
DESY 00{124TTP00{14hep-ph/0009029July 2000MATAD: a program pakage for the omputation ofMAssive TADpolesMatthias Steinhauser
II. Institut f�ur Theoretishe Physik,Universit�at Hamburg, D-22761 Hamburg, GermanyandInstitut f�ur Theoretishe Teilhenphysik,Universit�at Karlsruhe, D-76128 Karlsruhe, GermanyAbstratIn the reent years there has been an enormous development in the evaluation ofhigher order quantum orretions. An essential ingredient in the pratial alula-tions is provided by vauum diagrams, i.e. integrals without external momenta. Inthis paper a program pakage is desribed whih an deal with one-, two- and three-loop vauum integrals with one non-zero mass parameter. The priniple strutureis introdued and the main parts of the pakage are desribed in detail. Expliitexamples demonstrate the �elds of appliation.



PROGRAM SUMMARYTitle of program: MATADAvailable from:http://www-ttp.physik.uni-karlsruhe.de/Progdata/MATAD/1/Computer for whih the program is designed and others on whih it is operable: Anywork-station or PC where FORM is running.Operating system or monitor under whih the program has been tested: UNIX,FORM 2.3No. of bytes in distributed program inluding test data et.: 706000Distribution format: ASCIIKeywords: three-loop omputations, vauum integrals, omputer algebra, automa-tion of omputationsNature of physial problem: Multi-loop integrals are needed for the evaluation ofquantum orretions. An important lass of loop diagrams is overed by so-alledvauum integrals whih have no external momentum. MATAD an analytially om-pute those one-, two- and three-loop vauum integrals where one mass sale ispresent.Method of solution: The method of integration-by-parts is used in order to obtainreurrene relations whih redue ompliated integrals to a small set of so-alledmaster integrals. They have to be evaluated one and for all. In addition a userinterfae is provided whih makes it easy to put in ompliated diagrams in a ratherompat way.Restritions on the omplexity of the problem: The restritions on the omplexityare given by the hardware limitations of the omputer and the limits on the size ofthe storage �les inside FORM.Typial running time: The runtime strongly depends on the omplexity of the di-agram under onsideration. It may vary form a few seonds to the order of a fewweeks.
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LONG WRITE-UP1 IntrodutionThe high experimental preision reahed at the eletron-positron mahines LEP (CERN)and SLC (SLAC) and the hadron ollider TEVATRON (FERMILAB) requires from thetheoretial side the evaluation of higher order quantum orretions. In the ases whereperturbative methods are applied the quantum orretions an be expressed throughan expansion in the oupling onstant of the underlying theory. The individual termsan in turn be expressed through so-alled Feynman diagrams, whih are often lassi�edas multi-leg or multi-loop diagrams. Vauum integrals, i.e. integrals without externalmomenta, onstitute an important sub-lass and often serve as building bloks in omplexalulations.In general the momentum integration of the loop integrals is divergent in four spae-time dimensions. At present the most pratial method to ope with this problem inhigher loop orders is based on Dimensional Regularization [1℄. There, the four spae-timedimensions are replaed by D = 4 � 2" dimensions. Then the integrals are solved for ahoie of " that renders them �nite. Finally an expansion for "! 0 is performed and thedivergenes manifest themselves as poles in ".Important progress in pratial omputations has been made roughly 20 years agoby establishing an algorithm for the evaluation of propagator-type diagrams up to threeloops in the massless ase [2℄. They are important if there is only one external momentumwhih sets the mass sale for the problem. The formulae have been implemented onthe omputer in the FORM [3℄ pakage MINCER [4℄. In 1995 for the �rst time three-loopdiagrams in the opposite limit, i.e. zero external momentum but massive lines, weresystematially examined [5℄. Usually these are denoted as vauum or tadpole diagrams.In [5℄ all integrals ontributing to the photon propagator have been onsidered. The mainharateristis of this lass of diagrams is that the massive line forms a losed loop. Theseonsiderations have been extended to the W boson urrent orrelators whih led to one ofthe most prominent appliations of three-loop vauum integrals, namely the � parameterat O(��2s) [6, 7℄. The remaining ases have been onsidered in [8, 9, 10, 11℄. Thus it is| at least in priniple | possible to treat all problems where exatly one heavy mass isinvolved.In this paper we want to present the program pakage MATAD whih was designed forthe omputation of MAssive TADpoles at one-, two- and three-loop order as pitured inFig. 1. Thereby eah line may be massless or arry the mass M . In mathematial formthe integrals to be solved by MATAD readZ dDp(2�)D 1(p2 +M2)n ;Z dDp(2�)D dDk(2�)D 1(p21 +M21 )n1(p22 +M22 )n2(p23 +M23 )n3 ;2
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5Figure 1: Prototype topologies for one-, two- and three-loop vauum diagrams. Themomentum pi ows through the line i as indiated by the arrow. Eah line may either bemassless or arry mass M and may be raised to an arbitrary integer power.Z dDp(2�)D dDk(2�)D dDl(2�)D 1(p21 +M21 )n1(p22 +M22 )n2(p23 +M23 )n3 �1(p24 +M24 )n4(p25 +M25 )n5(p26 +M26 )n6 ; (1)with Mi = 0 or Mi = M . These expressions orrespond to the diagrams in Fig. 1 wherethe momentum pi ows through the line i as indiated by the arrow. pi an be expressedas a linear ombination of the loop momenta. However, these relations are in our asenot of interest. Note that the integrals in Eq. (1) are de�ned in Eulidean spae.The key idea for the omputation of tadpole integrals is based on the integration-by-parts method [2℄ (see also Appendix A). It an be used for the derivation of reurrenerelations whih relate vauum integrals with di�erent denominator strutures. The properuse of the reurrene relations allows the redution of an arbitrary integral to simpleones, whih an be solved by suessively using one- and two-loop formulae, and a linearombination of a few so-alled master integrals. Only for them a hard alulation isneessary. In the ase of three-loop tadpole diagrams nine master integrals are needed.At �rst sight the appliations for vauum integrals seem to be quite restrited. How-ever, for diagrams involving several mass sales, whih follow a ertain hierarhy, it is veryoften advantageous to apply an asymptoti expansion [12℄ whih allows for a systematiexpansion in the inverse heavy sale. Then the multi-sale integrals are expressed as prod-uts of single sale ones. In [13℄ and [14℄ the rules for the so-alled large-momentum andhard-mass proedure have been automated and omputer programs, LMP [13℄ and EXP [14℄,have been developed. They generate for a given diagram all relevant sub-graphs togetherwith the administrative �les whih govern the very alulation. LMP [13℄ is written in PERLand an be applied to problems where one large momentum is involved. EXP [14℄, writ-ten in C++, allows for a suessive use of the large-momentum and hard-mass proedure3



and thus an deal with problems involving many sales. Both programs produe outputwhih an be read into MATAD and MINCER. Thus the ombination of both massive vauumintegrals and massless propagator-type diagrams is very powerful to attak problems in-volving several di�erent mass sales. We want to mention that MATAD an be easily linkedto a generator for Feynman diagrams. More details | in partiular on the automation ofthe omputation of Feynman diagrams | an be found in [15℄.The outline of the paper is as follows: In Setion 2 the struture of MATAD and theway it works is desribed. With the help of this setion the reader should be able touse MATAD for his own problems. Deeper insight into some seleted parts is provided inSetion 3. In Setion 4 expliit examples are disussed and hints for the onvenient us-age of MATAD are given. In Appendix A the ideas of the integration-by-parts method arereviewed. Appendix B lists all massive/massless ombinations whih are implementedinto the topology �les and in Appendix C the notation of the input and output is de-sribed. Furthermore the results for the master integrals are listed and the swithes forthe input-�le are desribed. Appendix D ontains a list of all �les of MATAD and, �nally,in Appendix E the omplete output of one of the onsidered examples is listed.2 Struture and mode of operationAs MATAD is ompletely written in FORM [3℄ its installation redues to opying the individual�les into the orresponding diretories. In the main diretory the following �les appear:form.set in/ matadform pr/ problems/The diretories in and pr ontain the inlude-�les and proedures, respetively. Theyare desribed in more detail in Setion 3 and Appendix D. matadform is a shell sriptwhih alls FORM in suh a way that �les from sub-diretories an be inluded. It has tobe adjusted by the user by simply speifying the orresponding paths. The �le form.setontains FORM-spei� settings whih have to be adjusted aording to the underlyingplatform. For details onerning the di�erent swithes we refer to the FORM manual [3℄.The user-spei� �les are all ontained in the folder problems.There are at least two �les whih should be provided by the user: main<prb> and<prb>.dia where <prb> stands for the name of the onsidered problem. The �rst oneontains apart from some parameters essentially the information whih diagram should betreated. Some expliit examples are given below. All the information about the diagrams,the projetors to be applied, et. is ontained in the �le <prb>.dia. It is built up by FORMfolds and splits into two parts so that its generi struture looks as follows*--#[ TREAT0:[...℄*--#℄ TREAT0:*--#[ TREAT1:[...℄ 4



*--#℄ TREAT1:*--#[ TREAT2:[...℄*--#℄ TREAT2:*--#[ TREATMAIN:[...℄*--#℄ TREATMAIN:** in the following list eah diagram is ontained in a separate FORM fold**--#[ d1l1:[... diagram 1 ...℄#define TOPOLOGY "XY"*--#℄ d1l1:*--#[ d1l2:[... diagram 2 ...℄#define TOPOLOGY "XY"*--#℄ d1l2:[...℄The �rst part onsists of the �rst four folds | the so-alled speial treat �les. Theyprovide the possibility to interat at di�erent stages and thus inuene the omputation.Whereas TREAT0, TREAT1 and TREAT2 are read before the reurrene relations are appliedthe ontent of TREATMAIN is read right before the results are stored to disk. The seondpart of <prb>.dia ontains a list of all diagrams to be onsidered where eah diagram iswritten in a separate fold. The name of these folds is arbitrary.One these two �les are set up the alulation is simply initiated by alling the programmain<prb> and the following steps are performed. They are also illustrated in Fig. 2.1. Read global settings. They are partly ontained in in/main.gen and should not bemodi�ed. Others an be set by the user in the �le main<prb>. They are desribedin Appendix C.4.2. Read the input data for the diagram spei�ed in main<prb> with the helpof the variables PRB, FOLDER and DIAGRAM. The generi FORM ommand reads#inlude problems/'PRB'/'FOLDER'.dia # 'DIAGRAM'.As a next step the �le treat.pr is alled and the following operations are performed.3. Insert Feynman rules for funtions appearing in the input. In a �rst step the fermions(enoded in the funtions S, SS, . . . , f. Appendix C.1) are resolved. It is importantto do this before any ontration of indies is done. Then the propagators andverties are treated. 5



Stuture of MATADread global settingsread diagramall treat.pr:� treat fermion lines� insert Feynman rules� expand in small momenta� evaluate traes� perform Wik rotation� apply derivatives� read speial treat �lesinlude input top �le:� map expression to basi topologiesinlude basi top �le:� treat salar produts in numerator� apply reurrene relations� insert master integralexpand in " and store result to disk

TREAT0TREAT1TREAT2
TREATMAIN

Figure 2: Flowhart illustrating the struture of MATAD.In the urrent version the QCD Feynman rules are implemented (exept the four-gluon vertex; see Appendix C.1). It is, however, straightforward to implement newverties in the user-spei� treat �les.4. Apply projetor. This should be done in one of the speial treat �les. The optimalposition depends on the integrals to be omputed. From now on only salar integralswithout any free indies are present.5. Expansion of the salar denominators in the small quantities (mass and/or momen-6



tum).6. Perform traes.7. Do Wik rotation. This is done by multiplying eah momentum by the imaginaryunit (see also Appendix C). From now on the expression is de�ned in Eulideanspae.8. Apply derivatives in order to fatorize the external momentum. In this ontext seealso the variables DALA12 and DALAQN in Appendix C.4.As there is the possibility to interat at three di�erent plaes | after the fermions aretreated (TREAT0) and before and after the traes are performed (TREAT1, respetively,TREAT2) the order of the ommands may slightly be varied by the user.At this stage the salar produts in the numerator of the integrals should be formedby either only loop momenta or only external momenta (whih then onstitutes a trivialprefator). In the denominator the (salar) propagators may be raised to arbitrary power.The next steps onstitute the main part of MATAD.9. Express the salar produts of the numerator in terms of the denominators. Thisprodues a \1" in the numerator of the integrals. It might be that this step is verytime and memory onsuming.10. Apply reurrene relations to redue the number of di�erent integrals to simplerones and to a small set of master integrals.11. Expand the result in " and store it in the diretoryproblems/'PRB'/results/'DIAGRAM'.res under the name 'DIAGRAM'.An expansion in " is also done at various intermediate steps. Although poles of at mostthird order may appear for a three-loop vauum integral terms up to order "6 have tobe kept in the expansion as arti�ial poles may appear during the appliation of thereurrene relations (f. step 10).Steps 9 and 10 onstitute the entral part of MATAD. They heavily depend on the loop-order and the topology whih has to be spei�ed apart from the very diagram in thefolds d1l1, d1l2, . . . (see above). Thus let us elaborate on this point in the following. Inpriniple it suÆes to de�ne one input topology at one-, two- and three-loop order, wherethe number of internal lines amount to one, three and six, respetively (see Fig. 1). Ifone allows eah line to be massless and arry the mass M at the same time these threetopologies are suÆient to over all possible ases that an our in the alulation ofone-, two- and three-loop vauum integrals. Note that a partial frationing for terms like1(p2)a (p2 +M2)b ; (2)where a and b are positive integers, leads to the same topologies with the only di�erenethat now eah line is either massless of massive. It is, however, not at all pratial to7
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67Y1 Y2 Y3 N2 N3Figure 3: The input of the diagram to be omputed an be mapped to one of thesetopologies. The implemented massive/massless ombinations an be found in Appendix B.The momentum pi ows through line i as indiated by the arrow.rewrite the input to the notation of Fig. 1 before generating the �le dia.<prb>. Onthe ontrary it is advantageous to enlarge the input topologies. Currently the topologiesshown in Fig. 3 are implemented in MATAD. The momentum pi owing through line ian be expressed as a linear ombination of the loop momenta. For our purpose theserelations are, however, not of interest. The hoie of the topologies was guided by thepakage MINCER [4℄ and for onveniene the same notation onerning the de�nition ofthe momenta pi has been adopted. The implemented massive/massless ombinations ofeah topology are listed in Appendix B. After the delaration of the diagram in the foldsd1l1, d1l2, . . . the orresponding topology is spei�ed via#define TOPOLOGY "XY"where XY orresponds to one of the topologies of Fig. 3.The notation onerning the momenta as introdued in Fig. 3 is quite onvenient tobe used for the input. However, the very reursion proedure is formulated for the three-loop topology of Fig. 1 where the lines are either massive or massless. This leads to 148
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2BM BM1 BM2Figure 4: Basi three-loop topologies implemented into MATAD. They are redued to eithersimple integrals or master integrals with the help of reurrene relations.di�erent ases whih are lassi�ed in [8℄. Thus before step 9 is performed the momenta aretransformed from the notation of Fig. 3, whih is used in the input, to the so-alled basitopologies shown in Fig. 4. For them | after deomposing the salar produts in thenumerator into parts of the denominator | the very reursion proedure is performed.Note that at this stage all propagators may be raised to an arbitrary integer power.Atually some of the three-loop diagrams (e.g. BN3) an be omputed by the su-essive use of one- and two-loop proedures for massless propagator type diagrams orvauum integrals, respetively. In suh ases some of the (one- and two-loop) routinesfrom MINCER [4℄ are used for parts of the omputation. The orresponding proeduresare listed in Appendix D. For other ases (e.g. E4 or BN2) simple relations redue oneof the lines to zero and the resulting diagram an again be solved easily. Only for theases D5, D4, DN, DM, E3, BN and BN1 the reursion proedure has to be applied untilone arrives at master integrals. They oinide with the orresponding diagrams of Fig. 4where all denominators are raised to power one. Only the one pitured in Fig. 5, whihresults from BN1, is needed in addition. From this diagram even the O(") part is required.The analyti expressions are given in Appendix C.3. It should be mentioned that thereurrene relations for BM are quite involved. However, for this topology no diÆult mas-9



3 4 5 6

Figure 5: Master diagram resulting from topology BN1. Here all propagators are raised topower one. Its onstant part ontains the expression S2 and its O(") part OepS2 as listedin Appendix C.3.
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= (Q2)D=2�a�b(4�)D=2 �(a+ b�D=2)�(D=2� a)�(D=2� b)�(a)�(b)�(D � a� b) ;Va = Z dDp(2�)D 1(p2 +M2)a = (M2)D=2�a(4�)D=2 �(a�D=2)�(a) ;Vab = Z dDp(2�)D dDk(2�)D 1(p2 +M2)a(k2 +M2)b((p+ k)2)= (M2)D�a�b�(4�)D �(a + b+ �D)�(a+ �D=2)�(b+ �D=2)�(D=2� )�(a)�(b)�(a + b+ 2�D)�(D=2) :(3)
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Figure 7: Three-loop diagram of type LA.The vauum integrals ourring at one- and two-loop level are quite simple. Atuallymost of them an be expressed in terms of � funtions for arbitrary exponents of thepropagators and no reursion relations are needed (f. Eq. (3)). Only for the two-loopintegral in Fig. 1 where all three lines arry the mass M it is useful to implement simplereurrene relations whih redue the integrals to one master integral where all exponentsare raised to the �rst power only. For three-loop alulations the result of this integral isneeded up to O(") (T1ep, see Appendix C.3).For de�niteness we want to onsider an expliit example. Let us onsider the three-loop diagram of Fig. 7 whih we would like to expand up to fourth order in the externalmomentum, q1. For simpliity we neglet the tensor struture and onsider only the salarintegral obtained in the ase when the full line represents a massive partile and the urlyline a massless one. In the diretory problems/salar/ one an �nd the following �lesmainsalar results/ salar.diawhere results/ is a diretory to store the result of the diagram. The �le salar.dialooks as follows 11



*--#[ TREAT0:*--#℄ TREAT0:*--#[ TREAT1:*--#℄ TREAT1:*--#[ TREAT2:*--#℄ TREAT2:*--#[ TREATMAIN:*--#℄ TREATMAIN:*--#[ salar:M^4*s1m*s2m*s3m*Dh(p4,q1)*Dh(p5,q1)*Dh(p6,q1)/p7.p7/p8.p8;#define TOPOLOGY "LA"*--#℄ salar:In this ase no speial treat �le is needed. The very diagram an be found in the foldsalar where the multipliation with M4 is done in order to end up with a dimensionlessexpression. The external momentum is routed through the lines 4, 5 and 6 as an beseen in the arguments of the funtion Dh. The other massive propagators are denoted bys1m, s2m and s3m. The massless lines translate into the fators 1/p7.p7 and 1/p8.p8.For more details on the notation we refer to Appendix C.1. The �le mainsalar looks asfollows:#define PRB "salar"#define DALAQN "q1"#define GAUGE "0"#define POWER "4"#define CUT "0"#define FOLDER "salar"#define DIAGRAM "salar"#-#inlude main.genWith the ommand#define POWER "4"we require an expansion up to fourth order in q1 and12



#define DALAQN "q1"e�etively fators out the terms (q21)n. The alulation is initiated with the ommand> matadform problems/salar/mainsalarand after a few seonds the �nal result is displayed on the sreensalar =- 2 + 2*z3 - Q1.Q1*z3*M^-2 + 227/216*Q1.Q1*M^-2 + 1/2*Q1.Q1^2*z3*M^-4- 1876/3375*Q1.Q1^2*M^-4;As expeted it is �nite and ontains three terms in the expansion in q21=M2. The resultis stored to the diretory problems/salar/results/ and an be read with the FORMommand load. Details on the notation of the output and the used onventions an befound in Appendix C.3 Some details on the internal strutureOne the reurrene relations are implemented it is in priniple possible to omputediagrams of arbitrary omplexity. However, in pratie one arrives quite soon at thelimits set by the soft- or hardware. The algebra language FORM is designed to deal withlarge expressions. Still it happens quite easily that in internal steps the expressions exeedseveral Megabytes and even approah the order of a few Gigabyte. This signi�antly slowsdown the performane and it is advantageous to implement several triks. Some of themare desribed in this setion.� During the reurrene proedure it happens very often that whole bloks of om-mands have to be exeuted until the reursion has reahed an end. Within FORM thereare the ommandsrepeat;[...℄endrepeat;whih in priniple allows for suh a onstrution. However, in pratie it is not possi-ble to use between repeat and endrepeat a ommand whih fores FORM to ombineidential terms like, e.g., .sort. For this reason a preproessor variable, NOR (see alsoAppendix C.4), has been introdued whih in ombination with the onstrution#do i=1,'NOR'[...℄#enddoallows the use of .sort in intermediate steps of the reursion ommands.� At this point we should also mention that the proedure ACCU has been adoptedfrom MINCER [4℄. It ollets in the argument of the funtion a() the polynomials in "and thus signi�antly redues the number of terms. E.g., the expression13



x1*x2 + 4*ep*x1*x2 + 12*ep^3*x1*x2transforms after #all ACCU{test} toa(1 + 4*ep + 12*ep^3)*x1*x2and instead of three only one term has to be treated in the following ommands.� Very often it happens that propagators of the type 1=(M2 � (p + q)2)n have to beexpanded in the momentum q and afterwards derivatives w.r.t. q are applied in order tofator out powers of q2. It turns out that it is very useful to expand in a �rst step only thepart 2pq and keep the fators q2 unexpanded in the form 1=(M2 � (p2 + q2))n. Thus lessterms have to be onsidered while the derivatives are applied. Afterwards the expansionin q2 is performed. A related disussion an also be found in [16℄.� The expansion of the salar denominators in a small momentum is also very timeonsuming | espeially for high values of 'POWER'. In order to do this in an e�etive waythe variable poo, whih is an abbreviation for \power ounting", is de�ned viaS poo(:'POWER');after the delaration of the preproessor variable POWER. This de�nition ensures that theterms involving poon with n >'POWER' are automatially set to zero. Depending on theproblem poo should also be onsidered in the speial treat �les.� The appliation of the reurrene relations an lead to spurious 1=" poles (f. Ap-pendix A) whih are in general quite dangerous if an expansion in " is performed inintermediate steps. In MATAD at most three 1=" poles arise from the reurrene relations.Together with a possible 1="3 term from the three-loop integrals an expansion up to order"6 has to be done in intermediate steps in order to get the orret onstant term.� For quite a lot of appliations the topology BN (f. Fig 4) plays a ruial role. Theoriginal reurrene proedure for this toplogy to master integrals was proposed in [5℄: Ina �rst step the exponent of three out of the four massive denominators are redued toone. Then the exponents of the massless lines are redued to zero. Finally the remainingline is treated and one arrives (apart from simple integrals) at an integral onsisting offour massive lines onneting two verties. It is onneted to the orresponding masterintegral of Fig. 4 through a simple relation.The equation involved in the last reursion step is quite involved. It generates fromeah term more than ten terms at eah all. Note that the exponent of the last mas-sive denominator gets inreased by the proeeding steps. This enormously slows downthe alulation | in some ases it makes it even impossible. The idea to irumventthis problem is based on the observation that the massless exponents an be reduedto zero even if none of the massive ones is redued to one. The orresponding reur-rene relations are short and thus one arrives with only little e�ort at three-loop integralswith four massive lines, BN (0; 0; n3; n4; n5; n6) (f. Fig. 5 where all lines are massive andthe exponents of the denominators are given by n3, n4, n5 and n6). These diagrams arenow treated in the following way: Temporarily an external momentum is introdued whih14



ows through one of the lines. We hoose line 3 for de�niteness. In a seond step the oper-ator 2q = �=�q��=�q� is applied and q is set to zero afterwards. This leads to an equationonneting BN(0; 0; n3; n4; n5; n6), BN(0; 0; n3�1; n4; n5; n6) and BN (0; 0; n3�2; n4; n5; n6)BN(0; 0; n3; n4; n5; n6) = � 14M2(n3 � 2)(n3 � 1)2qBN(0; 0; n3 � 2; n4; n5; n6)+ �2D + 4(n3 � 1)4M2(n3 � 1) BN(0; 0; n3 � 1; n4; n5; n6) ; (4)whih an be applied until n3 = 3. As the other indies are not a�eted the same proedurean be applied to them as well and one ends up with the integrals BN(0; 0; 1; 1; 1; 1),BN(0; 0; 2; 1; 1; 1), BN(0; 0; 2; 2; 1; 1), BN (0; 0; 2; 2; 2; 1) and BN (0; 0; 2; 2; 2; 2). Both theirvalues for q = 0 and the result for the appliation of (2q)n has to be known where theindex n depends on how often Eq. (4) had to be applied. The overall number of theintegrals needed is still small and for most pratial appliations well below 100. Theyan be omputed one and for all using the method of Ref. [5℄ and an be olleted in atable. Currently the table ontains all results up to n = 10 and partly for n = 11. In asethe table is too small the original reurrene proedure [5℄ has to be used. This is doneby de�ning the preproessor variable BNRECOLD in the main �le.4 ExamplesIn this setion we want to disuss some typial examples whih an be treated withMATAD. In partiular the ontent of the TREAT folds and the swithes in main.<prb> shallbe disussed in detail. In Setion 4.1 two-loop orretions to the photon polarizationfuntion are onsidered and in Setion 4.2 the alulation of three-loop vertex orretionsontributing to the Higgs deay into gluons is disussed. As a last example we onsiderthe omputation of the fermion propagator in the limit of a small external momentum.4.1 Photon polarization funtionIn this setion only a alulation of two-loop diagrams is presented. However, we wantto take this opportunity to show a onept whih an also be used for the treatment ofmore omplex problems. In partiular it is shown how the omplete alulation an beautomated and one an ensure that all results are indeed up-to-date.To be preise, we want to onsider the two-loop diagrams indued by a massive quarkto the photon polarization funtion. The problem shall be alled Pi. Then the �le Pi.dialooks as follows:** problem: Pi**--#[ TREAT0: 15



#message projet out transversal partmultiply, (d_(mu1,mu2)-q1(mu1)*q1(mu2)/q1.q1)*deno(3,-2);.sort*--#℄ TREAT0:*--#[ TREAT1:*--#℄ TREAT1:*--#[ TREAT2:*--#℄ TREAT2:*--#[ TREATMAIN:*--#℄ TREATMAIN:** 2-loop diagrams for problem Pi**--#[ d2l1:((-1)*Dg(nu1,nu2,p5)*S(mu1,q1,p1m,nu1,q1,p2m,mu2,p3m,nu2,p4m)*1);#define TOPOLOGY "T1"*--#℄ d2l1:*--#[ d2l2:((-1)*Dg(nu1,nu2,p4)*S(mu1,q1,-p2m,mu2,p1m,nu2,p3m,nu1,p1m)*1);#define TOPOLOGY "T2"*--#℄ d2l2:*--#[ d2l3:((-1)*Dg(nu1,nu2,p4)*S(nu1,p3m,nu2,p1m,mu2,-q1,-p2m,mu1,p1m)*1);#define TOPOLOGY "T2"*--#℄ d2l3:The funtion deno(x,y) means 1=(x + y") and an be used for denominators. TREAT0ontains the projetor to the transversal part and the three ontributing diagrams arenamed d2l1, d2l2 and d2l3. The external momentum is denoted by q1. The mass of thequarks, whih in the �nal result appears as M, is introdued through adding the symbolm to the orresponding momentum whih is de�ned through the topologies T1 and T2 inFig. 3. We want to assume that q21 � M2 and thus perform an expansion in q1. This is16



ahieved with the notation S(...,q1,p1m,...). For more details onerning the notionwe refer to Appendix C.The �le mainPi reads:#define PRB "Pi"#define PROBLEM0 "1"#define DALAQN "q1"#define GAUGE "xi"#define POWER "4"#define CUT "1"#define FOLDER "Pi"***#define DIAGRAM "d2l1"#-#inlude main.genFor most of the spei�ed variables we refer to Appendix C.4. We only want to mention thata general gauge parameter xi is hosen with the ommand #define GAUGE "xi". Thisallows for an expliit hek that the �nal result, i.e. the sum of the three diagrams is gaugeparameter independent. The de�nition #define POWER "4" requests for an expansion upto fourth order in q1. The de�nition of the variable DIAGRAM is ommented as it will bede�ned during the all of mainPi (see below).The omputation of eah diagram ould be started separately and the results ould besummed at the end. Instead we want to take the opportunity to present a method whihis unavoidable for problems where a large number of diagrams ontribute. In the followingwe want to present two more �les whih an easily be adopted to other problems. The�rst one, makePi, is a so-alled GNU make �le and ould look as follows:SHELL = /bin/shDIA2 = \problems/Pi/results/d2l1.res\problems/Pi/results/d2l2.res\problems/Pi/results/d2l3.resproblems/Pi/results/Pi.2.res: $(DIA2)matadform problems/Pi/omPi > problems/Pi/log/omPi.logii = $(notdir $(basename $�))$(DIA2): problems/Pi/mainPiif [ -f problems/Pi/results/$(ii).res ℄; \then rm problems/Pi/results/$(ii).res; fitime matadform -d DIAGRAM=$(ii) \problems/Pi/mainPi > problems/Pi/log/$(ii).log;if [ -f problems/Pi/results/$(ii).res ℄; \then rm problems/Pi/log/$(ii).log; fiFor details onerning the individual ommands we refer to the literature [17℄. For usit is only important that at the beginning the diagrams we want to ompute are listed.17



Furthermore, after the line `problems/Pi/results/Pi.2.res: $(DIA2)' the ommand isgiven whih spei�es what shall be done one the omputation of the individual diagramsis �nished: The diagrams are summed with the help of the program omPi** omPi*#-#inlude delare.matad#define PRB "Pi".global#do i=1,3load problems/'PRB'/results/d2l'i'.res;#enddog res'PRB'2 =#do i=1,3+ d2l'i'#enddo;b ep;print;.store#+save problems/'PRB'/results/res'PRB'.2.res res'PRB'2;.endTo initiate the alulation one simply has to speify the ommand> make -f problems/Pi/makePiwhere make has to all the GNU version [17℄ of the make ommand. The �nal result isstored in the �le problems/Pi/results/resPi.2.res. It readsresPi2 =+ ep^-1 * ( - 6*Q1.Q1 + 8/5*Q1.Q1^2*M^-2 )+ ep * ( - 35/6*Q1.Q1 - 6*Q1.Q1*z2 + 8/5*Q1.Q1^2*M^-2*z2 + 3116/1215*Q1.Q1^2*M^-2 )+ 13/3*Q1.Q1 - 128/405*Q1.Q1^2*M^-2;Indeed, as expeted, there is no trae of the gauge parameter xi.
18



4.2 Higgs deay into two gluonsParty for onveniene and partly for historial reasons the notation of the input topologiesin Fig. 3 is losely onneted to two-point funtions. However, MATAD only deals withvauum diagrams independent of the number of external legs. In this setion we want toshow that also problems involving at �rst sight three-point funtions an be approahedusing MATAD.Let us onsider QCD orretions to the deay of the Standard Model Higgs bosoninto two gluons. It is onvenient to onstrut an e�etive theory where the top quark isintegrated out. Details on the theoretial bakground an be found in [18℄. Here it shallonly be mentioned that the oeÆient funtion whih ontains the dependene on themass of the top quark, Mt, an be omputed from triangle diagrams as pitured in Fig. 8.Aording to their Lorentz struture the result an be written as followsK(Mt) (q�1q�2 � q1q2g��) ; (5)where q1 and q2 are the momenta of the gluons with polarization vetors ��(q1) and ��(q2).Thus the vertex diagrams have to be expanded up to linear order both in q1 and q2 andan appropriate projetor has to be applied in order to get K(Mt).
Figure 8: Sample diagram ontributing to the deay of the Higgs boson. Solid and loopedlines represent quarks and gluons, respetively.The �le ontaining the diagrams ould look as follows** problem: hgg**--#[ TREAT0:multiply, (a*deno(2,-2)*(q1.q2*d_(mu,nu)-q2(nu)*q1(mu)-q2(mu)*q1(nu))+b*deno(2,-2)*(-q1.q2*d_(mu,nu)+(3-2*ep)*q2(nu)*q1(mu)+q2(mu)*q1(nu)));.sort*--#℄ TREAT0:*--#[ TREAT1:*--#℄ TREAT1: 19



*--#[ TREAT2:*--#℄ TREAT2:*--#[ TREATMAIN:*--#℄ TREATMAIN:*--#[ d3l335:((-1)*M*Dg(nu1,nu2,p1)*Dg(nu7,nu8,-p4)*Dg(nu3,nu4,q1,-p1)*Dg(nu5,nu6,q2,p1)*S(-q1,-p3m,nu7,-q1,p5m,nu4,-p2m,nu6,q2,p5m,nu8,q2,-p3m)*V3g(mu,q1,nu1,-p1,nu3,p1-q1)*V3g(nu,q2,nu2,p1,nu5,-p1-q2)*1);#define TOPOLOGY "O4"*--#℄ d3l335:where the diagram d3l335 orresponds to the one shown in Fig. 8. The fold TREAT0ontains (up to an overall fator (q1:q2)�2) the projetor on the oeÆients in front of thestrutures g�� and q�1q�2 of Eq. (5). They are marked by the symbols a and b, respetively.Thus the transversality of Eq. (5) an be expliitly heked in the sum of all ontributingdiagrams (the result of a single diagram does in general not have a transverse struture).The orresponding main-�le is very similar to the one listed in Setion 4.1. The onlydi�erene (apart from replaing Pi by hgg) is that the ommands#define DALAQN "q1"#define GAUGE "xi"#define POWER "4"#define CUT "1"should be replaed by#define DALA12 "1"#define GAUGE "0"#define POWER "2"#define CUT "0"The third line ensures that an expansion of the integrand up to seond order in theexternal momenta is performed and the �rst one sets q21 and q22 to zero and fators outthe salar produt q1q2. #define CUT "0" sets " to zero in the �nal result as the termsof O(") are anyway not omputed ompletely at three-loop order. In this example wehoose Feynman gauge whih is ahieved with #define GAUGE "0".After alling MATAD it takes of the order of a minute to obtain the result:20



d3l335 =+ ep^-2 * ( 40*Q1.Q2*M^2*a + 344/9*Q1.Q2^2*a - 232/9*Q1.Q2^2*b )+ ep^-1 * ( - 308/3*Q1.Q2*M^2*a - 3530/27*Q1.Q2^2*a + 1786/27*Q1.Q2^2*b )+ 60*Q1.Q2*M^2*z2*a + 734/3*Q1.Q2*M^2*a - 1936/9*Q1.Q2^2*z3*a + 1136/9*Q1.Q2^2*z3*b + 172/3*Q1.Q2^2*z2*a - 116/3*Q1.Q2^2*z2*b + 46817/81*Q1.Q2^2*a - 26239/81*Q1.Q2^2*b;Note that the terms proportional to Q1.Q2*M^2 anel after adding all ontributing dia-grams.4.3 Fermion propagatorIn this example we ompute the small-momentum expansion of a three-loop diagramwhih ontributes to the fermion propagator. Reently these kind of diagrams have beenonsidered in di�erent kinematial regions in order to obtain the three-loop relation be-tween the MS and on-shell quark mass [19, 11℄. This subsetion ontains all relevant inputinformation whereas the omplete output is given in Appendix E.The fermion self energy, �(q), an be deomposed into a salar and vetor part�(q) = M�S(q2) + q=�V (q2) ; (6)where q is the external momentum and M is the mass of the quark. We are interested inthe omputation of the salar funtions �S and �V .The �le mainfp looks as follows#define PRB "fp"#define PROBLEM0 "1"#define DALAQN "q1"#define GAUGE "0"#define POWER "1"#define CUT "0"#define FOLDER "fp"#define DIAGRAM "d3l79"#-#inlude main.genThe variable POWER is de�ned in suh a way that an expansion up to third order isperformed. This leads to the onstant and order q2=M2 terms for the funtions �S and�V as �(q) itself has mass dimension one. The orresponding projetors and the diagramto be omputed look as follows (fp.dia):** problem: fp* 21



*--#[ TREAT0:multiply, 1/4*(1/M + a * g_(1,q1)/q1.q1);*--#℄ TREAT0:*--#[ TREAT1:*--#℄ TREAT1:*--#[ TREAT2:*--#℄ TREAT2:*--#[ TREATMAIN:*--#℄ TREATMAIN:*--#[ d3l79:((1)*Dg(nu3,nu4,p5)*Dg(nu5,nu6,-p6)*Dg(nu1,nu2,-q1,-p1)*S(nu2,-p1m,nu5,-p4m,nu4,-p3m,nu6,-p2m,nu3,-p1m,nu1)*1);#define TOPOLOGY "O4"*--#℄ d3l79:Note that in the fold TREAT0 the vetor part gets multiplied by a in order to distinguish�V from �S in the �nal result. The input for the diagram orresponds to the one pituredin Fig. 9. The omplete output appearing on the sreen and the result an be found inthe Appendix E.
Figure 9: Sample diagram ontributing to the fermion propagator. Solid and looped linesrepresent quarks and gluons, respetively.
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and by SUN Mirosystems through Aademi Equipment Grant No. 14WU0148. I amgrateful to the department of Theoretial Partile Physis of the University of Karlsruhefor the pleasant atmosphere during a visit when a major part of this projet was arriedout.AppendixA Integration-by-partsThe method of integration-by-parts plays a fundamental role in the omputation of multi-loop diagrams [2℄. For this reason we want to demonstrate its underlying idea by onsid-ering a typial example.The integration-by-parts algorithm uses the fat that the D-dimensional integral overa total derivative is equal to zero:Z dDp ��p� f(p; : : :) = 0 : (7)By expliitly performing the di�erentiations one obtains reurrene relations onnetingFeynman integrals of di�erent omplexity. The proper ombination of di�erent reurrenerelations allows any Feynman integral (at least single-sale ones) to be redued to a smallset of so-alled master integrals. The latter ones have to be evaluated only one and forall, either analytially or numerially.
21

34

5

Figure 10: Two-loop master diagram. The arrows denote the diretion of momentumow.Let us for de�niteness onsider the salar two-loop diagram of Fig. 10. The orre-sponding Feynman integral shall be denoted byI(n1; : : : ; n5) = Z dDp(2�)D dDk(2�)D 1(p21 +m21)n1 � � � (p25 +m25)n5 ; (8)23



where p1; : : : ; p5 are ombinations of the loop momenta p; k and the external momentumq (we work in Eulidean spae here). n1; : : : ; n5 are alled the indies of the integral.Consider the sub-loop de�ned by the lines 2, 3 and 5, and take its loop momentum tobe p = p5. If we then apply the operator (�=�p5) � p5 to the integrand of I, we obtain arelation of the form (7), wheref(p5; : : :) = p�5(p25 +m25)n5(p22 +m22)n2(p23 +m23)n3 : (9)Performing the di�erentiation and using momentum onservation at eah vertex one de-rives the following equation:h� n33+ �5� � 4� +m24 �m25 �m23�� n22+ �5� � 1� +m21 �m25 �m22�+D � 2n5 � n3 � n2 + 2n5m255+i I(n1; : : : ; n5) = 0 ; (10)where the operators 1�; 2�; : : : are used in order to raise and lower the indies:I�I(: : : ; ni; : : :) = I(: : : ; ni � 1; : : :). In Eq. (10), generally referred to as the trianglerule, it is understood that the operators to the left of I(n1; : : : ; n5) are applied beforeintegration. If the ondition m5 = 0; m3 = m4 and m1 = m2 holds, inreasing one indexalways means to redue another one. Therefore this reurrene relation may be used toshift the indies n1, n4 or n5 to zero whih leads to muh simpler integrals.The triangle rule onstitutes an important building blok for the general reurrenerelations. The strategy is to ombine several independent equations of the kind (10) inorder to arrive at relations onneting one ompliated integral to a set of simpler ones.For example, while the diret evaluation of even the ompletely massless ase for thediagram in Fig. 10 is non-trivial, appliation of the triangle rule (10) leads toI(n1; : : : ; n5) = 1D � 2n5 � n2 � n3 hn22+ �5� � 1��+ n33+ �5� � 4�� i I(n1; : : : ; n5) :(11)Repeated appliation of this equation redues one of the indies n1, n4 or n5 to zero. Forexample, for the simplest ase (n1 = n2 = : : : = n5 = 1) one obtains the equation pituredin Fig. 11: The non-trivial diagram on the l.h.s. is expressed as a sum of two quite simpleintegrals whih an be solved by applying the one-loop formula. This example also showsa possible trap of the integration-by-parts tehnique. In general its appliation introduesarti�ial 1=" poles whih anel only after ombining all terms. They require the expansionof the individual terms up to suÆiently high powers in " in order to obtain, for example,the �nite part of the original diagram. This point must arefully be respeted in omputerrealizations of the integration-by-parts algorithm: One must not ut the series at too lowpowers beause then the result goes wrong; keeping too many terms, on the other hand,may intolerably slow down the performane.In our example, the l.h.s. in Fig. 11 is �nite, eah term on the r.h.s., however, develops1="2 poles. The �rst three orders in the expansion for " ! 0 anel, and the O(") termof the square braket, together with the 1=" in front of it, leads to the well-known result(omitting fators 1=16�2): I(1; 1; 1; 1; 1) = 6�(3)=q2, where q is the external momentum.24
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Figure 11: Symboli equation resulting from Eq. (11) applied to the diagram I(1; 1; 1; 1; 1).The dot indiates that the respetive denominator appears twie.In general, the suessive appliation of reurrene relations generates a huge numberof terms out of a single diagram. Therefore, a alulation arried out by hand beomesvery tedious and the use of omputer algebra is essential.B The topology �lesThis part of the appendix provides a omplete list of those massive/massless ombinationswhih are implemented in the topology �les in/TOPOLOGY/topXY. In the following tablesfor all three-loop topologies of Fig. 3 the lines are listed whih have to be massive. All otherlines may be massless or absent. In some ases some of the lines have to be ompletelyabsent, i.e. it is even not allowed for them to be massless. This is expliitly spei�ed inthe olumns \absent".L1massive absent massive absent massive absent massive absent1 | 2 | 1,2 |T1massive absent massive absent massive absent massive absent1,2 | 1,2,4 | 1,2,3,4 | 1,4 |2,4 | 1 | 2 | 1,2,5 |T2massive absent massive absent massive absent massive absent1,3 | 2 | 1,2,3 | 2,4 |3,4 | 3 | 1,2 |BEmassive absent massive absent massive absent massive absent1,2,3,4,5 | 1,2,3 | 4,5 |BUmassive absent massive absent massive absent massive absent1,3,6,7 | 4,5,6,7 |
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LAmassive absent massive absent massive absent massive absent1,2,3,4,5,6 | 1,3,4,6,7,8 | 1,6,7 | 3,4,8 |1,2,3 | 1,3,7,8 4,5,6 1,7 4,5,6 3,8 4,5,6NOmassive absent massive absent massive absent massive absent1,2,3,4,5,6 | 1,2,3 |N2massive absent massive absent massive absent massive absent1,2,3,4,5,6 | 1,2,3,4 | 5,6 | 2,3 |N3massive absent massive absent massive absent massive absent1,2,3,4,5 | 2 | 1,3,4,5 | 3,4 |3,4,5 | 4,5 | 1,3 | 1,5 |O1massive absent massive absent massive absent massive absent1,2,3,4,6,7 | 1,2,3,4 | 6,7 | 1,2,6,7 |1,2 | 1,5,6 3,4 1,5,7 3,4 5,6 |5 | 5,7 | 1,5,7 | 7 |1,5 | 1 | 1,7 | 6 |1,6,7 | 1,2,7 3,4O2massive absent massive absent massive absent massive absent1,2,3,4,7 | 3,4,7 | 1,2 | 7 |
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O4massive absent massive absent massive absent massive absent1,2,6,7 | 1,2,6 | 7 | 1,3,5,6 71,3,5 | 3,5 | 1,5 | 5 |1,3,5,7 | 3,5,7 | 1,2 | 1 |2 | 1,6 | 2,6 | 1,3,7 63,7 6 2,6 | 1,3,5,7 6 1,5,7 61,2,7 6 2,3 7 1,2,3 7 3,4 73,4,5 7 1,3,4 7 1,2,5 7 1,3,4,5,6 71,4,5,6 7 1,3,4,5 7 1,4,5 7 1,4 73,4,6 7 1,2,3,4 7 2,3,4 7 1,2,3,4,5 71,2,4,5 7 1,3,4,6 7 1,2,3,5 7 2,3,5 73,4,5,6 7 4,5,6 7 2,3,4,5 7 2,4,5 72,4 7 1,2,4 7 1,5 7 1,3 73 7 2,5 7 1,2 7 4,5 74 7 1,2,4,5,6 7 2,4,5,6 7 6 74,6 7 3,5,6 7 3,6 7 1,5,6 72,5,6 7 1,3,6 7 1,2,5,6 7 1,2,4,6 72,4,6 7 5,6 7 1,4,6 7Y1massive absent massive absent massive absent massive absent1,2,3,6 | 1,3 | 3 | 3,5,6 |Y2massive absent massive absent massive absent massive absent1,2,3,5 | 2 | 1,3,5 | 3 |5 | 1,3 | 1,5 |Y3massive absent massive absent massive absent massive absent1,2,3,5 | 1,3,5 | 2 | 5 |3,5 | 1,3 |C Some details on the notationC.1 Notation of the inputIn this subsetion we desribe the notation to be used for the input.On one side of the following expressions the FORM notation is used whereas the otherside displays the orresponding mathematial terms. It is always assumed that pi (i =1; : : : ; 9) is a loop momentum and qi (i = 1; : : : ; 3) is a small momentum in whih anexpansion is performed.If salar integrals are to be omputed with MATAD the following notation has to be27



used: massless lines: 1p21 ; 1p22 ; : : : �! 1/p1.p1, 1/p2.p2; : : :1�(p1+q1)2 ; : : : �! Dl(p1,q1); : : :massive lines: 1M2�p21 ; 1M2�p22 ; : : : �! s1m, s2m; : : :1M2�(p1+q1)2 ; : : : �! Dh(p1,q1); : : : (12)Fermions are treated with the help of the (non-ommutative) funtion S and the funtionDg an be used for the gluon propagator:S(mu) = � ; S(p1) = p1=�p21 ;S(p1m) = M+p1=M2�p21 ; S(q1,p1) = p1=+q1=�(p1+q1)2 ;S(q1,p1m) = M+p1=+q1=M2�(p1+q1)2 ;Dg(mu,nu,p1) = �g���� p�1 p�1�p21�p21 ; Dg(mu,nu,q1,p1) = �g���� (p1+q1)�(p1+q1)��(p1+q1)2�(p1+q1)2 : (13)
Instead of S also SS, SSS or SSSS may be used whih is useful in ase more than onefermion line is involved. The verties between three gluons and gluon and ghosts areimplemented through the following funtions (where the olour fators are not taken intoaount):V3g(i1,p1,i2,p2,i3,p3) = (p2 � p1)i3 gi1i2 + (p3 � p2)i1 gi2i3 + (p1 � p3)i2 gi3i1 ;Vgh(i1,p1) = �pi11 : (14)If small momenta are present they an simply be added to p1, p2 or p3. In analogy to theexpansion in a small momentum it is possible to introdue funtions where an expansionin small masses an be performed.In the above expressions instead of q1 also q2 or q3 may be hosen as momenta inwhih an expansion is done. For the loop momenta p1, . . . , p9 is allowed.For the Feynman rules given above the user has to hek the onsisteny with own signonventions. In partiular all unneessary fators like, e.g., the strong oupling onstantare omitted. Also the imaginary unit, i, is suppressed. Furthermore the Feynman rulesare hosen in suh a way that the verties are proportional to i and all propagators areproportional to 1=i whih leads to onvenient anellations. Thus eah diagram an bewritten asi 1i Z dDkj(2�)D!l � [expression formed by the Feynman rules of (13) and (14) ℄ ; (15)where l is the number of loops. The fator 1=i in front of the integration momentadisappears after the Wik rotation. The overall fator i, whih ours for all diagramsand whih is independent of the number of loops, is omitted.28



C.2 Notation and onventions of the outputAt this point some words about the notation of the output of MATAD are in order. Asalready mentioned, the �nal expressions are expanded in " where | following generalMS onventions | the fators E and ln 4� have been dropped. Furthermore the fators(1=16�2)l and (1=M2")l where l is the number of loops are omitted. Conerning theremaining symbols the translation is given in the following table:" epEulidean external momenta Q, Q1, Q2, . . .�2; �3; : : : (Rieman zeta funtion) z2, z3, . . .mass appearing in the integrals Mparametrization of the �nite partsof the master integrals D5, D4, . . . (see Appendix C.3)Note that all momenta whih our in the output have to be interpreted in Eulideanspae.C.3 Master integralsMATAD does not insert the omplete �nite parts of the master integrals automatially.Instead they are parameterized by the symbols D5, D4, DM, DN, B4, ... where the notationis adopted from the one introdued in Fig. 4. In the following list one an �nd theorresponding analytial expressions [5, 9, 10, 11, 20℄1D6 = 6�3 � 17�4 � 4�2 ln2 2 + 23 ln4 2 + 16Li4 �12�� 4 �Cl2 ��3��2 ;D5 = 6�3 � 46927 �4 + 83 �Cl2 ��3��2 � 16 Xm>n>0 (�1)m os(2�n=3)m3n� �8:2168598175087380629133983386010858249695 ;D4 = 6�3 � 7712�4 � 6 �Cl2 ��3��2 ;D3 = 6�3 � 154 �4 � 6 �Cl2 ��3��2 ;DM = 6�3 � 112 �4 � 4 �Cl2 ��3��2 ;DN = 6�3 � 4�2 ln2 2 + 23 ln4 2� 212 �4 + 16Li4 �12� ;B4 = �4�2 ln2 2 + 23 ln4 2� 132 �4 + 16Li4 �12� ;E3 = �1393 � �p3 ln2 38 � 17�3p372 � 212 �2 + 13�31Note that there is a misprint in Eq. (22) of Ref. [11℄: all four appearing Clausen funtions must besquared and the oeÆient of �4 in the seond to last equation must read \�22" instead of \�31=2".29



+ 10p3Cl2 ��3�� 6p3Im "Li3  e�i�=6p3 !# ;S2 = 49p3Cl2 ��3� ;OepS2 = �76332 � 9�p3 ln2 316 � 35�3p348 + 19516 �2 � 154 �3 + 5716�4+ 45p32 Cl2 ��3�� 27p3Im "Li3  e�i�=6p3 !# ;T1ep = �452 � �p3 ln2 38� 35�3p3216 � 92�2 + �3 + 6p3Cl2 ��3�� 6p3Im "Li3  e�i�=6p3 !# ; (16)with Cl2(x) = Im[Li2(eix)℄. Li2, Li3 and Li4 are the Di-, Tri- and Quadrilogarithm,respetively. S2 both appears in the diagram of Fig. 5 and the two-loop diagram of Fig. 1where all three lines have the same mass. Their O(") parts, whih an ontribute to the�nite part of the three-loop results, ontain OepS2 and T1ep, respetively. We shouldmention that those expressions of Eq. (16) whih oinide with an existing topology (e.g.D5 $ topD5) indeed agree with the �nite part of the orresponding master integral. Onthe other hand B4, e.g., omprises the ompliated parts of the �nite part of the masterintegral orresponding to topBN, however, not the omplete one. D6 is not yet implementedinto MATAD and listed for ompleteness only.C.4 Parameters and swithes in main.<prb>In the following a brief desription of the swithes in the �le main<prb> is given. In allases the FORM syntax reads #define <VAR> "<VAL>" where <VAR> is the variable to bede�ned and <VAL> the orresponding value.It is required to de�ne at least the following �ve variables:DIAGRAM: name of the diagram to be omputed.FOLDER: the �le ontaining the speial treat �les and the diagrams is alled'FOLDER'.dia.GAUGE: determines the hoie for the gauge parameter. The variable � as de�nedin the funtion Dg in Eq. (13) is replaed by the value of GAUGE. In partiular#define GAUGE "0" orresponds to Feynman gauge and with #define GAUGE "xi"the alulation is performed for general gauge parameter.POWER: determines the depth of the expansion in the small quantities.PRB: name of problem. PRB orresponds to the name of the fold where the problem-dependent �les an be found. 30



The de�nition of the remaining variables is optional:BNRECOLD: if this variable is de�ned the original reurrene proedure of Ref. [5℄ is usedfor the topology BN.CUT: determines the depth of the expansion in " of the �nal result. At one-, two- andthree-loop order at most the terms of order "2, "1, respetively, "0 are reliable. Thedefault value is \2".DALA12: expansion in q1q2. If this variable is set q21 and q22 are set to zero and pow-ers in q1q2 are fatored out. Currently only the expansion up to order (q1q2)4 isimplemented. Note that only positive powers of q1q2 an be treated.DALAQN: apply d'Alembert operator, 2q = �=�q��=�q�, in order to fator out powers inq2. In the argument of DALAQN the momentum is spei�ed with respet to whih thederivatives are performed.NOR: is an abbreviation for Number Of Reursions. As the naive use of the repeat{endrepeat onstrution signi�antly slows down the performane the most ompli-ated proedures are bu�ered by a #do{#enddo onstrution. 'NOR' onstitutes theupper bound of the do-loop. The default value is \10".PROBLEM0/1/2/MAIN: If one of these variables is set a speial treat �le is read at theorresponding position. The value has to agree with the one de�ned in the �le<prb>.dia.TIME: If this variable is set the statistis is printed at various steps of the alulation.There are more swithes in in/main.gen. However, they should not be modi�ed asmost of them are in an experimental stage and not suÆiently tested.D List of �lesIn this appendix we provide a list of all �les belonging to MATAD. The diretory in on-tains essentially the inlude-�les. In partiular some of the proedures are olleted in�les whih are inluded at the very beginning. The tables for the topology BN are loatedin in/TABLEDAL and in/TABLEREC. The diretories in/TREAT and in/TOPOLOGY es-sentially ontain the �les treating the individual (input and basi) topologies and in thefolder pr some auxiliary proedures are olleted.form.set in/ matadform pr/ problems/in:TABLEDAL/ bnm2m expandDr nomBM redueBM_2 tblBNTABLEREC/ delare.matad expepgam nomBN redueBNTOPOLOGY/ denoexp expnomdeno nomdeomBN redueBN131



TREAT/ expandBN main.gen reursion_2 redueBN_2bnbm2pr expandBNM matad.info redut symmetryBMbnbmpr expandBNM_2 matminpr redutnomdeno symmetryBNin/TABLEDAL:BNd.tbl BNd0.tblin/TABLEREC:BN.tbl BNn1.tbl BNn1n2.tbl BNn2.tblin/TOPOLOGY:topBE topBN topBU topE3 topM2 topN3 topO4.add topY3topBM topBN1 topD4 topE4 topM3 topNO topT1 topemptytopBM1 topBN2 topD5 topL1 topM4 topO1 topT2topBM2 topBN3 topDM topLA topM5 topO2 topY1topBM_2 topBN_2 topDN topM1 topN2 topO4 topY2in/TREAT:treat.dala12 treatbm2 treatbn2 treatd5 treate4 treatm4treat.dalaav treatbm_2 treatbn3 treatdm treatm1 treatm5treatbm treatbn treatbn_2 treatdn treatm2 treatn1treatbm1 treatbn1 treatd4 treate3 treatm3 treatt1pr:aver.pr utep.pr dalaqn.pr difves.pr solveS.pr treat.praver1.pr dala12s.pr dalas.pr pohtabl.pr tabBN.prFiles taken over from MINCERone.pr simplify.pr finish.pr tabtwo.prau.pr dotwo.pr newtwo.pr two.prtriangl2.pr triangle.pr pohtabl.prE Fermion propagator: outputIn this appendix we present the omplete output of the example disussed in Setion 4.3.Calling MATAD> matadform problems/fp/mainfpleads toFORM version 2.3 Apr 24 1997** mainfp*#define PRB "fp"#define PROBLEM0 "1" 32



#define DALAQN "q1"#define GAUGE "0"#define POWER "1"#define CUT "0"#define FOLDER "fp"#define DIAGRAM "d3l79"#-*~~ MATAD -- omputation of MAssive TADpoles*~~ read generi main file*~~ read diagramG dia=#inlude problems/'PRB'/'FOLDER'.dia # 'DIAGRAM'((1)*Dg(nu3,nu4,p5)*Dg(nu5,nu6,-p6)*Dg(nu1,nu2,-q1,-p1)*S(nu2,-p1m,nu5,-p4m,nu4,-p3m,nu6,-p2m,nu3,-p1m,nu1)*1);#define TOPOLOGY "O4"*--#℄ d3l79:#-*~~ Treat the traes*~~ Inlude speial treat-file 0*~~ Feynman rules for verties and propagators:*~~ gluon-ghost-ghost-vertex*~~ 3-gluon-vertex*~~ gluon propagator*~~ ghost propagator*~~ expand denominators*~~ Dh*~~ Dl*~~ 1*~~ 1*~~ Change notation to p1,p2,...*~~ Trae 1*~~ Trae 2*~~ Trae 3*~~ Trae 4*~~ treat DL(x)*~~ Do Wik-rotation*~~ Apply d Alembertian w.r.t. q1*~~ average done*~~ Expand Dr(p,q)*~~ 1*~~ q_i -> Q_i*~~ inlude TOPOLOGY-file*~~ this is topO4*~~ Reursion of type d5*~~ this is topD5*~~ numerator*~~ do reursion 33



*~~ - done*~~ Reursion of type d4*~~ this is topD4*~~ numerator*~~ do reursion*~~ - done*~~ Reursion of type dm*~~ this is topDM*~~ numerator*~~ do reursion*~~ - done*~~ Reursion of type dn*~~ this is topDN*~~ numerator*~~ do reursion*~~ - done*~~ Reursion of type e4*~~ this is topE4*~~ numerator*~~ do reursion*~~ - done*~~ Reursion of type e3*~~ this is topE3*~~ numerator*~~ do reursion*~~ - done*~~ Reursion of type bn_2*~~ this is topBN_2*~~ numerator*~~ do reursion*~~ Use table for BN*~~ - done*~~ Reursion of type bn1*~~ this is topBN1*~~ numerator*~~ do reursion*~~ - done*~~ Reursion of type bn2*~~ this is topBN2*~~ numerator*~~ do reursion*~~ - done*~~ Reursion of type bn3*~~ this is topBN2*~~ numerator*~~ do reursion*~~ - done*~~ Reursion of type bm_2*~~ this is topBM_2*~~ numerator*~~ do reursion*~~ - done 34



*~~ Reursion of type bm1*~~ this is topBM1*~~ numerator*~~ do reursion*~~ - done*~~ Reursion of type bm2*~~ this is topBM2*~~ numerator*~~ do reursion*~~ - done*~~ Integration of the simple integrals*~~ Reursion of type m1*~~ this is topM1*~~ Reursion of type m2*~~ this is topM2*~~ Reursion of type m3*~~ this is topM3*~~ Reursion of type m4*~~ this is topM4*~~ Reursion of type m5*~~ this is topM5*~~ perform integration*~~ Reursion of type t1*~~ this is treatn1*~~ Reursion of type n1*~~ this is treatn1*~~ Simplify*~~ Do the "rest"-integrationTime = 5.33 se Generated terms = 23d3l79 Terms in output = 23Bytes used = 410d3l79 =+ ep^-3 * ( - 8/3 - 1/3*a )+ ep^-2 * ( 56/3 - 20/3*a )+ ep^-1 * ( 112/3 - 16*z3 + 19/2*z2*a - 20*z2 - 97/12*a )+ 334/3 + 1215/2*S2*a - 1620*S2 + 16*D3*a - 40*D3 - 1141/3*z3*a + 2368/3*z3 + 144*z4*a - 288*z4 + 57*z2*a - 156*z2 - 32*a*B4 - 77/6*a + 64*B4;save problems/'PRB'/results/'DIAGRAM'.res 'DIAGRAM';.end
35
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