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We study the finite supersymmetric loop corrections to fermion masses and mixing matrices in
the generic MSSM. In this context the effects of non-decoupling chirally-enhanced self-energies are
studied beyond leading order in perturbation theory. These NLO corrections are not only necessary
for the renormalization of the CKM matrix to be unitary, they are also numerically important
for the light fermion masses. Focusing on the tri-linear A-terms with generic flavor-structure we

derive very strong bounds on the chirality-changing mass insertions

5{ILR’RL by applying 't Hooft’s

naturalness criterion. In particular, the NLO corrections to the up qua(rk mass allow us to constrain

the unbounded element §%FF

for single-top production at the LHC.

PACS numbers: 11.10.Gh,12.15.Ff,12.60.Jv,14.80.Ly

I. INTRODUCTION

A major challenge in particle physics is to understand
the pattern of fermion masses and mixing angles. With
the discovery of neutrino oscillations flavor has become
even more mysterious since the nearly tri-bimaximal mix-
ing strongly differ from the quark sector. The mini-
mal supersymmetric standard model (MSSM) does not
provide insight into the flavor problem by contrast the
generic MSSM contains even new sources of flavor and
chirality violation, stemming from the supersymmetry-
breaking sector which are the sources of the so-called su-
persymmetric flavor problem. The origin of these flavor-
violating terms is obvious: In the standard model (SM)
the quark and lepton Yukawa matrices are diagonalized
by unitary rotations in flavor space and the resulting ba-
sis defines the mass eigenstates. If the same rotations
are carried out on the squark fields of the MSSM, one
obtains the super-CKM/PMNS basis in which no tree—
level FCNC couplings are present. However, neither the
3 X 3 mass terms m%, m2, mfi, m% and m?2 of the left—
handed and right—handed sfermions nor the tri-linear
Higgs—sfermion—sfermion couplings are necessarily diag-
onal in this basis. The tri-linear QHyA%r, QH,A%ur
and LHyA'er terms induce mixing between left-handed
and right—handed sfermions after the Higgs doublets Hy
and H, acquire their vacuum expectation values (vevs)
vg and v, respectively. In the current era of precision
flavor physics stringent bounds on these parameters have
been derived from FCNC processes in the quark and in
the lepton sector, by requiring that the gluino—squark
loops and chargino—sneutrinos/neutralino—slepton loops
do not exceed the measured values of the considered ob-
servables [1-13].

However, in [14, 15] it is shown that all flavor viola-
tion in the quark sector can solely originate from trilinear
SUSY breaking terms because all FCNC bounds are sat-
isfied for Mgsysy > 500GeV. Dimensionless quantities
are commonly defined in the mass insertion parametriza-

if at the same time 634F is unequal to zero. Our result is important

tion as:
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In Eq. (1) I and J are flavour indices running from 1 to

3, X, Y denote the chiralities L and R, (Am%);‘]y with
F =U,D,L is the off-diagonal element of the sfermion

mass matrix (see Appendix A2) and mz , m% are the
fIX fJY

corresponding diagonal ones. In this article we are going
to complement the analysis of [14] with respect to three
important points:

e Electroweak correction are taken into account.
Therefore, we are able to constrain also the flavor-
violating and chirality-changing terms in the lepton
sector.

e The constraints on the flavor-diagonal mass inser-
tions 6*3%LE are obtained from the requirement
that the corrections should not exceed the mea-
sured masses. This has already been done in the
seminal paper of Gabbiani et al. [2]. We improve
this calculation by taking into account QCD cor-
rections and by using the up-to-date values of the
fermion masses.

e The leading chirally-enhanced two-loop corrections
are calculated. As we will see, this allows us to

constrain the elements 67,7 (and 0%25), if at the
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same time, also (5{3LR (055°") is different from zero.

Our paper is organized as follows: In Sec. IT we study
the impact of chirally enhanced parts of the self-energies
for quarks and leptons on the fermion masses and mix-
ing matrices (CKM matrix and PMNS matrix). First,
we introduce the general formalism in Sec. II A and then
specify to the MSSM with non-minimal sources of flavor
violation in Sec. ITB where we compute the chirally en-
hanced parts of the self-energies for quarks and leptons
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FIG. 1: Flavor-valued wave-function renormalization.

taking into account also the leading two-loop corrections.
Sec. III is devoted to the numerical analysis. Finally we
conclude in Sec. IV.

II. FINITE RENORMALIZATION OF FERMION
MASSES AND MIXING MATRICES

We have computed the finite renormalization of the
CKM matrix by SQCD effects in Ref. [14, 16] and of
the PMNS matrix in Ref. [17]. In this section we com-
pute the finite renormalization of fermion masses and
mixing angles induced through one-particle irreducible
flavor-valued self-energies beyond leading-order. We first
consider the general case and then specify to the MSSM.
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If the self-energies are finite, the counter-term dmy, in
Eq. (3) is zero in a minimal renormalization scheme like
MS. In the following we choose this minimal scheme
for two reasons: First, A-terms are theoretical quantities
which are not directly related to physical observables.
For such quantities it is always easier to use a minimal
scheme which allows for a direct relation between theo-
retical quantities and observables. Second, we consider
the limit in which the light fermion masses and CKM el-
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FIG. 2: One-particle irreducible two-loop self-energy con-
structed out of two one-loop self energies with I # J # K.

A. General formalism

In this section we consider the general effect of one-
particle irreducible self-energies. It is possible to de-
compose any self-energy in its chirality-changing and its
chirality-flipping parts in the following way:

=y0) = (57700 +#3547700) Pe
+ (S0 + 921 07) P

Note that chirality-changing parts E{]L R and E}c JRL have

. . . LL RR .
mass dimension 1, while Z; 7~ and E; ;7 are dimen-
sionless. With this convention the renormalization of the
fermion masses is given by:

RR h;
(m3,) + S 0m3,)) + omy, = mh. (3)

ements are generated radiatively. In this limit it would
be unnatural to have tree-level Yukawa couplings and
CKM elements in the Lagrangian which are canceled by
counter-terms as in the on-shell scheme.

The self-energies in Eq. (2) do not only renormalize the
fermion masses. Also a rotation 1 —i—AUIf JL in flavor-space
which has to be applied to all external fields is induced
through the diagram in Fig. 1:
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The prime denotes differentiation with respect to the ar-
gument. The flavor-diagonal part arises from the trun-

Eq. (3) and

cation of flavor-conserving self-energies.



Eq. (4) are valid for arbitrary one-particle irreducible
self-energies.

B. Self-energies in the MSSM

Self-energies with supersymmetric virtual particles are
of special importance because of a possible chiral en-
hancement which can lead to order-one corrections. In
this section we calculate the chirally enhanced (by a fac-

AIJ
tor m or tan 3) parts of the fermion self-energies

in the MSSM Therefore it is only necessary to evaluate
the diagrams at vanishing external momentum.

We choose the sign of the self-energies ¥ to be equal
to the sign of the mass, e.g. calculating a self-energy
diagram yields —¢X. Then, with the conventions given
in the Appendix A, the gluino contribution to the quark
self-energies is given by:

6 ~ -~
9 = 9 (093 ) 195 By(mZ,m2)  (5)

q1L—4JR 1671’2 qJR qIL g9’ " "qi
1

(J+3)ix* i
Wé Bo(mg,m%) (6)

—CF ng

and for the neutralino and chargino contribution to the
quark self-energy we receive:
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The self-energies in the up-sector are easily obtained by
interchanging v and d. We denote the sum of all contri-
bution as:

+ v

qiL—4JR

nIER =59
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Note that the gluino contribution are dominant in the
case of non-vanishing A-terms, since they involve the
strong coupling constant. In the lepton case, neutralino—
slepton and chargino—sneutrino loops contribute the non-
decoupling self-energy 3¢ LR With the convention in the
Appendix A the self-energies are given by:
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Again, we denote the sum of all contribution as:
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With I = J we arrive at the flavor-conserving case. This
can lead to significant quantum corrections to fermion
masses, but except for the gluino, the pure bino (x g%)
and the negligible small bino-wino mixing (x gig2) con-
tribution, they are proportional to tree-level Yukawa cou-
plings. However, if the light fermion masses are gener-
ated radiatively from chiral flavor-violation in the soft
SUSY-breaking terms, then the Yukawa couplings of the
first and second generation even vanish and the latter ef-
fect is absent at all. Radiatively generated fermion mass
terms via soft tri-linear A-terms corresponds to the up-
per bound found from the fine-tuning argument where
the correction to the mass is as large as the physical mass
itself. This fine-tuning argument is based on 't Hooft’s
naturalness principle: A theory with small parameters is
natural if the symmetry is enlarged when these param-
eters vanish. The smallness of the parameters is then
protected against large radiative corrections by the con-
cerned symmetry. If such a small parameter, e.g. a
fermion mass, is composed of several different terms there
should be no accidental large cancellation between them.
We will derive our upper bounds from the condition that
the SUSY corrections should not exceed the measured
value.

If we restrict ourself to the case with vanishing first
and second generation tree-level Yukawa couplings, the
off-diagonal entries in the sfermion mass matrices stem
from the soft tri-linear terms. Thus we are left with 5{JLR
only. In the mass insertion approximation with only LR
insertion the flavor violating self-energies simplifies. For
the gluino (neutralino) self-energies which are relevant
for our following discussion for the quark (lepton) case
we get:
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Since the sneutrino mass matrix consists only of a LL
block, there are no chargino diagrams in the lepton case
with LR insertions at all.

Since the SUSY particles are known to be much heav-
ier than the five lightest quarks it is possible to evaluate
the one-loop self-energies at vanishing external momen-
tum and to neglect higher terms which are suppressed by
powers of m?cl /MEU gy - The only possibly sizable decou-
pling effect concerning the W vertex renormalization is a
loop-induced right-handed W coupling (see [16]). There-
fore Eq. (2) simplifies to

_o (X
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Zf (1) _ Zf LR (I)P + Ef RL (1)P (15)
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at the one-loop level (indicated by the superscript (1)).  for the mass renormalization in the MS scheme. Accord-
In this approximation the self-energies are always chiral- ing to Eq. (4) the flavor-valued rotation which has to be
ity changing and contribute to the finite renormalization  applied to all external fermion fields is given by:
of the quark masses in Eq. (3) and to the flavor-valued
wave-function renormalization in Eq. (4). At the one-
loop level we receive the well known result

(0) (1) 0 4 Z{ILRO) (16)
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mj, —mj, mi, —mj,
my, EglLR M mfg,EglRL (1) mfZE§2LR M mf32§2RL (1) .
mj, —mj, m, —m3,
[
The corresponding corrections to the right-handed wave- be constrained from the CKM and PMNS renormaliza-

functions are obtained by simply exchanging L with R tion. However, since we treat, in the spirit of Ref. [18],
and vice versa in Eq. (17). Note that the contributions all diagrams in which no flavor appears twice on quark
of the self-energies g{ JRL (M) with J > I are suppressed  lines as one-particle irreducible, chirally-enhanced self-
by small mass ratios. Therefore, the corresponding off-  energies can also be constructed at the two-loop level
diagonal elements of the sfermion mass matrices cannot (see Fig. (2)):
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Therefore, the chiral-enhanced two-loop corrections to the masses and the wave-function renormalization are given
by:
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where we have neglected small mass ratios. In the quark
case, we already know about the hierarchy of the self-
energies from our fine-tuning argument. In this case

Eq. (20) is just necessary to account for the unitarity of
the CKM matrix [14]. However, the corrections to mgc?)
in Eq. (19) can be large. For this reason we can also

) with 't Hooft’s naturalness criterion

FLR(1
w7, (1)

. LR (1
constrain Egl B(

if at the same time is different from zero.

III. NUMERICAL ANALYSIS

In this section we are going to give a complete nu-
merical evaluation of the all possible constraints on the
SUSY breaking sector from 't Hooft’s naturalness argu-
ment. This criterion is applicable since we gain a flavor
symmetry [14] if the light fermion masses are generated
radiatively. Therefore the situation is different from e.g.
the little hierarchy problem, where no additional symme-
try is involved. First of all, it is important to note that all
off-diagonal elements of the fermion mass matrices have
to be smaller than the average of their assigned diagonal

elements
2\1J 2 2
(AmF) oy <y fms Mm% (21)

since otherwise one sfermion mass eigenvalue is negative.
We note that in Ref. [2] this constraint is not imposed.

All constraints in this section are non-decoupling since
we compute corrections to the Higgs-quark-quark cou-
pling which is of dimension 4. Therefore, our constraints
on the soft-supersymmetry-breaking parameters do not
vanish in the limit of infinitely heavy SUSY masses but
rather converge to a constant [14]. However, even though
5{ JLR is a dimensionless parameter it does not only in-
volve SUSY parameter. It is also proportional to a
vacuum expectation and therefore scales like v/Mgysy.
Thus, our constraints on 5{JLR do not approach a con-
stant for Mgygy — oo but rather get stronger. Similar ef-
fects occur in Higgs-mediated FCNC processes which de-
couple like 1/ Mg, . rather than 1/Mgy gy [19-21]. How-
ever, Higgs-mediated effects can only be induced within
supersymmetry in the presence of non-holomorphic terms
which are not required for our constraints. An example
of a non-decoupling Higgs-mediated FCNC process is the
observable Rx = T'(K — ev) /T (K — pv) that is cur-
rently analyzed by the NA62-experiment. In this case
Higgs contributions can induce deviations from lepton
flavor universality [10, 22, 23].

A. Constraints on flavor-diagonal mass insertions
at one loop

The diagonal elements of the A-terms can be con-
strained from the fermion masses by demanding that

2000
1500
> L
[
o
£
E 1000 | 2.
500>
500 1000 1500 2000
m- in GeV
g
535Rx107
2000 ‘ ‘
1500 - §
>
[
O]
£
&
1000
500
500 1000 1500 2000
my in GeV
5‘{1LRx10‘4
2000} ‘ ‘ ‘
3
1500+
> L
[
o
£
E 1000+ q
im ,
[NVZNZNZONZ N Z N 4 NZANZN N |
XX XK K
g~ | 5 J
500 1000 1500 2000
m- in GeV
g
2000
1500
> L
[
o
£
E 1000
500
500 1000 1500 2000
mé in GeV

FIG. 3: Constraints on the diagonal mass insertions (51”1’7221%

obtained by applying 't Hooft’s naturalness criterion.
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FIG. 4: Contraints on the diagonal mass insertion 6{1%% as a
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E{[LR M < my, [see Eq. (16)]. The bounds on the flavor-
conserving A-term for the up, charm, down and strange
quarks are shown in Fig. (3) and the constraints from the
electron and muon mass are depicted in Fig. (4). The up-

per bound derived from the fermion mass is roughly given
by

o3| 5 S Msusy) (22)
as(Msusy ) Msusy
for quarks and
g9 5| < ST (23)
1~ oy Msusy

for leptons in the case of equal SUSY masses. In the
lepton case Eq. (23) can be further simplified, since we
can neglect the running of the masses:

|64 L8| < 0.0025 (Eﬁﬂ) 7
SUSY (24)
¢ 500 GeV
|654F <05 (W&) '

However, as already pointed out in Ref. [24] a muon
mass that is solely generated radiatively potentially leads

to measurable contributions to the muon anomalous mag-
netic moment. This arises from the same one-loop dia-
gram as Y5/ with an external photon attached. There-
fore, the SUSY contribution is not suppressed by a loop
factor compared to the case with tree-level Yukawa cou-
plings.

B. Constraints on flavor-off-diagonal mass
insertions from CKM and PMNS renormalization

1. CKM matriz

A complete analysis of the constraints for the CKM
renormalization was already carried out in Ref. [14]. The
numerical effect of the chargino contributions is negligi-
ble at low tan 8 and the neutralino contributions amount
only to corrections of about 5% of the gluino contribu-
tions. Therefore, we refer to the constraints on the off-
diagonal elements 7 JLR given in Ref. [14].

2. Threshold corrections to PMNS matriz

Up to now, we have only an upper bound for the matrix
element U,z = sin 3¢~ and thus for the mixing angle
013; the best-fit value is at or close to zero: 013 = 0.0fg:g
[25]. It might well be that it vanishes at tree level due to
a particular symmetry and obtains a non-zero value due
to corrections. So we can ask the question if threshold
corrections to the PMNS matrix could spoil the predic-
tion f13 = 0° at the weak scale. We demand the absence
of fine-tuning for these corrections and therefore require
that the SUSY loop contributions do not exceed the value
of Uer

AU < ‘U;’;’YS . (25)

The renormalization of the PMNS matrix is described in
detail in [17], where the on-shell scheme was used. As
discussed in Sec. (II) we also use the MS scheme in this
section. Then the physical PMNS matrix is given by:

urhys = 70 L AU, (26)

where AU should not be confused with the wave function
renormalization AU . Then AU is given by

AU = (AU ) 0O, (27)

Note that in contrast to the corrections to the CKM ma-
trix, there is a transpose in AU*”, because the first index
of the PMNS matrix corresponds to down-type fermions
and not to up-type fermion as in the CKM matrix. Only
the corrections to the small element U3 can be sizeable,
since all other elements are of order one. If we set all



off-diagonal element to zero except for §{F% £ 0, we get

hys h;
AU&B _ AU?{lLqu—)sys P ys ’AUEL‘
1+ }AUll (28)
Uphys Zé RL
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Note that here, in contrast to the renormalization of the
CKM matrix, the physical PMNS element appears. This
is due to the fact that one has to solve the linear system
in Eq. (27) as described in [17]. By means of the fine-
tuning argument we can in principle derive upper bounds
for 6{Lf. The results depend on the SUSY mass scale
MSUSY and the assumed value for 03.

Here, we consider the corrections stemming from
flavor-violating A-terms to the small matrix element U,s.
The 6{£L-contribution was already studied in [17] with
the result that they are negligible small. We also made a
comment about the 5“R—contribution which is outlined
in more detail. Our results depend on the overall SUSY
mass scale, the value of 013 and of §fF%. In Fig. (5)
you can see the percentage deviation of Ueg through this
SUSY loop corrections in dependence of {+% (top) and
015 (bottom) for Mgysy = 1000 GeV. The constraints
on §YFR get stronger with smaller #;3 and with larger
Msysy. In Fig. (6) the excluded (913,5f§R)—region is
below the curves for different Msygy scales. The derived
bound can be simplified to

’5%]2‘ <0.2 (M) |615 in degrees| . (29)
SUSY

Exemplarily, we get for reasonable SUSY masses of
Msysy = 1000 GeV and 613 = 3° an upper bound of
’65“%‘ < 0.3. The constraints on §{4% from 7 — ey are
of the order of 0.02 [17] and in general better than our
derived bounds if 613 is non-zero. As an important con-
sequence, we note that 7 — ey impedes any measurable
correction from supersymmetric loops to Uz : E.g. for
sparticle masses of 500 GeV we find |AU.3| < 1073 cor-
responding to a correction to the mixing angle 613 of at
most 0.06°. That is, if the DOUBLE CHOOZ experiment
measures Ug3 # 0, one will not be able to ascribe this
result to the SUSY breaking sector. Stated positively,
Ues =2 1073 will imply that at low energies the flavor
symmetries imposed on the Yukawa sector to motivate
tri-bimaximal mixing are violated. This finding confirms
the pattern found in [17] where the product &§f; %85 %
has been studied instead of §{{%.

C. Constraints from two-loop corrections to
fermion masses

Combining two flavor-violating self-energies can have
sizable impacts on the light fermion masses according to
Eq. (19). Requiring that no large numerical cancella-
tions should occur between the tree-level mass (which is
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FIG. 5: |AUes3|/Ues in %. Top: as a function of SEEE for
Msusy = 1000 GeV and different values of 613 (green 1°; blue:
3% red: 5° ). Bottom: as a function of 613 for Msysy = 1000
GeV and different values of §%% (red: 8tER = 0.5; blue:
§{4H = 0.3; green: §t4% =0.1) (both from top to bottom)
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FIG. 6: The excluded (6‘13, dfg,LR)—region is below the curves
for (from bottom to top) Msusy = 500 GeV (red), 1000
GeV (blue), 2000 GeV (green) and 5000 GeV (yellow). The
black dashed line denotes the future experimental sensitivity
to 013 = 3°.

absent in the case of a radiative fermion mass) and the
supersymmetric loop corrections we can derive bounds
on the products 5{ ;Réfﬁ}?’ which contain the so far less
constrained elements (5{(?2, K> 1

We apply the fine-tuning argument to the two-loop
contribution originating from flavor-violating A-terms,

fLR(Q)‘ < my,. The bound Ef LRE) mpy, corre-

sponds to a 100% change in the fermion mass through su-
persymmetric loop corrections which is equivalent to the
case that the fermion Yukawa coupling vanishes. The up-
per bound depends on the overall SUSY mass scale and

e.g. ’E



is roughly given as

972 mg, me, (Msusy)

5‘1”5‘1”} < CI43 (30
s ~ (as(Msusy )Msusy)? 7 (30)
for quarks and
647m2my, mey.
5@ LR(SK LR 1 3 31
| B= (a1 Msusy)? (8

for leptons. Again, Eq. (31) can be further simplified

(32)

2
|5€LR ZLR| < 0.021 <500G6V)

Msusy

The contributions proportional to 6f LR6f LR cannot be
important, since these elements are already severely con-
strained by FCNC processes [26]. As studied in Ref. [27],
single-top production involves the same mass insertion
§4LE which can also induce a right-handed W coupling
1f at the same time §9% # 0 [16]. Therefore our bound
can be used to place a constraint on this cross section.
Also the product 6% FESSEER cannot be constrained,
since the muon and the charm are too heavy. However,
64 LR54ER can be constrained as shown in Fig. (10). Our
results for the up, down, and electron mass are depicted
in Fig. (8),(9) and (7). In the quark case also the bounds

from the CKM renormalization on 613 53 are taken into
account.

IV. CONCLUSIONS

According to 't Hooft’s naturalness principle, the
smallness of a quantity is linked to a symmetry that is
restored if the quantity is zero. The smallness of the
Yukawa couplings of the first two generations (as well as
the small CKM elements involving the third generation)
suggest the idea that Yukawa couplings (except for the
third generation) are generated through radiative correc-
tions [14, 15, 24, 28-30]. It might well be that the chiral
flavor symmetry is broken by soft SUSY-breaking terms
rather than by the trilinear tree-level Yukawa couplings.

We use 't Hooft’s naturalness criterion to constrain
the chirality-changing mass insertion 5“’d’“R from the
mass and CKM renormalization. Therefore we compute
the finite renormalization of fermion masses and mixing
angles in the MSSM, taking into account the leading two-
loop effects. These corrections are not only important, in
order to obtain a unitary CKM matrix, they are also nu-
merically important for light fermion masses. This allows
us to constrain the product 5f LR5f LR (and §4LRE4LR)
which is important, especially Wlth respect to the before
unconstrained element 635%%. All constraints given in this
paper are non- decouphng This means they do not van-
ish in the limit of infinitely heavy SUSY masses unlike
the bounds from FCNC processes. Therefore our con-
straints are always stronger than the FCNC constraints
for sufficiently heavy SUSY (and Higgs) masses.
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FIG. 7: Results of the two-loop contribution to the electron
mass. Above: Region compatible with the naturalness prin-
ciple for (from top to bottom) Msusy = 200 GeV (yellow),
500 GeV (green), 800 GeV (blue), 1000 GeV (red). Bottom:
Allowed range for (5[ LR(SZ LR a5 a function of Msusy.

The PMNS renormalization is a bit more involved
since the matrix is not hierarchical. The radiative de-
cay T — e7y severely limits the size of the loop correction
AU,s to the PMNS element U.3. In a previous paper we
have studied this topic for effects triggered by the prod-
uct 6{LL65L1 [17]. In this paper we have complemented
that analys1s by investigating 6{+* instead. Assuming
reasonable slepton masses and notlng that the Daya Bay
neutrino experiment is only sensitive to values of 63
above 3°, we conclude that the threshold corrections to
U3 are far below the measurable limit. Consequently, if
a symmetry at a high scale imposes tri-bimaximal mix-
ing, SUSY loop corrections cannot spoil this prediction
013 = 0 at the weak scale. This is an important result for
the proper interpretation of a measurement of 613. Thus
if DOUBLE CHOOZ or Daya Bay neutrino experiment
will measure a non-zero 613 then this is also true at a
high energy scale.
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Appendix A: Conventions
1. Loop integrals

For the self-energies, we need the following loop inte-
grals:

T

Y Y
— In = Al
- n (a1

Bo(zay)ziAi y—x /1/2,

In

x

u?
. 1

with A =- —~g + In4nr.
€

ryln £ +yzlnZ +22ln 2

(z—y)(y —2)(z — )

Co(z,y,2) = (A2)

2. Diagonalization of mass matrices and Feynman
rules

For the vacuum expectation value we choose the nor-
malization without the factor v/2 and define the Yukawa
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couplings in the following way:

v=1/v2 403 =174 GeV, tanﬁzv—u, (A3)
Vg
m; = —vgY;, mg=—vqYy, My =0,Yy. (A4)

Neutralinos X9
In the following we mainly use the convention of [31].
70 = (B,W,ﬁg,ﬁg) :

1
= 75(\IJO)TMN\I/O +h.c.

56(’I)T'LO/SS
]\41 0 __91Yq g1Uu
0 ]\42 92%2 _\g/2§ﬂu
My = _ g1vd  g2vd \65 _\//f . (A5)
91713 _}q/zivu _ 0
V2 vz H
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Mp can be diagonalised with an unitary transformation
such that the eigenvalues are real and positive.

ZNMNnZy = ME = (A6)

For that purpose, Z}LVM}:,MNZN = (ME)? can be used.
Zn consists of the eigenvectors of the Hermitian ma-
trix M]TVM ~. Then the columns can be multiplied with
phases ele , such that ZJT,M NZN =M ﬁ has positive and
real diagonal elements.

Charginos ﬁt

wE = (W ).

Lioa\T +
ﬁm:*g(‘l’ ) McVU* +he.
0 )(—r M2 gav
M¢ = X = ). (AT
© <X 0 ) (gzvd iz (A7)

The rotation matrices for the positive and negative
charged fermions differ, such that

T o m;(l 0
ZI X7, = ( 0 mg, ) . (A8)
Sleptons
The sleptons Iié = éy7, and Rl = é}rR mix to six

charged mass eigenstates L;, 1 =1...6:

Li=wliz, RF=wIis

2 2
+ ((m7)r (mi)Lr L ( 2 %)
W <( %)}%L (m2) Wi = diag mg ..My ),

and the slepton mass matrix is composed of

e? (Ufl — Ui) (1 — QC%V)

()i, = O Yo
wew
+ m%)?J’
2(,2 2
(m2) L = —6(1}2'272_?@51J+U35Q215U+m§u’
w
() = vV



Lepton-slepton-neutralino coupling

Feynman rule for incoming lepton /;, outgoing neu-
tralino and slepton /;:

0@ Wli . . i .
iy, =i ( 7% (928 + 2230 ) + Yo, Wi+ Zif) Py

'02

=I X
‘rr

+i (—glx/iWéprg)iZ}\f* n YZIWL“Z;J’*) Pp.

_FMJR
(A9)
Lepton-sneutrino-chargino coupling
Feynman rule for incoming lepton /¢;, outgoing

chargino and sneutrino ;:
TP

+ . .
Ty = —i (9221 P, + Yo, 22 Pr) W%

Down-squarks
The down-squarks Qé = JIL and DI = J}R mix to six
mass eigenstates d;, © = 1...6:

~ ik J— I+3)i 7.
Qs =whrd-, D' =w ¥,

2 2
WT (mD)LL (mD)LR) ,W :dla m2~ ,,_.’m% )
(s ((m%)kL (m2D)RR D g( dy )

and the downs-squark mass matrix is composed of

(m2)1 = _62 (vi —v2) (1+20W)6 .
DILL 125WCW
+viY i 61 + (m )IJa
e? (v —vi)
(mb)ir = — 62, Srg+ VY70 + mau
(mh)Lr = van¥q” +vadg”™.
Up-squarks

Fmally, one has six up -squarks u; composed from fields
Q1 = 4yr and Ul = uIR

W(I+3)z* —

70 70

) Wde1ag( ul,...,m%ﬁ).
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2,2 .2 2
(m2)1 = _¢ (vi —vi) (1—4cy) 51
U/LL 12s3,¢3,
+U,3Yu2i(5[.] + (Vm%VT)?J,
e? (vi—02
i = s, vy
() = ¥ v AL

Quark-squark-gluino coupling

Feynman rule for incoming quark dj, uy, outgoing
gaugino and squark d;, u;:

= e (R (h
2 i (e ) (o

Quark-squark-neutralino coupling

Feynman rule for incoming quark d;, uz, outgoing neu-
tralino and squark d;, u;:

0d; wli ) . Y
iy =i ( ﬁ (f%z}vﬂ +ggzij) + Y, Wt Z?j) P

V2 . i 3
ti ( ng”3 7 v, WhZ¥ | Pr,

Zl—‘)’u{j i =i ( \}]5 <7§Z1] . 2Z2]) _ YuIWISvIJ’_g) Z?\}]) PL

2 1% * * Ed
+z< fng””) N Y, Wz )PR.

Quark-squark-chargino coupling

Feynman rule for incoming quark dj, uy, outgoing
chargino and squark w;, d;:

-

iy " =i (W™ 25 4 Y, W 2 v,
+i (de, W&”*Zij*) VI Py,
i =i (—g2W5 Z2Y — Yo, W 22 ) v py

i (Yu,W‘”ZQJ*) VI py,.
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