4 + 11338 ζ7

)

+ O(ε4), (61)

M21, ε4

= −
5

48 ε3
−

31

96 ε2
−

95

192 ε
+

1133

384
−

19ζ3

12

+ ε

(

30097

768
−

233ζ3

24
−

19ζ4

8

)

+ ε2

(

463349

1536
−

3385ζ3

48
−

233ζ4

16
−

341ζ5

4

)

+ ε3

(

6004105

3072
−

46469ζ3

96
−

3385ζ4

32
−

3187ζ5

8
+

493 ζ2
3

6
−

1255ζ6

6

)
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+ ε4

(

71426093

6144
−

590281ζ3

192
−

46469ζ4

64
−

33875ζ5

16

+
4673 ζ2

3

12
−

2915ζ6

3
+

493 ζ3 ζ4

2
−

16619 ζ7

8

)

+ O(ε5), (62)

M22, ε4

= −
1

4 ε3
−

3

2 ε2
−

33

4 ε
−

175

4
+ 10ζ3 + ε

(

−
1825

8
+

113ζ3

2
+ 15ζ4

)

+ ε2

(

−
18867

16
+

1241ζ3

4
+

339ζ4

4
+ 185ζ5

)

+ ε3

(

−
194015

32
+

13425ζ3

8
+

3723ζ4

8
+ 1028ζ5 − 204 ζ2

3 +
875ζ6

2

)

+ ε4

(

−
1987331

64
+

143605ζ3

16
+

40275ζ4

16
+ 5588ζ5

−1131 ζ2
3 +

9715ζ6

4
− 612 ζ3 ζ4 +

13157 ζ7

4

)

+ O(ε5), (63)

M26, ε4

= −
1

8 ε3
−

13

16 ε2
−

141

32 ε
−

1393

64
+ 2ζ3 + ε

(

−
12997

128
+ 13ζ3 + 3ζ4

)

+ ε2

(

−
116697

256
+

123ζ3

2
+

39ζ4

2
+ 24ζ5

)

+ ε3

(

−
1019645

512
+

907ζ3

4
+

369ζ4

4
+ 156ζ5 +

49 ζ2
3

2
+ 55ζ6

)

+ ε4

(

−
8732657

1024
+

4375ζ3

8
+

2721ζ4

8
+ 693ζ5 +

637 ζ2
3

4
+

715ζ6

2
+

147 ζ3 ζ4

2
+

2475 ζ7

4

)

+ O(ε5),

(64)

M27, ε4

=
1

48 ε3
+

7

96 ε2
+

11

192 ε
−

605

384
+

7ζ3

6

+ ε

(

−
13525

768
+

49ζ3

12
+

7ζ4

4

)

+ ε2

(

−
208037

1536
+

161ζ3

6
+

49ζ4

8
+

221ζ5

4

)

+ ε3

(

−
2760397

3072
+

9535ζ3

48
+

161ζ4

4
+

1547ζ5

8
−

145 ζ2
3

3
+

3245ζ6

24

)
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+ ε4

(

−
33789053

6144
+

8273ζ3

6
+

9535ζ4

32
+

14527ζ5

16

−
1015 ζ2

3

6
+

22715ζ6

48
− 145 ζ3 ζ4 +

11289 ζ7

8

)

+ O(ε5), (65)

M23, ε4

= −
1

4 ε3
−

5

8 ε2
−

27

16 ε
−

153

32
+

3ζ3

2
+ ε

(

−
891

64
+

15ζ3

4
+

9ζ4

4

)

+ ε2

(

−
5265

128
+

81ζ3

8
+

45ζ4

8
+

21ζ5

2

)

+ ε3

(

−
31347

256
+

459ζ3

16
+

243ζ4

16
+

105ζ5

4
−

9 ζ2
3

2
+

45ζ6

2

)

+ ε4

(

−
187353

512
+

2673ζ3

32
+

1377ζ4

32
+

567ζ5

8
−

45 ζ2
3

4
+

225ζ6

4
−

27 ζ3 ζ4

2
+

147 ζ7

2

)

+ O(ε5),

(66)

M24, ε4

= −
1

3 ε3
−

4

3 ε2
−

16

3 ε
−

64

3
+

16ζ3

3
+ ε

(

−
256

3
+

64ζ3

3
+ 8ζ4

)

+ ε2

(

−
1024

3
+

256ζ3

3
+ 32ζ4 + 64ζ5

)

+ ε3

(

−
4096

3
+

1024ζ3

3
+ 128ζ4 + 256ζ5 −

128 ζ2
3

3
+

440ζ6

3

)

+ ε4

(

−
16384

3
+

4096ζ3

3
+ 512ζ4 + 1024ζ5 −

512 ζ2
3

3
+

1760ζ6

3
− 128 ζ3 ζ4 + 768 ζ7

)

+ O(ε5),

(67)

M25, ε4

= −
3

8 ε3
−

33

16 ε2
−

345

32 ε
−

3525

64
+

45ζ3

4
+ ε

(

−
35625

128
+

495ζ3

8
+

135ζ4

8

)

+ ε2

(

−
358125

256
+

5175ζ3

16
+

1485ζ4

16
+

855ζ5

4

)

+ ε3

(

−
3590625

512
+

52875ζ3

32
+

15525ζ4

32
+

9405ζ5

8
−

675 ζ2
3

4
+

2025ζ6

4

)
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+ ε4

(

−
35953125

1024
+

534375ζ3

64
+

158625ζ4

64
+

98325ζ5

16

−
7425 ζ2

3

8
+

22275ζ6

8
−

2025 ζ3 ζ4

4
+

16245 ζ7

4

)

+ O(ε5), (68)

M11, ε5

=
1

36 ε2
+

35

216 ε
+

991

1296
+ ε

(

26207

7776
−

11ζ3

18

)

+ ε2

(

670951

46656
−

385ζ3

108
−

11ζ4

12

)

+ ε3

(

16852031

279936
−

10901ζ3

648
−

385ζ4

72
−

13ζ5

2

)

+ ε4

(

417941623

1679616
−

288277ζ3

3888
−

10901ζ4

432
−

455ζ5

12
+

121 ζ2
3

18
−

265ζ6

18

)

+ ε5

(

10274059439

10077696
−

7380461ζ3

23328
−

288277ζ4

2592
−

12883ζ5

72

+
4235 ζ2

3

108
−

9275ζ6

108
+

121 ζ3 ζ4

6
−

433 ζ7

6

)

+ O(ε6), (69)

M12, ε5

=
1

16 ε2
+

5

16 ε
+

79

64
+ ε

(

9

2
−

3ζ3

4

)

+ ε2

(

4041

256
−

15ζ3

4
−

9ζ4

8

)

+ ε3

(

13851

256
−

237ζ3

16
−

45ζ4

8
−

21ζ5

4

)

+ ε4

(

186867

1024
− 54ζ3 −

711ζ4

32
−

105ζ5

4
+

9 ζ2
3

2
−

45ζ6

4

)

+ ε5

(

311283

512
−

12123ζ3

64
− 81ζ4 −

1659ζ5

16
+

45 ζ2
3

2
−

225ζ6

4
+

27 ζ3 ζ4

2
−

147 ζ7

4

)

+ O(ε6),

(70)

M13, ε5

=
1

32 ε2
+

5

24 ε
+

1309

1152
+ ε

(

317

54
−

9ζ3

8

)

+ ε2

(

1234309

41472
−

15ζ3

2
−

27ζ4

16

)

+ ε3

(

4658207

31104
−

1309ζ3

32
−

45ζ4

4
−

153ζ5

8

)

+ ε4

(

1121384029

1492992
−

634ζ3

3
−

3927ζ4

64
−

255ζ5

2
+

81 ζ2
3

4
− 45ζ6

)
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+ ε5

(

2105747071

559872
−

1234309ζ3

1152
− 317ζ4 −

22253ζ5

32

+135 ζ2
3 − 300ζ6 +

243 ζ3 ζ4

4
−

2781 ζ7

8

)

+ O(ε6), (71)

M14, ε5

=
1

24 ε2
+

49

144 ε
+

1867

864
+ ε

(

64813

5184
−

23ζ3

12

)

+ ε2

(

2146387

31104
−

1127ζ3

72
−

23ζ4

8

)

+ ε3

(

69116413

186624
−

42941ζ3

432
−

1127ζ4

48
−

127ζ5

4

)

+ ε4

(

2185200787

1119744
−

1490699ζ3

2592
−

42941ζ4

288
−

6223ζ5

24
+

529 ζ2
3

12
−

895ζ6

12

)

+ ε5

(

68213322013

6718464
−

49366901ζ3

15552
−

1490699ζ4

1728
−

237109ζ5

144

+
25921 ζ2

3

72
−

43855ζ6

72
+

529 ζ3 ζ4

4
−

2189 ζ7

4

)

+ O(ε6), (72)

M01, ε6

= −
1

576 ε
−

13

768
−

9823

82944
ε + ε2

(

−
80513

110592
+

13ζ3

144

)

+ ε3

(

−
49995799

11943936
+

169ζ3

192
+

13ζ4

96

)

+ ε4

(

−
122739515

5308416
+

127699ζ3

20736
+

169ζ4

128
+

67ζ5

48

)

+ ε5

(

−
213973312663

1719926784
+

1046669ζ3

27648
+

127699ζ4

13824
+

871ζ5

64
−

169 ζ2
3

72
+

235ζ6

72

)

+ ε6

(

−
1507417628113

2293235712
+

649945387ζ3

2985984
+

1046669ζ4

18432
+

658141ζ5

6912

−
2197 ζ2

3

96
+

3055ζ6

96
−

169 ζ3 ζ4

24
+

373 ζ7

16

)

+ O(ε7), (73)

M31, ε3

=
1

ε4
+ O(ε4). (74)

Thus, we observe that at the four-loop level the GaC method works as good as the three-loop

ones: all required terms of the ε-expansion of every four-loop MI have been expressed in terms

of only twelve coefficients (boxed in eqs. (47-74))

M23,4, M11,3, M11,4, M11,5, M12,4, M12,5, M01,2, M01,3, M01,4, M01,5, M01,6, M31,−4, (75)

of primitive watermelon-like massless propagator integrals.
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An inspection of the above results for MI’s reveals a few remarkable features.

1. In agreement with common expectations (based on the known solutions of the two- and

three-loop B-problem) the transcendental terms up to (and including) weight 7 appear in

eqs. (47-73). That is all results depend on only five irrational constants: ζ3, ζ4, ζ5, ζ6 and

ζ7.

2. For a given MI Mi the term εpi (that is one with maximal power in ε) always20 includes ζ7.

3. A term proportional to εpi−j could contain ζn with n not exceeding 7 − j; if 7 − j < 3 then

the term is free from irrational numbers.

4. There is another restriction on the singular part of any MI’s (in fact, it is valid for an

arbitrary p-intergral). It states that the term ε−n (with n = 1, 2, 3, 4) may not contain zetas

with the transcendentally weight exceeding (7− 2n). This property explains a very peculiar

feature of MI’s M62 and M63: the absence of ζ6 in the corresponding O(εpi−1) terms.

5. The only two finite MI’s, namely, M44 and M45 contain only terms of one and same weight

in every (available) coefficient of their ε-expansions.

6. The same property of ”transcendental homogeneity” is true for the MI M52 (which is up to

a factor of 1/ε is the three-loop finite MI N0) if one divides an extra factor (1 − 2ε)2 out of

it. (See in this connection work [72], where some general arguments were given in favour of

the hypothesis that the property is valid in all orders in ε.)

We want to stress that any statement on the structure of ζ’s appearing in an integral does

depend on the global normalization which is rather arbitrary. Our normalization condition is a

natural one but, certainly, not unique. If we would choose

M31 =
1

ε4
(1 +

∑

1≤i≤7

aiε
i) (76)

then all MI’s would depend on ai, and all statements just discussed above could be, obviously,

made invalid if a coefficient ai were allowed to contain ζi (for i > 1) and γE for i = 1.

On the other hand, if we restrict ourselves to a natural choice of the normalization of MI M31

such as

M31 =
1

ε4
(1 +

∑

3≤i≤7

biζiε
i), (77)

with bi being rational numbers, then the properties 1-6 would in general stay untouched.

5.2. Tests of the results

In this subsection we discuss various checks which we have made to test our results expressed

in eqs. (47-74). The set of 28 master integrals is naturally divided in three subsets: primitive

(M23 , M24 , M25 , M11 , M12 , M13 , M14 , M01 , M31), simple (M32 , M33 , M21 , M22 , M26 , M27) and,

finally, complicated ones (M61 , M62 , M63 , M51 , M41 , M42 , M44 , M45 , M34 , M35 , M36 , M52 , M43).

We will consider these subsets separately.

5.2.1. Primitive integrals

A primitive FI is by definition expressible in terms of the Γ-function. A straightforward use of

formulas of section 3 gives:

20MI M31 is the only exception from this rule since its sub-leading in ε terms are fixed to be zero essentially by

hands, that is by choosing the G-scheme.
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M23 =
1

ε3
G(ε, 1), M24 =

1

ε3
G(2ε, 1), M25 =

1

ε3
G(3ε, 1),

M11 =
1

ε3
G(ε, ε), M12 =

1

ε2
G(ε, 1)G(ε, 1), M13 =

1

ε2
G(ε, 1)G(−1 + 3ε, 1),

M14 =
1

ε3
G(ε, 2ε), M01 =

1

ε2
G(ε, ε)G(−2 + 3ε, 1), M31 =

1

ε4
. (78)

After the expansion in ε eqs. (78) produce altogether 89 coefficients. As was discussed in

subsection 5.1 as many as twelve coefficients listed in eq. (75) have been used in the process of the

solution of the system of GaC equations, while the remaining 77 coefficients have been predicted

from the equation and listed unboxed in eqs. (66–73).

The reader is advised to check that all these 77 coefficients are in full agreement to eqs. (66–73).

5.2.2. Simple integrals

These all could be expressed in terms of G-functions and the generalized two-loop diagram:

M32 =
1

ε2
F (1, 1, 1, 1, ε), (79)

M33 =
1

ε2
F (1, 1, 1, 1, 2ε) (80)

M21 =
1

ε2
F (1, 1, 1, ε, ε), (81)

M22 =
1

ε2
F (1, ε, 1, ε, 1), (82)

M26 =
1

ε
G(3ε, 1)F (1, 1, 1, 1, ε), (83)

M27 =
1

ε
G(ε, 1)F (1, 1, 1, 1, 2ε− 1). (84)

To be specific, let us consider the direct evaluation of M33 in some details. First, we define a

related FI M ′
33 pictured in eq. (85) below. A simple reduction of FI M ′

33 to MI’s gives the (exact)

equation

M ′
33

=
4(7D − 26)(5D − 14)(5D − 16)(D − 3)

9(3D − 10)(D − 4)3
M14 +

−2(2D − 7)

3(D − 4)
M33. (85)

On the other hand,

M ′
33 =

1

ε2
F (1, 1, 1, 1, 1 + 2ε) (86)

and (see [73] as well as [74, 75, 67])

1

(1 − 2ε)
F (1, 1, 1, 1, 1 + 2ε) = 6ζ3 + 9ζ4ε + 192ζ5ε

2 +
(

465ζ6 − 168ζ2
3

)

ε3

+ (4509ζ7 − 504ζ4ζ3) ε4 +

(

16377

2
ζ8 − 1620ζ6,2 − 3252ζ5ζ3

)

ε5

+
(

98490ζ9 − 14598ζ5ζ4 − 15390ζ6ζ3 + 2676ζ3
3

)

ε6 + O(ε7), (87)

where

ζ6,2 ≡
∑

n1>n2>0

1

n6
1 n2

2

.
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Finally, eqs. (85-87) together with eq. (72) lead to the following (independent from our calcu-

lations) result for MI M33 which is not only in full agreement to eq. (61) but also includes two

more terms in ε:

M33,4 = −
367253

3
+

97982

3
ζ3 −

11038

3
ζ2
3 + 7987ζ4 − 1966ζ3ζ4

+ 22750ζ5 − 3914ζ3ζ5 +
31690

3
ζ6 − 4860ζ6,2 + 22676ζ7 +

147181

8
ζ8, (88)

M33,5 = −
2073833

3
+

580022

3
ζ3 −

66370

3
ζ2
3 +

47918

9
ζ3
3 + 48991ζ4 − 11038ζ3ζ4

+ 123766ζ5 − 7828ζ3ζ5 − 35031ζ4ζ5 +
164350

3
ζ6

−
97340

3
ζ3ζ6 − 9720ζ6,2 + 103838ζ7 +

147181

4
ζ8 +

2293555

9
ζ9. (89)

In the same way we have successfully checked all other simple MI’s. In addition, for all of them

we get two extra terms of the ε-expansion. They look similar to the ones listed in (88,89) and

include, in addition to ζ3 − ζ9, only ζ6,2.

5.2.3. Complicated integrals

We start from diagrams M52 and M43 which are relatively simple as they could be expressed

through the ε1 and ε2 extra terms of the basic three-loop non-planar integral N0, namely:

M52 =
1

ε
N0(ε) =

20ζ5

ε
+ N0,1 + N0,2 ε + O(ε2), (90)

M43 = G(1, 2 + 3ε)N0(ε) = −
5ζ5

ε
+ +25ζ5 −

N0,1

4
+ (

6N0,1

4
−

N0,2

4
− 75ζ5)ε + O(ε2).(91)

Thus,

N0,1 = −80ζ5 + 68 ζ2
3 + 50ζ6, N0,2 = −272 ζ2

3 − 200ζ6 + 204 ζ3 ζ4 + 450 ζ7. (92)

The coefficient N0,1 was known since long from calculations of the five-loop β-function in the φ4-

model in [76]. The second coefficient N0,2 was first computed with the GaC method and presented

in [77]. Its completely independent calculation (through fitting a high-precision numerical result

with an appropriate analytical ansatz) was performed in [78]. Needless to say that the results of

[76] and [78] are in agreement with eq. (92).

All other complicated integrals (except for convergent integral M44, whose value, 447
8 ζ7, at

D = 4 was also analytically found in [76]) have not been known with sufficient accuracy before

our calculations. Note, that for a given (four-loop) master integral Mi one needs to know only the

5 + pi first terms in its ε-expansion. (For accounting purposes we assume that every expansion

starts from 1
ε4 even if the corresponding term drops out from a specific MI.) Among them first

5 + pi − 1 (that is all except for the last one) are in a sense easy as they all could be analytically

found by well-known methods based on Infrared Rearrangement (see, e.g. [19] where the issue

was spelled out on the example of massive four-loop tadpoles). At any case they all are very well

checked in the course of the renormalization procedure.

6. Perspectives

6.1. Five-loop master integrals

As we have seen from the discussion in the previous section all complicated and even simple

four-loop MI’s have been completely expressed in terms of very simple watermelon-like primitive

p-integrals. In fact, the reduction method based on the 1/D expansion of coefficient functions of
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MI’s is in general applicable for any number of loops in the A-Problem. The GaC symmetry is

also not limited by number of loops of p-integrals.

Thus, if the five-loop A-problem is solved, then the five-loop B-problem can also be solved

in the following sense: the identities stemming from the GaC symmetry will express all five-loop

MI’s in terms of significantly smaller set of p-integrals. But which exactly set? At present nobody

knows for sure. But one could certainly expect that:

• in general the five-loop master p-integrals will contain irrational terms of weight not higher

than 9;

• the ”small set” of five-loop integrals will include ones primitive as well as those expressible

in terms of the generalized F-function.

As both types of the integrals could certainly be analytically evaluated up to the weight 9

[21, 75] we conclude that the five-loop B-problem should be analytically doable. Moreover, we

believe that the GaC symmetry + reduction provides the simplest way of analytical solution of

the five-loop B-problem.

6.2. General case

At first sight the applicability scope of the GaC method is rather limited and amounts exclu-

sively to the massless propagators. Indeed, the heart of the method is the existence of relations

between integrals of different topologies beyond those provided by the very integration by parts.

We are not aware about existence of such relations in general case except for a one: finiteness.

Indeed, two finite integrals are in certainly equal to each other with accuracy O(ε0) irrespec-

tively on their topologies. As a result IBP relations will provide some partial information about

the values of corresponding master integrals. Unfortunately, the information proves to be rather

limited21.

Indeed, let us consider, as a simple example, eqs. (24). Without any use of GaC symmetry one

could, obviously, write

N0 = L0 + O(ε0), N0 = N1 + O(ε0), N0 = N2 + O(ε0), N0 = O(ε0). (93)

After reduction to masters and solution of the resulting equations we arrive to the same results

(25,26-45) but with the ε-accuracy downgraded by one for every master integral. This is cer-

tainly not enough to solve the three-loop problem: no new information is obtained for the most

complicated non-planar master integral N0.

The reason for the failure is quite clear: the equations (24) do not provide, in fact, any

constraints on the value of N0 as they could be equivalently rewritten as follows:

L0 = O(ε0), N1 = O(ε0), N2 = O(ε0), N0 = O(ε0). (94)

Repeating the same exercise at four-loop level we will arrive to a similar conclusion: without

any use of the GaC symmetry one could find for every master integral Mi all except for the last

one (that is 5 + pi − 1) of its ε-expansion. Again finiteness only, without the GaC-symmetry, is

not enough to solve the four-loop Problem.

On the other hand, any L-loop MI multiplied by a one-loop scalar massless propagator is,

obviously, a (L+1)-loop MI (compare, for, example, T1 and P2). Within the G-scheme framework

21Nevertheless, there are cases for which even this limited information is enough, see e.g. [79, 80].
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the values of the integrals are trivially related by a factor ε. Thus, at two- and three-loops we get

the following identities

T1 = εP2, T2 = εP4

and

N0 = εM52, L1 = εM32, P1 = εM24, P2 = εM23, P3 = εM11

respectively.

Using ”downgraded” eqs. (58) and (60) we find the same results for both non-primitive MI’s

N0 and L1 as in eqs. (40) and (41) but with the deepness of the ε-expansion increased by one.

Thus we arrive at a truly remarkable conclusion: by merely reducing finite four-loop propagators

to the master integrals and without any use of GaC symmetry we could not only completely solve

the three-loop Problem, we even can get one more term in ε-expansion of every non-trivial master

integral!

It remains to see how predictive is this trick of finding master integrals for cases with other

patterns of external momenta and masses. But its is absolutely clear that at least some useful

nontrivial information can be obtained along these lines.

7. Even zetas

7.1. Four and five loops

In addition to six remarkable features of four-loop master p-integrals listed in subsection 5.1

there exist the seventh one, probably most remarkable. Indeed, a scrupulous inspection of eqs. (47-

73)) demonstrate that all their right hand sides do depend on only the following three combina-

tions of zetas:

ζ̂3 = ζ3 +
3ε

2
ζ4 −

5ε3

2
ζ6, ζ̂5 = ζ5 +

5ε

2
ζ6 and ζ7. (95)

This simple fact has far reaching consequences. Indeed, a little meditation on (95) leads to the

following statement22:

Theorem 4.

1. Any finite at ε → 0 p-integral does not contain even zetas {ζ2n | n ≥ 2} in the limit of ε → 0.

2. Any finite at ε → 0 combination of p-integrals like

∑

Ci(ε)pi, Ci =
∑

j

Cijε
j ,

with the coefficient functions being functions (not necessarily finite at ε → 0) with purely

rational coefficients Cij , will not contain even zetas in the limit of ε → 0 (while odd zetas

{ζ2n+1 | n ≥ 1} are expected and indeed appear in general).

3. Let F (ε) be any renormalized (and, thus, finite in the limit of ε → 0) combination of any

p-integrals. The sole source of possible even zetas in F (0) is the appearance of zetas (not

necessarily even) in the renormalization factors involved in carrying out the renormalization

of F.

The third point suggests a clean explanation of an old puzzle of pQCD: the absence of even

zetas in the Adler function of pQCD at order α3
s, D(3)(q

2). Indeed, the function at this order is

(i) a finite combination of four-loop p-integrals;

(ii) the corresponding renormalization is done with the help of charge coupling renormalization

which does not depend on any zetas at the order required.

22By any p-integral below we understand any one with number of loops less or equal to four.
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As a direct consequence of (ii) the function D(3)(q
2) should not depend on ζ4, ζ6 and ζ3ζ4.

This is indeed the case [61, 62]! At first glance, this explanation of this old puzzle generates

another one: why D(3)(q
2) does not include terms proportional odd zetas with weight larger than

five (which is expected in general for any combination of four-loop p-integrals)? No, it is not a

puzzle since long. It is a well-known fact23 that the (L+1) loop Adler function (in massless QCD)

could be completely expressed through L-loop p-integrals.

Exactly the same reason explains the absence of even zetas in the four-loop contribution to the

Bjorken sum rule [30].

The problem of why the five-loop O(α4
s) Adler function is also free from even zetas should

be possible to solve by extending the above reasoning by one loop higher. The ”only” missing

ingredients — a property of five-loop master p-integrals analogous to (95). We hope to come back

to the subject in future.

7.2. Three loops

In fact, Theorem 4 was proven for the three-loop p-integrals in an early work by Broadhurst

[72] with the help of essentially equivalent (though, to our opinion, somewhat more complicated)

considerations. This is certainly enough to explain the absence of ζ4 in the α2
s contribution to

Adler function [81] and in the α3
s ones to the deep inelastic sum rules found in [82, 45]. This

is because all these quantities are naturally expressed through some combinations of three-loop

p-integrals with purely rational coefficients.

Note that, the three-loop version of Theorem 4 [72] is not enough to explain the absence of

even zetas from the α3
s contribution to Adler function and from the four-loop result for the QCD

β-function [83, 79]. The problem is that, to the best of our knowledge, it is not known whether

one could find a representation, say, the four-loop contribution to the QCD β-function in term of

a finite combination of the three-loop p-integrals with coefficients free from any zetas. The same

is true for the Adler function.

On the other hand, we do agree with [72] that the four-loop QED β-function should be free from

ζ4 (in agreement with explicit calculations of [84]) as it can be expressed via a finite combination

(with purely rational coefficients) of three-loop p-integrals [85].

8. Discussion

There are various points deserving further discussion in connection with the algorithm of

evaluation of MI’s elaborated in sections 4 and 5.

• The results discussed in the present paper have been indispensable for the long-term project

of computing the cross section of e+e− annihilation into hadrons at order α4
s in QCD [28, 30].

While they were first obtained in 2003, their publication had been postponed in favour of

the faster completion of the main project.

• Recently, a definite class of massless p-integrals was proven to be expressible in terms of

the multiple zeta values for all orders of expansions in D − 4, and a direct method of their

evaluation was suggested ([86, 87]).

In our case (four-loop p-integrals) it predicts that the result is expressible through ζn up to

n = 7, as confirmed by our calculations. Unfortunately this method in its present form is

applicable only for integrals with number of internal lines equal to doubled number of loops

plus one, so the most complicated four-loop MI’s seem to be unreachable.

23First, probably understood on the example of the three-loop O(α2
s) Adler function [81].
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• The heavy use of identities between Feynman integrals coming, eventually, from IBP relations

is not a unique feature of our approach to the evaluation of MI’s. It is of interest, that three

other, quite different and in a sense more general approaches would also be impossible

without intensive use of the reduction of Feynman integrals to masters. We mean (i) the

method of differential equations24, (ii) the use of difference equations [5, 98] and, at last,

very new method [99–101] based on recurrence equations with respect to the space-time

dimension D [102].

Finally, we want to mention two popular and powerful methods of evaluation of MI’s which

do not use directly the IBP reduction. The first approach is based on the Mellin-Barn rep-

resentation. The early applications of Mellin integrals to evaluation of FI’s were performed

in pioneering works [103, 104]. Currently it is an actively developing field, for a review see,

e.g. [2, 3].

The second method — the so-called sector decomposition — was originally used as a conve-

nient theoretical tool for the analysis of convergence of FI’s [105, 106]. First applications of

sector decomposition for evaluation of FI’s were considered in [107–109]. The current status

of the method can be found in a review [110].

• While the tests of our results described in subsections 5.2.1 and 5.2.2 leave no room for doubt

as for the cases of trivial and simple groups of MI’s, it is not true for the most difficult group

of complicated integrals: for this family of thirteen MI’s only three had been directly checked

in an independent way (see subsection 5.2.3). It means that if a master integral from the

remaining ten integrals were assigned a wrong value, it would change in all probability all

physical results obtained with the use of these MI’s since 2004.

Let us, therefore, discuss a little bit further the important issue of the correctness of these

MI’s. The method of computing master p-integrals described in sections 4 and 5 heavily

uses both the GaC symmetry and the procedure of reduction of four-loop p-integrals. The

latter is the most complicated part of all the calculation as it requires, first, careful computer

algebra programming and, second, large-scale calculations. Thus, an independent check of

the ten remaining most complicated MI’s would also provide us with a quite strong, though

non-direct, evidence for the correctness of the reduction algorithm we use and its FORM

implementation.

Fortunately, such an independent check of all complicated integrals has been very recently

performed in [111] with the use of the sector decomposition, where not only all results have

been (numerically) confirmed with better than 10/00 accuracy25 but also one extra term in

these ε-expansions have been computed.

9. Summary and Conclusions

In this work we have presented an algorithm for the analytical evaluation of all master integrals

which appear in the process of reduction of massless dimensionally regulated Feynman integrals

with one external momentum (p-integrals). The algorithm is based on the glue-and-cut symmetry

24Starting from early works [88–96] the method has developed into quite a powerful technique. For its modern

status and further references, see the review [97].
25We mean the accuracy for the most complicated last O(εpi ) term in comparison with the exact results listed

in eqs. (50-59), the accuracy of simpler terms of order εi with −4 ≤ i < pi) is significantly higher. The typical

accuracy of the O(εpi+1) term (which is necessary only in evaluation of five-loop master p-integrals) was also about

10/00. One should keep in mind that the latter accuracy is an estimate given by the MC-integrator and as such it

is not always reliable.
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[1] which is an unique and very specific property of such integrals valid irrespectively of their com-

plexity (number of loops). In addition to the symmetry the algorithm heavily uses the reduction

procedure.

It has been demonstrated that the algorithm works flawlessly for the case of the three-loop

p-integrals (successfully reproducing well-known thirty years old results of [21]) and four-loop p-

integrals. In the latter case it produces explicit analytical results for all master integrals, major

part of which are new.

Together with Theorem 2 and the 1/D method of reduction of p-integrals [14, 23] the algorithm

guaranties that the UV counterterm of any five-loop diagram can be calculated within the MS-

scheme in terms of rational numbers, ζ3, ζ4, ζ5, ζ6 and ζ7. This implies the analytical calculability

of the β-functions and anomalous dimensions of fields and composite operators in an arbitrary

model at the five-loop level.
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