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Abstract

We compute the real part of the 2-loop vertex corrections for charmless hadronic
B decays, completing the NNLO calculation of the topological tree amplitudes in
QCD factorization. Among the technical aspects we show that the hard-scattering
kernels are free of soft and collinear infrared divergences at the 2-loop level, which
follows after an intricate subtraction procedure involving evanescent four quark
operators. The numerical impact of the considered corrections is found to be mod-
erate, whereas the factorization scale dependence of the topological tree amplitudes
is significantly reduced at NNLO. We in particular do not find an enhancement of
the phenomenologically important ratio |C'/T| from the perturbative calculation.
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1 Introduction

The study of hadronic B meson decays into a pair of light (charmless) mesons reveals
interesting information about the underlying four quark interactions and the related phe-
nomenon of CP violation. While these decay modes are intensively investigated at current
and future B physics experiments, the main challenge for precise theoretical predictions
consists in the computation of the hadronic matrix elements. QCD factorization [I], or
its field theoretical formulation in the language of Soft-Collinear Effective Theory [2],
is a systematic framework to compute these matrix elements from first principles. The
starting point is a factorization formula, which holds in the heavy quark limit m, — oo,
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where the perturbatively calculable hard-scattering kernels TiI’H encode the short-distance
strong-interaction effects and the non-perturbative physics is confined to some process-
independent hadronic parameters such as decay constants fj;, light-cone distribution
amplitudes ¢, and a transition form factor F f M1 at maximum recoil ¢ = 0.

In this work we address perturbative corrections to the factorization formula ().
Whereas next-to-leading order (NLO) corrections to the hard-scattering kernels TZ-I’H are
known from the pioneering work in [I], partial next-to-next-to-leading order (NNLO)
corrections have recently been worked out [3 4, [5, [6]. The a? corrections to the kernels
T (spectator scattering) are by now completely determined to NNLO: the corrections for
the topological tree amplitudes have been computed in [3] and the ones for the so-called
penguin amplitudes in [4].

In contrast to this the computation of a? corrections to the kernels T} (vertex cor-
rections) is to date incomplete. Whereas we computed the imaginary parts of the hard-
scattering kernels for the topological tree amplitudes in [5] [6], we complete the NNLO
calculation of the tree amplitudes in this work by computing the respective real parts.
Partial results of this calculation, in particular the analytical expressions of the required
2-loop Master Integrals, have already been given in [6].

The organization of this paper is as follows: The technical aspects of the NNLO
calculation are presented in Section [2l We start by briefly recalling our definitions and
conventions and make some remarks concerning the computation of the 2-loop diagrams.
We then show in some detail how to extract the hard-scattering kernels from the matrix
elements which are formally infrared divergent. This subtraction procedure, which be-
comes particularly involved for the colour-suppressed tree amplitude, is complicated due
to the presence of evanescent four quark operators which arise in intermediate steps of
the calculation. Our analytical results for the hard-scattering kernels are summarized in
Section [3l We briefly discuss the numerical impact of the considered NNLO corrections
in Section [l before we conclude in Section Bl Several technical issues of the calculation
and the explicit expressions of the hard-scattering kernels are relegated to the Appendix.



2 NNLO calculation

The calculation of the real parts of the topological tree amplitudes proceeds along the
same lines as the one of the imaginary parts that we presented in [5]. Still, the current
calculation turns out to be considerably more complex in several respects. First, it
requires the calculation of a larger amount of 2-loop integrals, which are in addition
more complicated since they involve up to three (instead of one) massive propagators.
Second, the renormalization procedure and the infrared subtractions reveal their full 2-
loop complexity only in the current calculation as a consequence of the fact that the
tree level contribution is real. In the following we summarize the technical aspects of
the calculation and refer for a more detailed description of the general strategy to [5]

(cf. also [6]).

2.1 Operator basis

The topological tree amplitudes can be derived from the hadronic matrix elements of the
current-current operators in the effective weak Hamiltonian

Gr ..,

Heff = — Vuqub (ClQl + CQQQ) + h.C. (2)

V2
As we apply Dimensional Regularizatio (DR) to regularize ultraviolet (UV) and infrared
(IR) singularities, evanescent four-quark operators appear in intermediate steps of the
calculation. The full operator basis required for the present calculation becomes?

Q1 = [Wy"LT] [dvy,LT"],

Qs = [1y"Lb] [dy,Lu],

Ey = [uy"y*y" LT [dy vyl T4u] — 16 Qu,

Ey = [uy""y"Lb] [dymypLlou] — 16 Qs

B = [ay" vy LT] [dvvyp707 LT 0] — 20 By — 256 Q1

EYy = [uy"y"v*y° v L Y] [dvu vy Yoyr Lu] — 20 By — 256 Qo (3)

with colour matrices 74 and L = 1 — 5. We stress that previous studies within QCD
factorization, as e.g. [1l, B, 4], have often been formulated in a different operator basis
with a Fierz-symmetric definition of the physical operators. As has been argued in [5], it
is more convenient for the current calculation to use the operator basis (B]) since it allows
to work with a naive anticommuting 5 beyond NLO [7].

There are two different insertions of a four-quark operator which are illustrated in
Figure 1 of [5]. The first one gives rise to the colour-allowed tree amplitude «a;(M;M,),
which corresponds to the flavour content [g,b] of the decaying B meson, [g,u] of the recoil

'We write d = 4 — 2¢ and use an anticommuting ~s according to the NDR scheme.
2This operator basis has been named CMM basis in [5] (denoted by a hat).



meson M; and [ud] of the emitted meson M,. The colour-suppressed tree amplitude
ao (M Ms) follows from the second insertion and belongs to the flavour contents [gsb],
[7sd] and [uu], respectively. In [5] we did not consider the second type of insertions since
we could derive the imaginary part of the colour-suppressed amplitude from the one of
the colour-allowed amplitude using Fierz-symmetry argument

In the current calculation we cannot proceed along the same lines, since a Fierz-
symmetric operator basis has not yet been worked out to NNLda We therefore consider
both types of insertions in this work, which also provides an independent cross-check of
our previous result for the imaginary part of the colour-suppressed tree amplitude.

2.2 2-loop calculation

The main task of the calculation consists in the computation of a large number of 2-loop
diagrams (shown in Figure 2 of [5]). We use an automatized reduction algorithm, which
is based on integration-by-parts techniques [11], to express these diagrams in terms of an
irreducible set of Master Integrals (Mls). In addition to the MIs that appeared in the
calculation of the imaginary part of the NNLO vertex corrections (cf. Figure 3 of [5]), we
find 22 MIs which are shown in Figure [Il In total the current calculation requires the
computation of 36 MIs to up to five orders in the e-expansion.

Apart from the MIs that involve the charm quark mass, the analytical results for the
MIs from Figure [Il can be found in [6]|§I The MIs can be expressed in terms of Harmonic
Polylogarithms (HPLs) [14] of weight w < 4,

H(0;2) = In(z), H(0,0,1;7) = Lis(x),

H(l;2) = —In(1 — 2), H(0,1,1;2) = Sy.(2),
H(-1;7) = In(1 + ), H(0,0,0,1; ) = Liy(x),
H(0,1;2) = Liy(a), H(0,0,1,1;2) = Sy0(2),

H(0,~1;2) = —Liy(—2), H(0,1,1,1;2) = Sy 5(2).
H(-1,0,1;2) = H,(z), H(0,—1,0,1;2) = Hao(x), (4)

where we introduced a shorthand notation for the last two HPLS@. Moreover, the massive
non-planar 6-topology MI (last diagram from Figure [I) involves a constant in the finite
term which, until recently, was only known numerically, Cy = —60.2493267(10) [13]. In a
recent work it was shown that its analytical value is Cy = —1677*/270 [16].

3To do so we introduced a second operator basis named traditional basis in [5] (denoted by a tilde).

4We emphasize that the operator basis from Section 8 in [§] is not Fierz-symmetric and the one from
Appendix A in [9] is presumably not either [10].

SPart of these results have recently been confirmed by various groups [12, [13].

6The explicit expression of Hj(x) in terms of Nielsen Polylogarithms can be found e.g. in equation
(10) of [I5]. On the other hand Hz(x) has to be evaluated numerically (in Section B2l we find, however,
analytical expressions in the convolutions with the light-cone distribution amplitude of the meson My).



Figure 1: Additional Master Integrals that appear in the calculation of the real
parts of the NNLO wvertex corrections. Dashed/double/wavy internal lines denote
propagators with mass O/mb / me. Dashed/solid/double external lines correspond to
virtualities 0 / umb / mb Dotted propagators are taken to be squared.

The charm mass dependent MIs can be found in [6, [15]. In this case there exist
analytical results apart from the finite terms of two 4-topology MIs. We may, however,
evaluate these contributions numerically to implement charm mass effects in the current
analysis.

2.3 Renormalization

The calculation of the renormalized matrix elements requires standard counterterms from
QCD and the effective Hamiltonian. We write the renormalized matrix elements as

<Qz> = Zw Zl'j <Qj>bare7 (5)

where Z,, contains the wave-function renormalization factors of the quark fields and 7 is
the operator renormalization matrix in the effective theory. Here and below we introduce
a shorthand notation for the perturbative expansions,

@ =3 ()" (@00, U—wz( 20 )

It turns out that the wave-function renormalization factors in Z can be neglected in the
calculation of the hard-scattering kernels since they are absorbed by the form factor and
the light-cone distribution amplitude in the factorization formula, which are defined in



terms of full QCD fields (rather than HQET or SCET fields), for details cf. Section 4.2
of [5]. We renormalize the coupling constant in the MS-scheme,

11 1 1
ZW = [ =Cy — = - 7
g ( 6 A 37’Lf 67 ( )
and the b-quark mass in the on-shell scheme,
e\ 3—2
70 = —op () T .
m F m? () 1—2¢ (®)

The 1-loop and 2-loop MS operator renormalization matrices can be inferred from [8], [17]

4 5 2
Z1) _ —2 3 12 9 0 0 l’
6 0 1 0 0 O €

2 26 4 25 5 31 2 19 5
Z(2>:< 17=3ny =3 +gny =%+ —i5 T 5% m)i

_ _31 41 5 1 g2
39+2nf 4 1 + 3TLf 0 Y 9
79,4, _205 10, 1531 _ 5 . _ 1 _ 1 1 _ 35
( 2 T ol s T2V ss 216" Tz s 3 864 ) 1 9)
8 4 5 19 1 8 _3 7 g’
1 T 3ny 3 16— 18"t 9 192 72

where the lines refer to the physical operators and the columns to the full operator basis
including the evanescent operators from ({3]).

2.4 IR subtractions

In order to extract the hard-scattering kernels T; we rewrite the renormalized matrix
elements in the factorized form

(Qi)=F T,0®+... (10)

where F' denotes the form factor, ® the product of decay constant and distribution
amplitude, ® the convolution integral and the ellipsis the spectator scattering term which
we disregard in the following. As has been discussed in detail in Section 4.2 of [5], only
naively non-factorizable (nf) 1-loop diagrams contribute to the NLO kernels,

QY + 22 = FO . TV @ 90, (11)

Similarly, the calculation of the NNLO kernels involves only non-factorizable 2-loop dia-
grams (but factorizable (f) 1-loop diagrams),

Q)% + 20 HQHY + (@) | + Z22(Q;)©

=FO. 70 g0 4 p) .70 g 60 4 pO .7 g ¢l (12)

amp amp’



where the subscript "amp” (amputated) has been introduced to denote corrections with-
out wave-function renormalization. We see that the calculation of the NNLO kernels re-
quires the NLO kernels to O(e?) as they enter (I2) in combination with the IR-divergent
form factor correction Férln)p ~ 1/ez. As a consequence the factorization formula has
to be extended in intermediate steps of the calculation to include evanescent operators,
which have to be renormalized such that their (IR-finite) matrix elements vanish (for
details cf. Section 4.3 of [5]).

At NNLO the subtraction procedure becomes somewhat involved. It is particularly
complicated in the calculation of the colour-suppressed tree amplitude, where a Fierz-
evanescent operator appears at tree level. In the following we discuss the subtraction
procedure in some detail. Throughout this section we concentrate on the real parts of
the hard-scattering kernels, since the respective imaginary parts have already been given
in [5]. We refer to Appendix [Al for the explicit expressions of the auxiliary coefficient
functions ¢;(u) that we introduce below.

Colour-allowed tree amplitude

To NNLO we find three operators that contribute to the right hand side of (I0). In
the position space representation they correspond to products of a local heavy-to-light

current @(xz)'1b(x) and a non-local light-quark current d(y)[y, z]Tou(x), where the usual
gauge link factor [y, z] is understood. We choose the basis of Dirac structures I'y @ 'y a;

O =ML @[yl
Op = Y7L} @ [y,m7,L] =16 O,
Ow = [¥"7"v*7"7" L] @ 1wy Yo L] — 20 O — 256 O, (13)

such that the factorized hadronic matrix element of O gives the standard QCD form
factor and the light-cone distribution amplitude of the emitted meson M,. The operators
Og and O are evanescent.

We first compute () to O(g?) to determine the NLO kernels. We find that the

colour-singlet kernels vanish, Tz(l) = 2(1,% = TQ%/ = 0, while the colour-octet kernels
become
W, _ CF M_2 : _ 2 _ 732 3
Re T}/ (u) = 5 to(u) — 6L+ (t1(u) + 3L° Je + (t2(u) — L7 Je* 4+ O(e°) ¢,
2N, \'mj
Wy Cr (12 2 2
Re Tl E(u) = — - tE70(U) + 2L + tEJ(U) — L £+ O(E ) s (14)
' 4N, \ mj

and T1(,11;/ = 0 with L = Ing?/m?. The IR subtractions on the right hand side of (I2)
require in addition form factor and wave function corrections to the operators O and Og
(they can be found in Section 4.3 of [5]). We finally perform the convolutions of the NLO

"We do not consider colour-octet operators since their hadronic matrix elements vanish.



kernels with the wave function corrections, which yields

Cr (12\ [t
FO ReT{" @), = <F (%) { 32“) +t4(u)+0(5)} FO 30 (15)
c b

and an additional p-dependent contribution to the physical kernel from

CQ
FY ReT() @l — FF{12L+tE,2(u)—|—O(8)} FO O (16)

amp,F
c

Colour-suppressed tree amplitude

In this case we find an analogous set of operators,
O =NL& ML,
Op = [1"7"1"L) & [y, L] — 16 O,
Ow = "'y L) & [V 7077 L) = 20 O — 256 O, (17)

but the fields are now given in the wrong ordering @(y)[y, z]T'1b(z) and d(z)Cyu(z) (indi-
cated by ®), which does not yield a form factor and a light-cone distribution amplitude.
The latter follow from the factorized hadronic matrix element of the operator

O = d(z)y"Lb(z) © u(y)ly, =]y, Lu(z), (18)

which is the Fierz-symmetric counterpart of @. We therefore extend the right hand side
of (I0) to include four operators in this case: the physu:al operator O, the evanescent
operators O and O and the Fierz-evanescent operator Op = O — O.

The IR subtractions turn out to be particularly complicated in this case, due to
the fact that the evanescent operator Op already appears in the tree level calculation.
As a consequence the naive split-up into non-factorizable diagrams, which contribute to
the hard-scattering kernels, and factorizable diagrams, which give form factor and wave
function corrections, is spoiled. In NLO we find that equations (30) and (31) of [5] should
be replaced byﬁ

Q)Y + 2010 = PO . TV 0 @ + A,
Q" + 20O = PO .10 0 O 4 PO 70 @ 61 — AL (19)

where Agz contains the (non-vanishing) 1-loop counterterms of the form factor and wave
function corrections for the Fierz-evanescent operator Op. In other words, the split-up
in the above example of the colour-allowed tree amplitude followed from the fact that
the corresponding counterterms vanish for the physical operator O (i.e. Agk) =0).

From the first equation in (I9) we see that we can neglect the factorizable 1-loop
diagrams in the computation of the NLO kernels. In order to account for the counterterm

8We introduce the “hat” notation to distinguish these quantities from those of the preceding section.
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contribution A%Z, we compute the UV-divergences of the 1-loop diagrams from Figure 5
and 6 of [5] with an insertion of the Fierz-evanescent operator Op. We find that the
counterterms (ct) are given by

|0 = O { P60+ LFD B0

1
1(0) & (1 % e 1 - 0) #(0
DY (u) =20k /0 dw Vi(u, w) {F(°><I>(°)(w)+4—€F,§)q>§E)(w) . (20)

with Vg(u,w) from equation (45) of [5]. Convoluting these expressions with the LO
kernels, Tl(f? = Cp/N, and TQ(S; = 1/N,, yields the additional counterterm contributions

A 203 1
Ay = CrAL) = = { FOO 4 —Fy) <1>(°)} (21)

With this prescription the NLO kernels turn out to be free of IR-singularities. Evaluating
the first equation of (I9) to O(¢?) gives (in terms of Tl(l) from (I4])),

73" (w)
2N,

:_T 5\1; (:Tg) { +2L)s+< 2(u) — L2>52+O(53)},

T w) + Cp = —

1) (w) T2 & 86]3;2 ( ) {QL +tpo(u) + (fE,1<u) - L2>5 + 0(52)},
PO (u) = —TZ;%“) __o E“) ;V’TQ (’“‘—2) {2+£1(u)5+0<82)}. (22)

We next compute form factor and wave function corrections to @, O and Op. Proceeding
along the lines outlined in Section 4.3 of [5], we obtainf]

e 2\ 24¢(1 £00) A
$© = 0 {24— <6 g‘) r(@%} £ 0
— &

my,
3 eVEMQ : 1— 6+ 1682 — 14¢3 ~(0) 2 (0)
—CFp |- — | T F. o
E [5 + ( m? ) (¢) e(1—2¢e)(1 —¢)? BB

1 e\ T(e) £(0) 4(0)
C - F ’ (b ’
* FLe (mi ) iT—ep) o0

e\ © 24e(1+€) ~o) =
_CF< 5) r(g)ﬁ 0 GO

my
FO 80 =0 [1 - (D80 g (Lo FE B m 6 12k 2 po o
amp,F *F — YF mg 5(1 — 23)(1 — 5)2 8(1 — 28)

F(l)

amp,E

9The corrections to the physical operator O can be found in [5].
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1 w2\ T 0 <
L Oy {__(e u) 4( (e) ]Féo)q)g

4e mi 1—¢)?
€7E/,L2 ‘ 1 — 3¢ + 62 — 63 ~,(0) 2 (0)
—Cp|l— | T Fp7 @, 23
F( m’ ) ) a9 (23)

and for the wave function corrections

. 20
FOW = 480, [VE ® FO <1><0>] - EF l(V + 3VE) ® FY <1><°>}

amp,

C o
+ 2 vew £ 8],
(0) (1) 20) G0 | L CF 20 0| _ 20 5(0) 3,(0)

F q)ampF_2CF Ve® F%Y +2—5 Ve ® Fy’ ©p - VeFy o5, (24)
where ® represents a convolution and V is the Efremov-Radyushkin-Brodsky-Lepage
(ERBL) kernel [I8] (given explicitly in equation (43) of [5]). We finally compute the
convolutions of the NLO kernels with the wave function corrections. For the physical
operator O we get

0) P G _ _ 1 (1) &1
FO T Y = — 5 NCF( T3V o)
L o) 70 g o CF [; 20) §(0)
= —EF Tl (I)amp + W t3<U) —+ O(&) F o s (25)
while the evanescent operators give again pu-dependent corrections to the physical kernels
0) L A0 »01) 4 C? 2
0) (1) (1 0) (1) (1
FO T 80 = = P T 80,5 — SE{6L 4 imalu) + O ) £ 60,
oy 1 vy o C o
0) (1) &1 0) (1) &(1
FO T 80, =~ O 1) 80, — 6L+ iratu) +0e) ) PO 8.

(26)

According to ([I2]) we now have assembled all pieces to perform the IR subtractions in
NNLO. However, as we have seen above in the calculation of the NLO kernels, the naive
split-up into factorizable and non-factorizable contributions is spoiled for the colour-
suppressed amplitude. In analogy to (I9) we therefore have to account for an additional
contribution Ag)l on the right hand side of ([I2]), which represents the 2-loop counterterms
of the form factor and wave function corrections for the Fierz-evanescent operator Op.
The calculation of this counterterm contribution requires a rather complicated 2-loop
calculation on its own. We refer to Appendix [Bl for the details of this calculation and
quote the contribution to the physical kernel only,
2C% (Cr
N, { g2

X X 11 171
AP = CrAR), — — - [<1+L)CF+ECA—gnf}g

+28+—2+7L+1L2(J e, -2 +O(e) p FO 9O (27)
12 9 P AT R



3 Vertex corrections in NNLO

As we have seen in the last section, the NNLO calculation of the hard-scattering kernels
requires a rather complex subtraction procedure of UV- and IR-divergences. The fact
that the kernels turn out to be free of any singularities represents both a non-trivial
confirmation of the factorization framework and a stringent cross-check of our calculation.

3.1 Hard-scattering kernels

In terms of the Wilson coefficients C; of the physical operators ); from the operator basis
@), the topological tree amplitudes take to NNLO the form

Qs

4z

. C
a(MiMy) = G+ 5 2 {01v<1>+ v+ v +0(a§)}+...

C Gy o, C C
as(My M) = NFcl + FQ + Z‘— 2]\? { < Cy — ﬁl) v —20,Cy
s C C C
I KQCQ - ﬁ) v+ <Ficl * ﬁ) VD 120, v
113 5
+ <8CF — ﬁCA — §nf) Ca Cl} + O(ai)} +... (28)

where the ellipsis refer to the terms from spectator scattering which we disregard in
the following. In this notation the ay corrections have been expressed in terms of the
convolution

1
VO = [“du (= 6L + ga(w) + imgu(u)) b (w) (29)
0
where L = In p?/mj and (recall that =1 — u)

g1(u) =—=3—-2Inu+2Inua,

1—3u

M Inu+ [QLiQ(u) —In*u — Inu—(u—u)f. (30)

g2(u) = =22+

If we transform these expressions into the Fierz-symmetric operator basis that has been

used in many previous QCD factorization analyses, we reproduce the NLO result from [I].
In NNLO we find the convolutions

1
v = / du { (36CF — 290 + 2nf> L’
0

29 2 91 10
+ {(30,4 — g?’Lf)QQ(U) — ECA — Enf + Cphﬁ(u)

+ iw[(?CA - %nf>gl(u) + C’Fhl(u)} }L

10



+ Cphr(u) 4+ Cahg(u) + (ng — 2)ho(u; 0) + ho(u; 2) + ho(u; 1)

+ i [Cphz(u) + Cahs(u) + (ng — 2)ha(w; 0) + hy(u; 2) + ha(u; 1)} }¢M2 (w),

v = /0 du {18L2 n (21 — Bga(u) — Bimgy (u))L + hg(u) + iﬂho(u)}¢M2(u), (31)

where ny = 5 represents the number of active quark flavours and z = m./m,. The
explicit expressions for the NNLO kernels hg_4, which specify the imaginary parts of the
topological tree amplitudes, can be found in [5]. As a new result we obtained the real
parts of the topological tree amplitudes to NNLO, which have been given in terms of a
new set of kernels hs_g that are listed in Appendix

Partial structures of our NNLO result can be cross-checked. First, we verified that
the scale dependence between the Wilson coefficients, the coupling constant, the hard-
scattering kernels and the light-cone distribution amplitude cancels in the tree amplitudes
a; (M M) to O(a?) as it should!]. Second, we compared the terms proportional to ny
with the analysis of the large (y-limit in [I9] and found agreement. Finally, we reproduced
the imaginary part of the colour-suppressed amplitude from our earlier analysis in [5],
which was derived on the basis of Fierz-symmetry arguments.

3.2 Convolutions in Gegenbauer expansion

We expand the light-cone distribution amplitude of the emitted meson M, into the eigen-
functions of the 1-loop evolution kernel,

dan, (1) = 6ut |1+ ad? O (2u—1)] (32)

n=1

where a2 and C%? are the Gegenbauer moments and polynomials, respectively. It is
convenient to truncate this expansion at n = 2, which allows us to perform the convolution
integrals in our final expression (31]) explicitly. The convolution with the NLO kernel

results i,

45 11 21
—— —al - adP (33)

[ o) o) = =3+ 5

whereas the convolutions with the NNLO kernels become

! 5347 14833
[ sty onno) = 257 - F20G st
0
12487 23974
2emol 21 2) 2
+( - — 936G+ T2In2)r? + =

10WWe emphasize that this cancellation would have been incomplete, if y-dependent contributions from
the mixing of evanescent operators as e.g. in (I6]) or (26) had been missed.
HWe refer to [5] for the convolutions with the kernels g; and hg_j4.
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4568 77157
TN |
{ 5 + 5 ¢z — 19008 (5

21807 18174
—(—%L—4%2@+2mnﬂw?— Hf}a%

32369221 2236872
12600 35

(204218

(s + 74304 (5

79774
—-18576C3—-20641n2>ﬂ2—+ 15T:}a§b,

! 154 329
/ du hg(u) o, (u) = 348 — 5 al + 10 ad®,
0

12809 266006
— 6564
60 5 Gz + €

/01 du hr(u) ¢, (u) =

1347
45

12811
+—(——6————1764C3——481n2)ﬁ2%—

{50387 132294

— 32479
80 5 Gs — 3247265

66425 1767
—»(——6————885643——12961n2>ﬂ2—— 5” }cﬁ@

75807647 3960924
- 129204
{ 12600 55 o T 1292046

+<2074841
45

7277t
-—34884@3——8672h12)w2%7 5” }agb,

74611 618

1
du h = ———— + —(3— 186
[ dunstw) omw) =~ + 56— 1866

815 16974
—(— -1 — 361 2) 2
( 5 08C3—36In2 |7 120

355693 10818
-2
{ 50 s — 2556

1081 1517
—-(EE-—270@+4%4m2>w2+ ;r}a¥2

{ 148920211 128283

— 666
25200 35 G <

66545 140374
(2222 1458 ¢, — 41201 2) 2 _ M;.
( = 58 s 0In2)r® — — }cb
(34)
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We finally perform the convolution with the hard-scattering kernel hg(u; z5), which stems
from the diagrams with a closed fermion loop. As this contribution depends on the mass
my = zymy, of the internal quark, we parameterize the convolution as

1
/ du ho(u; 25) oary(w) = Hoo(zp) + Hoa(25) i + Hoa(z5) a3™. (35)
0
For massless quarks we may perform the convolution integral analytically,
! 493 272 40 8059
/O du ho(u; 0) P, (u) = ;8 3 <§ + 27T2) ' + (W - 7T2) ay®,  (36)

whereas we obtain numerical results for massive internal quarks. In Table[llwe summarize
the contributions from closed fermion loops for massless quarks (z, = 0), for a b-quark
(2, = 1) and for a charm quark (z. € [0.25,0.35]).

We illustrate the relative importance of the individual contributions setting p = my
and z, = m./my = 0.3, which yields (with Cp =4/3, C4 =3, ny =5)

VW = (=22.500 — 9.4254) + (5.500 — 9.4254) a}”> + (—1.050) ay™,
V® = (—178.38 — 349.444) + (660.59 — 119.36 1) a2 + (—85.40 — 62.634) @)™,

VP = (322.19 + 320.944) + (—212.97 + 154.414) o + (3.81 — 34.064) ad>.  (37)

We find relatively large coefficients for the NNLO terms and expect only a minor impact
of the higher Gegenbauer moments in the symmetric case with a]” = 0.
We conclude with a remark concerning the large (y-limit that has been considered

in [I9]. In this approximation we get

Vi?| .~ (—239.31 — 264.94i) + (380.33 — 252.90i)a}™ + (—40.96 — 21.68i)a}”, (38)

whereas the contribution from VQ(Q) is completely missed. As a consequence the NNLO
contribution to «a; is substantially underestimated in this approximation, whereas the
one to s deviates from the full NNLO result between ~ 15% for the imaginary part
and ~ 40% for the real part. This illustrates the importance of performing exact 2-loop
calculations.

2§ 0 0.25 0.275 0.3 0.325 0.35 1
Hy 20.81 17.12 16.43 15.72 14.99 14.26 | —3.62
Hy, | —=33.07 | —13.28 | —12.37 | —11.54 | —10.77 | —10.07 | —0.68
Hy, 3.56 2.08 1.94 1.81 1.68 1.57 0.01

Table 1: Fermionic contribution in the notation of (33). The first column
refers to massless quarks, the last column to the b-quark and the other columns

to the charm quark for different physical values of z. = m./my.
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4 Numerical analysis

We conclude with a brief analysis of the numerical impact of the considered NNLO cor-
rections. As a phenomenological analysis of hadronic B decays is beyond the scope of the
present paper, we focus on the perturbative structure of the topological tree amplitudes
and discuss their remnant uncertainties. In particular, we now combine our results with
the NNLO corrections from 1-loop spectator scattering that have been worked out in [3].

4.1 Implementation of spectator scattering

In contrast to the vertex corrections considered in this work, the spectator scattering
term is sensitive to two perturbative scales: the hard scale p;, ~ m; and a dynamically
generated intermediate (hard-collinear) scale yip. ~ (Aqcpmy)?. The hard scattering
kernels from spectator scattering therefore factorize further into coefficient functions H}?,
encoding the hard effects, and a universal hard-collinear jet-function J|. Renormaliza-
tion group techniques can be used to resum parametrically large logarithms of the form
Inmy/Aqep in terms of an evolution kernel U. Following the first paper of [3], we
implement the spectator scattering contribution to the topological tree amplitudes a

Ci(p) T (1) @ [fo5) (1) ® dar, (1) ® dary (12)
— Cilun) H (i) @ Uy (pn, 1tne) @ T (1ne) @ [F505] (ne) © dan, (ne) © dan, (kn). (39)

Since the spectator scattering starts at O(as), the resummation is required here in
the next-to-leading-logarithmic (NLL) approximation. Unfortunately, a complete NLL
resummation is not possible since the evolution kernel | is known in the leading-
logarithmic (LL) approximation only [20].

We therefore proceed along the lines of our earlier analysis [5], where we worked in
the LL approximation which is consistent for the imaginary parts that are of O(a?).
According to this, we implement the LL evolution of the HQET decay constant and the
Gegenbauer moments to evolve the hadronic parameters from their input scales to the
ones required in (B9). The B meson distribution amplitude is modeled according to [21],
which implies Ag(1GeV) = (0.48 £0.12)GeV and, for the first two logarithmic moments,
01(1GeV) = 1.6 £ 0.2 and 05(1GeV) = 3.3 £ 0.8. The 1-loop matching corrections to
the hard functions H/! [3] and the jet function J [20, 22] are implemented neglecting
crossed terms of O(a?). We finally adopt the BBNS model from [I] to estimate the size
of power corrections to the factorization formula.

In the spectator scattering term we compute the Wilson coefficients from the effective
weak Hamiltonian in the NLL approximation with 2-loop running coupling constant.
Quantities referring to the hard scale are evaluated in a theory with ny = 5 flavours and
those referring to the hard-collinear scale with ny = 4.

120ne should keep in mind that the Wilson coefficients in the spectator scattering term refer to a
different operator basis than the one used in the current work (namely the Fierz-symmetric traditional
basis that we denoted by a tilde in [5]).
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4.2 Tree amplitudes in NNLO

We finally evaluate the topological tree amplitudes for the B — n7m channels using the
input parameters from our earlier analysis [5] and computing the Wilson coefficients
in the vertex corrections in the next-to-next-to-leading-logarithmic (NNLL) approxima-
tion [8, 23] with 3-loop running coupling constant [24] and Al(wiS = 205 MeV. Under these

specifications the NNLO prediction of the topological tree amplitudes become!
ay(rm) = 1.008|, + [0.022 4 0.009i] ) + [0.024 + 0.0264] )

—0.012|44, — [0.014 4 0.0114] ;) — 0.007] ,
= LOW9HT + (002524 810)0

ay(mm) = 0224, — [0.174+ 0.075i] o) — [0.030 + 0.0484]

v V(2

+0.075| 4, 4 [0.032 4 0.0191] (5, + 0.045] ,

= 01737575 — (0.1031555,)i. (40)
Here we disentangled the contributions of the various terms in the factorization formula,
namely the tree level result V(© ("naive factorization”), NLO (1-loop) vertex corrections
VW NNLO (2-loop) vertex corrections V| NLO (tree level) spectator scattering S™)

NNLO (1-loop) spectator scattering S® and the modelled power corrections P.
The new contributions from this work consist in the real parts of the terms denoted by
V. For the colour-allowed amplitude ay(77), this correction is slightly larger than the

a, terms due to an numerical enhancement from the Wilson coefficients in the effective
Hamiltonia. On the other hand, the colour-suppressed amplitude ao(77) receives a

13The numbers for the imaginary parts differ slightly from those of [5], since we now evaluate the
Wilson coefficients throughout in the NNLL approximation.

14We remark that a similar enhancement is unlikely to exist at even higher order of the perturbative
expansion, since the NNLO expressions already reveal the full complexity.

I Hhe /B Fpm AB ay Xu

R +0.008 | +0.006 | +0.003 | +0.006 | +0.006 | 40.007 | +0.007
e(O‘I) -0.011 | —-0.007 | —0.003 | —0.008 | —0.009 | —0.008 | —0.007

I +0.017 | +0.002 | +0.001 | +0.002 | 4+0.002 | 40.004 | +0.007
m<a1) -0.011 | —-0.003 | —-0.001 | —0.003 | —0.003 | —0.004 | —0.007

R ( ) +0.016 | +0.026 | +0.014 | +0.038 | +0.039 | +0.038 | +0.045
elaz —-0.008 | —0.023 | —0.014 | —0.025 | —0.026 | —0.033 | —0.045

I ( ) +0.019 | +0.005 | +0.002 | +0.005 | +0.005 | +0.007 | +0.045
miaz —-0.028 | —0.004 | —0.002 | —0.003 | —0.003 | —0.006 | —0.045

Table 2: Dominant uncertainties of our final predictions for the colour-allowed
tree amplitudes o () and the colour-suppressed tree amplitude as(wm) from
scale variations, hadronic input parameters and modelled power corrections.
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moderate correction. In particular, we do not find an enhancement of the phenomeno-
logically interesting ratio |as/aq| from the perturbative calculation.

In Table 2] we list the uncertainties of our NNLO predictions stemming from scale
variations, hadronic input parameters and the modelled power corrections. The values
of the first two columns follow from varying the perturbative scales independently in
the ranges py, = 4.875% GeV and . = 1.5702 GeV. As the dependence on the hard
scale tends to cancel between vertex corrections and spectator scattering, we vary both
contributions independently and take the larger interval (from the vertex corrections) as
our estimate for higher order perturbative corrections. The scale dependence of the vertex
corrections is also illustrated in Figure 2 where we read off that it gets substantially
reduced for the real parts at NNLO, whereas the reduction is less pronounced for the
imaginary parts.

For our final error estimate in (40)) we added the individual uncertainties from Ta-
ble 2] in quadrature. Whereas the colour-allowed amplitude a;(77) can be computed
precisely in the factorization framework, the situation is less fortunate for the colour-
suppressed amplitude as(7m). Due to large cancellations between the vertex corrections,
the colour-suppressed amplitude becomes particularly sensitive to the spectator scatter-
ing contribution and is therefore subject to rather large uncertainties related mainly to
our restricted knowledge of the hadronic input parameters.

Re(al)v

[ Im(aq)y
1081

i 008}
1d€— 0.08y,

\ o.m\
14 e

i 002}
102} e ‘ ‘ ‘

L T T e 4 6 s Hh
S S mlt N

Re(az)v Im(az)y

P R pn

0.15-
-0.05

0.10-
-0.10

oosf .
B —0a5f
S 1

4 6 s Hh _0.20f

-0.05- -0.25%

Figure 2: Dependence of the tree amplitudes o;(wm) as a function of the hard scale py, (vertex
corrections only). The dotted (black) lines refer to LO, the dashed (orange/light gray) lines to
NLO and the solid (blue/dark gray) lines to NNLO.
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5 Conclusion

We computed the real parts of the 2-loop vertex corrections for charmless hadronic B
meson decays, completing the NNLO calculation of the topological tree amplitudes in
the QCD factorization framework. We in particular showed how to compute the colour-
suppressed tree amplitude without making use of Fierz-symmetry arguments and found
that the hard-scattering kernels are free of IR-singularities and the resulting convolutions
with the light-cone distribution amplitude of the emitted light meson are finite, which
demonstrates factorization at the 2-loop order.

The numerical impact of the considered corrections was found to be moderate, al-
though they can be of similar size as the NLO corrections. The scale dependence of
the real parts of the topological tree amplitudes is significantly reduced at NNLO, which
allows for a precise determination of the colour-allowed amplitude «;. In contrast to this,
it remains difficult to compute the colour-suppressed amplitude as in the factorization
framework, since it is subject to substantial uncertainties from hadronic input parame-
ters and potential 1/my, corrections. In particular, we do not find an enhancement of the
phenomenologically important ratio |as/aq| from the perturbative calculation.
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A Auxiliary coefficient functions

In the calculation of the colour-allowed tree amplitude, the NLO kernels have been given
in (I4) in terms of the coeflicient functions

1 Ina 2
to(u) = 4Lig(u) —In*u +2Inulna + In?a + (2 —3u)(¥ - M) — % — 22,
u u

t1(u) = —2Lig(u) — 2S12(u) — 2In @ Liy(u) + In®u — 2In® uln @ + Inun® @ — In® @

2 — 3u? 2 — 6—11 2>
+ E%u Lig(u) — _3u<ln2u—lnulnu)+ u_+ ur Inu
ull U a
4—3 18 — 33 Sum? 7 — 6u)m?
Un2g — Ut oum lnﬂ+7( 7u)ﬁ + 2(3 — 52,
2u 3u 6u

7
ta(u) = 10Lig(u) — 8S22(u) + 10S; 3(u) — 8Inu Liz(u) + 10Inw Sy o(u) — 15 In* u

4 1
+ 51n* @ Lig(u) + gln?’ulnﬂ—anuanﬁ—l— glnuln3ﬂ+1—721n4u

8§ —3
uln?’ﬂ

2 — 6u + 6u? 4— 6u+ 3u?
i G s O Wl L L (Sl,g(u) + 1naL12(u)> -

utl ul 6u
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2 — 60(1 — 2 17um?
_3u(4ln3u—61n2ulnu+31nuln2u> — ( u)_+ un In?u
6u 124
3(6 — 4u — Tu? um? 24 — 54 Sum? 29 — 24u)7?
( Y EL ) + uam Lis(u) + u7+ ur Inulna + ﬂ
3ut 6u 6u
N 6(12 — 13u) + Tur? n2i 4 24(7 — 13u) + (10 — 15u)7? l 23
n nu —
12u “ 12a “T 180
B 24u(7 — 13u) + (2 + 23u_— 27u?)m? + 24uuds Ini 4+ 10 —_11u<,3 112,
12uu U
1—2u/lnu  Inu 16
s -2y 2
1—-2 1-3 2—3
tpi(u) = — 2uﬂu ip(u) + 1 U inZy + %lnulnﬂ T UIn2q
_4(1—2u)(lnu_lnﬁ> B (6—5z¢)7r2+12 (41)
3 U U 12u

and the convolutions of the NLO kernels with the wave function corrections, cf. (I5]) and

(I6)), involve
2 2 Li
ts(u) = 4Liz(u) + 451 2(u) — 4 Inwu Liy(u) + 3 In®u —2In*ulna — 3 In® @ — 12(_u)
(0
1-3 3 4 — 2 15
— u<u1n2u+2ulnulnu—uln2u)——lnu+ﬂ———4g},,
2uu 2u 6u 2

ta(u) = 12Lig(u) — 20855 (1) + 128, 5(u) — 8(1nu +In u) Liz(u) + 12Inu Sy 2(u)

3 7
+4InaS;o(u) +(4ln2u+4lnulna + 2ln2a)Li2(u) — “In*u+ 3 In®ulna

4
1 1 4—-11 2 5—12
——1n2uln2ﬂ——lnuln3ﬂ+—ln4ﬂ—$3uhg(u)+ - uln3u
2 3 4 Ul U
1 — 3u? 2—10 6u? 1-5 3u?
Ut Ul Ul
2—10 9u? 1—-2 5—6
#lrfulnﬁ— _ulnuln2ﬂ— uln37j
2ut 2ut 6u
18 — 24u + 15u® — 10uun? _ 16 — 27u + 4urn® |,
- - Liy(u) — - In“u
3ul 4u
6 — 36u + 27u* — 4uur? 314 —17u) + 8um? |, _
— - Inulnu + In“w
2u 12w
— 15u — 47? — 484 2 — 2374 23 —1 2
8 — 15u _7T 8u(s It 3( _3u)(’3 237 N (23 TU)TF
4u U 60 12u
81 — 126w + 45u® — (14 — 22u + 6u?)7* — 192uus I 137
12ut ’
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6(1—2 6 2

tpo(u) = —(7_U)Lig(u) — —Inulnw —6lnu —6lnu — WT + 50. (42)
Ut u U

In the calculation of the colour-suppressed tree amplitude, the NLO kernels in (22)) contain

the coefficient functions

~

t1(u) = %lnu—lnﬂ+8+m,

3 1 3 — 2u)n?
ta(u) = %(Liz(u) —ln2u+lnulnﬂ+4lnu> + §1n26—41nﬁ— % 420
+i7r<4— lnﬂ),
. T .
teo(u) = Elnu—lnu+6+m,

. i 1 2
fpa(u) = —%(Liz(u) T n?a— 31na) +5In’u—3lnu+ 14— % +m(3 - lnu> (43)

and the convolutions with the NLO kernels, cf. (25]) and (26]), give rise to

t3(u) = % -5+ gln2u+21nulnfa—ln2a— M,
u U
; L 3(1
tpa(u) = > <6Li2(u) +3ulnu — 7r2) — % Inu 4 27 + 3im,

. 1 2
tro(u) = p (2(1 + 2u)Lig(u) —uln*u — 2aInulna + 3ulnu — (2 + u)%)
u 3(1+u)

+ —In*u —

2 21
1nﬂ+29—|—i7r(3—fulnu+—ulnﬂ). (44)
u u u u

B Calculation of 2-loop counterterms Agz

We present the calculation of the 2-loop counterterms Agz, that are required in the
NNLO calculation of the colour-suppressed tree amplitude as described in Section 2.4l
The counterterms receive three contributions

AY =1 e { A8+ VoY + Y 6} ()

ct

where ® represents a convolution and ”ct” refers to the counterterm contributions of the
form factor and the wave function corrections. Notice that the wave function corrections
actually correspond to local corrections to the decay constant, as a consequence of the
fact that the tree level kernels TZ(%) are constant (cf. also (20)) and (21])).

We first consider the mixed term F }1) @S), which involves the calculation of the dia-
grams from Figure 3 The first diagram vanishes due to a scaleless loop integral and the
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Figure 3: Diagrams that contribute to the mixed contribution FS) @g) The
symbol @ in the lower (upper) line refers to an insertion of the 1-loop counter-
term from the form factor (wave function) correction of the operator Of.

second diagram yields

evEp?\ * l—e+22 6(14+2)\ ro) 2 6(1+¢€) ~0) 20
h=-Cpl—5) T £ 0 4 2L T E) 5(0) §(0)
== (TF) T (e s TSR

1 — 6e + 16e2 — 14&3
4e2(1 — 2e)(1 — )2

FO 0 4 T E FY <1>§§?}. (46)
We are left with the 2-loop counterterm from the last diagram of Figure [3], which requires
the calculation of the UV-divergences of the 2-loop diagram from Figure @ For this it is
convenient to apply the method proposed in [25] (sometimes called IR-rearrangement),
which allows to set all masses and external momenta to zero. The calculation then reduces
to the evaluation of 2-loop tadpole integrals, which depend on a single mass scale (an
artificial scale that has been introduced to separate UV- and IR~divergences). Computing
the 1-loop counterterms with the same prescription and accounting for the wave-function

renormalization, we get

8y = C;{ (g + 5) FO $O) (4% - E)Fg)) o0 4 @ng ) 4 gpp q>;9>}. (47)
Next we compute the form factor correction F }2) (fig) (the corresponding diagrams are
shown in Figure Bh). The first diagram gives again the contribution ¢; from (@@). On
the other hand the computation of the 2-loop counterterm from the second diagram
of Figure Bh is rather involved. It requires the calculation of the UV-divergences of a
couple of 2-loop diagrams (shown e.g. in Figure 1 of [I5]) and the corresponding 1-loop
counterterms. Proceeding as before with the method of IR-rearrangement and accounting
for the 2-loop wave-function renormalization in the MS-scheme [26],

1 1 3 17 1 1

Figure 4: The UV-divergences of this 2-loop diagram contribute to ds.
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g

Figure 5: Diagrams that contribute to FI(UQ) @);9) (a) and Fl(mo) @g) (b).

yields the 2-loop form factor counterterm for the Fierz-evanescent operator @

11 1 \1 17 149 5 o s
— B - - . = £ $0)
(53 CF{ |:<3CF 6CA+3’nf)€+( QCF CA+18 ):|
3 11 1 \1 /9 53 1 \1] 2@ 20
e il il 2 0. - 2 PO
( sCF gt 12”/‘) =27 (16CF 11 T 7 f) J B TB

C 5 1 \1 1\ 1.0 -

L+ (— —Cr+ =C ) } FO o0 + (BCF - —(JA + 3nf)—F;°> <1>;9>}.
e

(49)

We finally account for the wave function correction 13’ ©) CID( from Figure Bb. The first
diagram again vanishes due to a scaleless integral and the second diagram yields, in a
convolution with a constant kernel, again the contribution d3 from (49).

To summarize, in terms of the individual contributions ¢; from (@€]), (@7) and (49),
the 2-loop counterterms required in the calculation of the colour-suppressed amplitude
become

AP = CpAl) = %{251 + 6+ 253}. (50)

C NNLO hard-scattering kernels

Our final expressions for the real parts of the NNLO vertex corrections from (3I]) involve
the following set of hard-scattering kernels,

4(3 — 3u + 8u? — 2u?) 8(12 — 35u + 36u? — 14u® + 4u?)

() = _ Lis(u) - o 25(u)
12 -4 Tu? — 48u3 + 24u?
— 24 1Inwu Lig(u) — il Tt 373 Bu” + 24u) <lnﬂLi3(u) — (3 lnu)
uu

17 — 82u? + 40u* — 16u°

2 4
Lig(u)? + 41n® u Lig(u) + = In*u — 3 In’ulna

2udu? 3
122 — 91u? + 20u* 51 + 16u? + 268u* + 4u"
— u_ Rl Inwu InaLis(u) — Tow — ut In®u1n’ @
Suu 12u3u3

15We performed this calculation for arbitrary bilinear quark currents, which allows us to perform
several cross-checks. We in particular verified that the anomalous dimension of the vector current
vanishes at the 2-loop level and reproduced the one of the scalar and the tensor current from [27].
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N 3 — 108u + 351u? — 440u> + 266u* — 74u® + 17ub — 1647 + 4u®
udud

3—178 109u? — 43u® — 6u* 3—3 22
B u + 109u u u IHULiQ(U)—U( 6u+ u?)
u

iz(u)

In°u

w3
3 — 5du + 69u® — 18u® — 6u* + 3u® — 2ub
2u3h

3 —3u—Tu?—3u?
+ 3
U
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24u3u3
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In®ulna

In?u + 72

(Li3(—u) —InuLiy(—u) - ———In(1 + u))
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(273 535u + 302u* — 90u® n (701 — 55u + 2794u* — 620u°) 7>

Inulna
40u23° 180u2a3 ) B

6u2u

(849 — 3456u + 4496u? — 2408u® + 2024u* — 984u°® + 328u’)w?

(167 302u (96 — 160u + 59u® + 9u’ + 3ut — 2u5)7r2) |
nu

720u3us
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48u3u3 8
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udu
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_ A v u;;ff‘ s u>(lnulna—%)Liz(u)
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+ Lip(u) +
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2uu? duu? n
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The definition of the functions H; »(z) can be found in Section The diagrams with
a closed fermion loop give for massless internal quarks
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and for an internal b-quark
o 1) = | (Lis(—0) = Sual=a) = (1 + 2} Lis(—s) — 75 ° =
u;1) = | = | Lig(—xp) — —xp) — In xp)Lig(—xp) — —In
o(U; 2 | (=T 1,2(—Tp pJliz( =) = 5 " =
I w2 T 14 — 75u? 4+ 60u* 4+ 19u® _
_éln (1+xb)+€1n1+xb) - W Inulnu
2up(6+u) [ . 1. 5 x 1, 2 du .
— ——( Lig(—ap) — =1 —In“(1 — —L
u (=) 1" 1+l‘b+2n( +"Eb)+6 +713 Is(u)
32 — 204u + 504u? — 584u? + 405u* — 150u® + 29u® _ 17(u — u)
— — Lis(u) = ——Inu
udu? 6u
(40 — 213u? 4+ 120u* — 19u8)7?  2(1 — 6u® + 6u)(3
bdudu? wdud
5(61 — 50u) .
Y T “)}
8(3 —u?) (. . _ 1. 5 m
+ [ ~ 32 <L13(—xb) — S12(—2xp) — In(1 + ) Lig(—xp) — D In o
2 54 — 103u? + 81ut
——In (1+xb)+ﬁ—ln o )+ Su” + 8lu Inulna

9u2u3

27



2u,(38 + 29u) (. 1., 1., 2
2O ) (4 (—y) — ~ 1 21 ~
+ ou ip(—xp) 4n1+xb+2n(+xb)+6

4(1+3u® —u?) | 128 — 504u + 389u?
- - ig(u) — - Inu
3us 1812
32 — 204u + 504u? — 584w + 405u* — 150u® 4 29ub _ .
— — L12 (U)
SITRITE:
(42 — 49u + 39u3)7r2 4(5 261 — 325u? B
54uu3 TR Quu? —(wea), (53)
where we introduced the shorthand notation
1 4+u
Ty = 5(.% —1), yp = - (54)

We finally refrain from presenting the charm quark contribution, which is rather com-
plicated and depends on two parameterizations for the 4-topology Master Integrals that
we could not solve in a closed analytical form (cf. the discussion in [I5]). We may still
evaluate these Master Integrals numerically in Section to perform the convolution
with the light-cone distribution amplitude of the emitted meson M.
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