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tIn the re
ent years there has been an enormous development in the evaluation ofhigher order quantum 
orre
tions. An essential ingredient in the pra
ti
al 
al
ula-tions is provided by va
uum diagrams, i.e. integrals without external momenta. Inthis paper a program pa
kage is des
ribed whi
h 
an deal with one-, two- and three-loop va
uum integrals with one non-zero mass parameter. The prin
iple stru
tureis introdu
ed and the main parts of the pa
kage are des
ribed in detail. Expli
itexamples demonstrate the �elds of appli
ation.



PROGRAM SUMMARYTitle of program: MATADAvailable from:http://www-ttp.physik.uni-karlsruhe.de/Progdata/MATAD/1/Computer for whi
h the program is designed and others on whi
h it is operable: Anywork-station or PC where FORM is running.Operating system or monitor under whi
h the program has been tested: UNIX,FORM 2.3No. of bytes in distributed program in
luding test data et
.: 706000Distribution format: ASCIIKeywords: three-loop 
omputations, va
uum integrals, 
omputer algebra, automa-tion of 
omputationsNature of physi
al problem: Multi-loop integrals are needed for the evaluation ofquantum 
orre
tions. An important 
lass of loop diagrams is 
overed by so-
alledva
uum integrals whi
h have no external momentum. MATAD 
an analyti
ally 
om-pute those one-, two- and three-loop va
uum integrals where one mass s
ale ispresent.Method of solution: The method of integration-by-parts is used in order to obtainre
urren
e relations whi
h redu
e 
ompli
ated integrals to a small set of so-
alledmaster integrals. They have to be evaluated on
e and for all. In addition a userinterfa
e is provided whi
h makes it easy to put in 
ompli
ated diagrams in a rather
ompa
t way.Restri
tions on the 
omplexity of the problem: The restri
tions on the 
omplexityare given by the hardware limitations of the 
omputer and the limits on the size ofthe storage �les inside FORM.Typi
al running time: The runtime strongly depends on the 
omplexity of the di-agram under 
onsideration. It may vary form a few se
onds to the order of a fewweeks.
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LONG WRITE-UP1 Introdu
tionThe high experimental pre
ision rea
hed at the ele
tron-positron ma
hines LEP (CERN)and SLC (SLAC) and the hadron 
ollider TEVATRON (FERMILAB) requires from thetheoreti
al side the evaluation of higher order quantum 
orre
tions. In the 
ases whereperturbative methods are applied the quantum 
orre
tions 
an be expressed throughan expansion in the 
oupling 
onstant of the underlying theory. The individual terms
an in turn be expressed through so-
alled Feynman diagrams, whi
h are often 
lassi�edas multi-leg or multi-loop diagrams. Va
uum integrals, i.e. integrals without externalmomenta, 
onstitute an important sub-
lass and often serve as building blo
ks in 
omplex
al
ulations.In general the momentum integration of the loop integrals is divergent in four spa
e-time dimensions. At present the most pra
ti
al method to 
ope with this problem inhigher loop orders is based on Dimensional Regularization [1℄. There, the four spa
e-timedimensions are repla
ed by D = 4 � 2" dimensions. Then the integrals are solved for a
hoi
e of " that renders them �nite. Finally an expansion for "! 0 is performed and thedivergen
es manifest themselves as poles in ".Important progress in pra
ti
al 
omputations has been made roughly 20 years agoby establishing an algorithm for the evaluation of propagator-type diagrams up to threeloops in the massless 
ase [2℄. They are important if there is only one external momentumwhi
h sets the mass s
ale for the problem. The formulae have been implemented onthe 
omputer in the FORM [3℄ pa
kage MINCER [4℄. In 1995 for the �rst time three-loopdiagrams in the opposite limit, i.e. zero external momentum but massive lines, weresystemati
ally examined [5℄. Usually these are denoted as va
uum or tadpole diagrams.In [5℄ all integrals 
ontributing to the photon propagator have been 
onsidered. The main
hara
teristi
s of this 
lass of diagrams is that the massive line forms a 
losed loop. These
onsiderations have been extended to the W boson 
urrent 
orrelators whi
h led to one ofthe most prominent appli
ations of three-loop va
uum integrals, namely the � parameterat O(��2s) [6, 7℄. The remaining 
ases have been 
onsidered in [8, 9, 10, 11℄. Thus it is| at least in prin
iple | possible to treat all problems where exa
tly one heavy mass isinvolved.In this paper we want to present the program pa
kage MATAD whi
h was designed forthe 
omputation of MAssive TADpoles at one-, two- and three-loop order as pi
tured inFig. 1. Thereby ea
h line may be massless or 
arry the mass M . In mathemati
al formthe integrals to be solved by MATAD readZ dDp(2�)D 1(p2 +M2)n ;Z dDp(2�)D dDk(2�)D 1(p21 +M21 )n1(p22 +M22 )n2(p23 +M23 )n3 ;2
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5Figure 1: Prototype topologies for one-, two- and three-loop va
uum diagrams. Themomentum pi 
ows through the line i as indi
ated by the arrow. Ea
h line may either bemassless or 
arry mass M and may be raised to an arbitrary integer power.Z dDp(2�)D dDk(2�)D dDl(2�)D 1(p21 +M21 )n1(p22 +M22 )n2(p23 +M23 )n3 �1(p24 +M24 )n4(p25 +M25 )n5(p26 +M26 )n6 ; (1)with Mi = 0 or Mi = M . These expressions 
orrespond to the diagrams in Fig. 1 wherethe momentum pi 
ows through the line i as indi
ated by the arrow. pi 
an be expressedas a linear 
ombination of the loop momenta. However, these relations are in our 
asenot of interest. Note that the integrals in Eq. (1) are de�ned in Eu
lidean spa
e.The key idea for the 
omputation of tadpole integrals is based on the integration-by-parts method [2℄ (see also Appendix A). It 
an be used for the derivation of re
urren
erelations whi
h relate va
uum integrals with di�erent denominator stru
tures. The properuse of the re
urren
e relations allows the redu
tion of an arbitrary integral to simpleones, whi
h 
an be solved by su

essively using one- and two-loop formulae, and a linear
ombination of a few so-
alled master integrals. Only for them a hard 
al
ulation isne
essary. In the 
ase of three-loop tadpole diagrams nine master integrals are needed.At �rst sight the appli
ations for va
uum integrals seem to be quite restri
ted. How-ever, for diagrams involving several mass s
ales, whi
h follow a 
ertain hierar
hy, it is veryoften advantageous to apply an asymptoti
 expansion [12℄ whi
h allows for a systemati
expansion in the inverse heavy s
ale. Then the multi-s
ale integrals are expressed as prod-u
ts of single s
ale ones. In [13℄ and [14℄ the rules for the so-
alled large-momentum andhard-mass pro
edure have been automated and 
omputer programs, LMP [13℄ and EXP [14℄,have been developed. They generate for a given diagram all relevant sub-graphs togetherwith the administrative �les whi
h govern the very 
al
ulation. LMP [13℄ is written in PERLand 
an be applied to problems where one large momentum is involved. EXP [14℄, writ-ten in C++, allows for a su

essive use of the large-momentum and hard-mass pro
edure3



and thus 
an deal with problems involving many s
ales. Both programs produ
e outputwhi
h 
an be read into MATAD and MINCER. Thus the 
ombination of both massive va
uumintegrals and massless propagator-type diagrams is very powerful to atta
k problems in-volving several di�erent mass s
ales. We want to mention that MATAD 
an be easily linkedto a generator for Feynman diagrams. More details | in parti
ular on the automation ofthe 
omputation of Feynman diagrams | 
an be found in [15℄.The outline of the paper is as follows: In Se
tion 2 the stru
ture of MATAD and theway it works is des
ribed. With the help of this se
tion the reader should be able touse MATAD for his own problems. Deeper insight into some sele
ted parts is provided inSe
tion 3. In Se
tion 4 expli
it examples are dis
ussed and hints for the 
onvenient us-age of MATAD are given. In Appendix A the ideas of the integration-by-parts method arereviewed. Appendix B lists all massive/massless 
ombinations whi
h are implementedinto the topology �les and in Appendix C the notation of the input and output is de-s
ribed. Furthermore the results for the master integrals are listed and the swit
hes forthe input-�le are des
ribed. Appendix D 
ontains a list of all �les of MATAD and, �nally,in Appendix E the 
omplete output of one of the 
onsidered examples is listed.2 Stru
ture and mode of operationAs MATAD is 
ompletely written in FORM [3℄ its installation redu
es to 
opying the individual�les into the 
orresponding dire
tories. In the main dire
tory the following �les appear:form.set in
/ matadform pr
/ problems/The dire
tories in
 and pr
 
ontain the in
lude-�les and pro
edures, respe
tively. Theyare des
ribed in more detail in Se
tion 3 and Appendix D. matadform is a shell s
riptwhi
h 
alls FORM in su
h a way that �les from sub-dire
tories 
an be in
luded. It has tobe adjusted by the user by simply spe
ifying the 
orresponding paths. The �le form.set
ontains FORM-spe
i�
 settings whi
h have to be adjusted a

ording to the underlyingplatform. For details 
on
erning the di�erent swit
hes we refer to the FORM manual [3℄.The user-spe
i�
 �les are all 
ontained in the folder problems.There are at least two �les whi
h should be provided by the user: main<prb> and<prb>.dia where <prb> stands for the name of the 
onsidered problem. The �rst one
ontains apart from some parameters essentially the information whi
h diagram should betreated. Some expli
it examples are given below. All the information about the diagrams,the proje
tors to be applied, et
. is 
ontained in the �le <prb>.dia. It is built up by FORMfolds and splits into two parts so that its generi
 stru
ture looks as follows*--#[ TREAT0:[...℄*--#℄ TREAT0:*--#[ TREAT1:[...℄ 4



*--#℄ TREAT1:*--#[ TREAT2:[...℄*--#℄ TREAT2:*--#[ TREATMAIN:[...℄*--#℄ TREATMAIN:** in the following list ea
h diagram is 
ontained in a separate FORM fold**--#[ d1l1:[... diagram 1 ...℄#define TOPOLOGY "XY"*--#℄ d1l1:*--#[ d1l2:[... diagram 2 ...℄#define TOPOLOGY "XY"*--#℄ d1l2:[...℄The �rst part 
onsists of the �rst four folds | the so-
alled spe
ial treat �les. Theyprovide the possibility to intera
t at di�erent stages and thus in
uen
e the 
omputation.Whereas TREAT0, TREAT1 and TREAT2 are read before the re
urren
e relations are appliedthe 
ontent of TREATMAIN is read right before the results are stored to disk. The se
ondpart of <prb>.dia 
ontains a list of all diagrams to be 
onsidered where ea
h diagram iswritten in a separate fold. The name of these folds is arbitrary.On
e these two �les are set up the 
al
ulation is simply initiated by 
alling the programmain<prb> and the following steps are performed. They are also illustrated in Fig. 2.1. Read global settings. They are partly 
ontained in in
/main.gen and should not bemodi�ed. Others 
an be set by the user in the �le main<prb>. They are des
ribedin Appendix C.4.2. Read the input data for the diagram spe
i�ed in main<prb> with the helpof the variables PRB, FOLDER and DIAGRAM. The generi
 FORM 
ommand reads#in
lude problems/'PRB'/'FOLDER'.dia # 'DIAGRAM'.As a next step the �le treat.pr
 is 
alled and the following operations are performed.3. Insert Feynman rules for fun
tions appearing in the input. In a �rst step the fermions(en
oded in the fun
tions S, SS, . . . , 
f. Appendix C.1) are resolved. It is importantto do this before any 
ontra
tion of indi
es is done. Then the propagators andverti
es are treated. 5



Stu
ture of MATADread global settingsread diagram
all treat.pr
:� treat fermion lines� insert Feynman rules� expand in small momenta� evaluate tra
es� perform Wi
k rotation� apply derivatives� read spe
ial treat �lesin
lude input top �le:� map expression to basi
 topologiesin
lude basi
 top �le:� treat s
alar produ
ts in numerator� apply re
urren
e relations� insert master integralexpand in " and store result to disk

TREAT0TREAT1TREAT2
TREATMAIN

Figure 2: Flow
hart illustrating the stru
ture of MATAD.In the 
urrent version the QCD Feynman rules are implemented (ex
ept the four-gluon vertex; see Appendix C.1). It is, however, straightforward to implement newverti
es in the user-spe
i�
 treat �les.4. Apply proje
tor. This should be done in one of the spe
ial treat �les. The optimalposition depends on the integrals to be 
omputed. From now on only s
alar integralswithout any free indi
es are present.5. Expansion of the s
alar denominators in the small quantities (mass and/or momen-6



tum).6. Perform tra
es.7. Do Wi
k rotation. This is done by multiplying ea
h momentum by the imaginaryunit (see also Appendix C). From now on the expression is de�ned in Eu
lideanspa
e.8. Apply derivatives in order to fa
torize the external momentum. In this 
ontext seealso the variables DALA12 and DALAQN in Appendix C.4.As there is the possibility to intera
t at three di�erent pla
es | after the fermions aretreated (TREAT0) and before and after the tra
es are performed (TREAT1, respe
tively,TREAT2) the order of the 
ommands may slightly be varied by the user.At this stage the s
alar produ
ts in the numerator of the integrals should be formedby either only loop momenta or only external momenta (whi
h then 
onstitutes a trivialprefa
tor). In the denominator the (s
alar) propagators may be raised to arbitrary power.The next steps 
onstitute the main part of MATAD.9. Express the s
alar produ
ts of the numerator in terms of the denominators. Thisprodu
es a \1" in the numerator of the integrals. It might be that this step is verytime and memory 
onsuming.10. Apply re
urren
e relations to redu
e the number of di�erent integrals to simplerones and to a small set of master integrals.11. Expand the result in " and store it in the dire
toryproblems/'PRB'/results/'DIAGRAM'.res under the name 'DIAGRAM'.An expansion in " is also done at various intermediate steps. Although poles of at mostthird order may appear for a three-loop va
uum integral terms up to order "6 have tobe kept in the expansion as arti�
ial poles may appear during the appli
ation of there
urren
e relations (
f. step 10).Steps 9 and 10 
onstitute the 
entral part of MATAD. They heavily depend on the loop-order and the topology whi
h has to be spe
i�ed apart from the very diagram in thefolds d1l1, d1l2, . . . (see above). Thus let us elaborate on this point in the following. Inprin
iple it suÆ
es to de�ne one input topology at one-, two- and three-loop order, wherethe number of internal lines amount to one, three and six, respe
tively (see Fig. 1). Ifone allows ea
h line to be massless and 
arry the mass M at the same time these threetopologies are suÆ
ient to 
over all possible 
ases that 
an o

ur in the 
al
ulation ofone-, two- and three-loop va
uum integrals. Note that a partial fra
tioning for terms like1(p2)a (p2 +M2)b ; (2)where a and b are positive integers, leads to the same topologies with the only di�eren
ethat now ea
h line is either massless of massive. It is, however, not at all pra
ti
al to7
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67Y1 Y2 Y3 N2 N3Figure 3: The input of the diagram to be 
omputed 
an be mapped to one of thesetopologies. The implemented massive/massless 
ombinations 
an be found in Appendix B.The momentum pi 
ows through line i as indi
ated by the arrow.rewrite the input to the notation of Fig. 1 before generating the �le dia.<prb>. Onthe 
ontrary it is advantageous to enlarge the input topologies. Currently the topologiesshown in Fig. 3 are implemented in MATAD. The momentum pi 
owing through line i
an be expressed as a linear 
ombination of the loop momenta. For our purpose theserelations are, however, not of interest. The 
hoi
e of the topologies was guided by thepa
kage MINCER [4℄ and for 
onvenien
e the same notation 
on
erning the de�nition ofthe momenta pi has been adopted. The implemented massive/massless 
ombinations ofea
h topology are listed in Appendix B. After the de
laration of the diagram in the foldsd1l1, d1l2, . . . the 
orresponding topology is spe
i�ed via#define TOPOLOGY "XY"where XY 
orresponds to one of the topologies of Fig. 3.The notation 
on
erning the momenta as introdu
ed in Fig. 3 is quite 
onvenient tobe used for the input. However, the very re
ursion pro
edure is formulated for the three-loop topology of Fig. 1 where the lines are either massive or massless. This leads to 148
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2BM BM1 BM2Figure 4: Basi
 three-loop topologies implemented into MATAD. They are redu
ed to eithersimple integrals or master integrals with the help of re
urren
e relations.di�erent 
ases whi
h are 
lassi�ed in [8℄. Thus before step 9 is performed the momenta aretransformed from the notation of Fig. 3, whi
h is used in the input, to the so-
alled basi
topologies shown in Fig. 4. For them | after de
omposing the s
alar produ
ts in thenumerator into parts of the denominator | the very re
ursion pro
edure is performed.Note that at this stage all propagators may be raised to an arbitrary integer power.A
tually some of the three-loop diagrams (e.g. BN3) 
an be 
omputed by the su
-
essive use of one- and two-loop pro
edures for massless propagator type diagrams orva
uum integrals, respe
tively. In su
h 
ases some of the (one- and two-loop) routinesfrom MINCER [4℄ are used for parts of the 
omputation. The 
orresponding pro
eduresare listed in Appendix D. For other 
ases (e.g. E4 or BN2) simple relations redu
e oneof the lines to zero and the resulting diagram 
an again be solved easily. Only for the
ases D5, D4, DN, DM, E3, BN and BN1 the re
ursion pro
edure has to be applied untilone arrives at master integrals. They 
oin
ide with the 
orresponding diagrams of Fig. 4where all denominators are raised to power one. Only the one pi
tured in Fig. 5, whi
hresults from BN1, is needed in addition. From this diagram even the O(") part is required.The analyti
 expressions are given in Appendix C.3. It should be mentioned that there
urren
e relations for BM are quite involved. However, for this topology no diÆ
ult mas-9



3 4 5 6

Figure 5: Master diagram resulting from topology BN1. Here all propagators are raised topower one. Its 
onstant part 
ontains the expression S2 and its O(") part OepS2 as listedin Appendix C.3.
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54M1 M2 M3 M4 M5Figure 6: Simple integrals whi
h o

ur as a result of the re
urren
e pro
edure next to themaster integrals. All propagrators may be raised to an arbitrary power.ter integral is needed. Note that the basi
 topologies BM1 and BM2 a
tually 
oin
ide withBN2 and BN3, respe
tively. For 
onvenien
e partly di�erent 
odes had been written whi
ha
tually turned out to be quite useful while debugging MATAD.The re
urren
e relations leading to simple diagrams and master integrals for the three-loop topologies are derived in Refs. [5℄ and [8℄. Ex
ept the 
ase where all six lines aremassive all of them are implemented into MATAD. The reason why this 
ase is missing issimply that it was not yet needed for pra
ti
al 
al
ulations. All master integrals are listedin Appendix C.3.In Fig. 6 the simple integrals are listed whi
h also result from the re
ursion pro
edure.They 
an all be expressed in terms of � fun
tions by the su

essive use of results formassless one-loop two-point fun
tions, Pab(Q), in 
ombination with one- (Va) and two-loop (Vab
) va
uum integrals. For 
onvenien
e we want to list the expli
it results forPab(q), Va and Vab
 in Eu
lidean spa
e:Pab(Q) = Z dDp(2�)D 1p2a (p+Q)2b 10



= (Q2)D=2�a�b(4�)D=2 �(a+ b�D=2)�(D=2� a)�(D=2� b)�(a)�(b)�(D � a� b) ;Va = Z dDp(2�)D 1(p2 +M2)a = (M2)D=2�a(4�)D=2 �(a�D=2)�(a) ;Vab
 = Z dDp(2�)D dDk(2�)D 1(p2 +M2)a(k2 +M2)b((p+ k)2)
= (M2)D�a�b�
(4�)D �(a + b+ 
�D)�(a+ 
�D=2)�(b+ 
�D=2)�(D=2� 
)�(a)�(b)�(a + b+ 2
�D)�(D=2) :(3)
p3

p2

p1

p6

p5

p4
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Figure 7: Three-loop diagram of type LA.The va
uum integrals o

urring at one- and two-loop level are quite simple. A
tuallymost of them 
an be expressed in terms of � fun
tions for arbitrary exponents of thepropagators and no re
ursion relations are needed (
f. Eq. (3)). Only for the two-loopintegral in Fig. 1 where all three lines 
arry the mass M it is useful to implement simplere
urren
e relations whi
h redu
e the integrals to one master integral where all exponentsare raised to the �rst power only. For three-loop 
al
ulations the result of this integral isneeded up to O(") (T1ep, see Appendix C.3).For de�niteness we want to 
onsider an expli
it example. Let us 
onsider the three-loop diagram of Fig. 7 whi
h we would like to expand up to fourth order in the externalmomentum, q1. For simpli
ity we negle
t the tensor stru
ture and 
onsider only the s
alarintegral obtained in the 
ase when the full line represents a massive parti
le and the 
urlyline a massless one. In the dire
tory problems/s
alar/ one 
an �nd the following �lesmains
alar results/ s
alar.diawhere results/ is a dire
tory to store the result of the diagram. The �le s
alar.dialooks as follows 11



*--#[ TREAT0:*--#℄ TREAT0:*--#[ TREAT1:*--#℄ TREAT1:*--#[ TREAT2:*--#℄ TREAT2:*--#[ TREATMAIN:*--#℄ TREATMAIN:*--#[ s
alar:M^4*s1m*s2m*s3m*Dh(p4,q1)*Dh(p5,q1)*Dh(p6,q1)/p7.p7/p8.p8;#define TOPOLOGY "LA"*--#℄ s
alar:In this 
ase no spe
ial treat �le is needed. The very diagram 
an be found in the folds
alar where the multipli
ation with M4 is done in order to end up with a dimensionlessexpression. The external momentum is routed through the lines 4, 5 and 6 as 
an beseen in the arguments of the fun
tion Dh. The other massive propagators are denoted bys1m, s2m and s3m. The massless lines translate into the fa
tors 1/p7.p7 and 1/p8.p8.For more details on the notation we refer to Appendix C.1. The �le mains
alar looks asfollows:#define PRB "s
alar"#define DALAQN "q1"#define GAUGE "0"#define POWER "4"#define CUT "0"#define FOLDER "s
alar"#define DIAGRAM "s
alar"#-#in
lude main.genWith the 
ommand#define POWER "4"we require an expansion up to fourth order in q1 and12



#define DALAQN "q1"e�e
tively fa
tors out the terms (q21)n. The 
al
ulation is initiated with the 
ommand> matadform problems/s
alar/mains
alarand after a few se
onds the �nal result is displayed on the s
reens
alar =- 2 + 2*z3 - Q1.Q1*z3*M^-2 + 227/216*Q1.Q1*M^-2 + 1/2*Q1.Q1^2*z3*M^-4- 1876/3375*Q1.Q1^2*M^-4;As expe
ted it is �nite and 
ontains three terms in the expansion in q21=M2. The resultis stored to the dire
tory problems/s
alar/results/ and 
an be read with the FORM
ommand load. Details on the notation of the output and the used 
onventions 
an befound in Appendix C.3 Some details on the internal stru
tureOn
e the re
urren
e relations are implemented it is in prin
iple possible to 
omputediagrams of arbitrary 
omplexity. However, in pra
ti
e one arrives quite soon at thelimits set by the soft- or hardware. The algebra language FORM is designed to deal withlarge expressions. Still it happens quite easily that in internal steps the expressions ex
eedseveral Megabytes and even approa
h the order of a few Gigabyte. This signi�
antly slowsdown the performan
e and it is advantageous to implement several tri
ks. Some of themare des
ribed in this se
tion.� During the re
urren
e pro
edure it happens very often that whole blo
ks of 
om-mands have to be exe
uted until the re
ursion has rea
hed an end. Within FORM thereare the 
ommandsrepeat;[...℄endrepeat;whi
h in prin
iple allows for su
h a 
onstru
tion. However, in pra
ti
e it is not possi-ble to use between repeat and endrepeat a 
ommand whi
h for
es FORM to 
ombineidenti
al terms like, e.g., .sort. For this reason a prepro
essor variable, NOR (see alsoAppendix C.4), has been introdu
ed whi
h in 
ombination with the 
onstru
tion#do i=1,'NOR'[...℄#enddoallows the use of .sort in intermediate steps of the re
ursion 
ommands.� At this point we should also mention that the pro
edure ACCU has been adoptedfrom MINCER [4℄. It 
olle
ts in the argument of the fun
tion a

() the polynomials in "and thus signi�
antly redu
es the number of terms. E.g., the expression13



x1*x2 + 4*ep*x1*x2 + 12*ep^3*x1*x2transforms after #
all ACCU{test} toa

(1 + 4*ep + 12*ep^3)*x1*x2and instead of three only one term has to be treated in the following 
ommands.� Very often it happens that propagators of the type 1=(M2 � (p + q)2)n have to beexpanded in the momentum q and afterwards derivatives w.r.t. q are applied in order tofa
tor out powers of q2. It turns out that it is very useful to expand in a �rst step only thepart 2pq and keep the fa
tors q2 unexpanded in the form 1=(M2 � (p2 + q2))n. Thus lessterms have to be 
onsidered while the derivatives are applied. Afterwards the expansionin q2 is performed. A related dis
ussion 
an also be found in [16℄.� The expansion of the s
alar denominators in a small momentum is also very time
onsuming | espe
ially for high values of 'POWER'. In order to do this in an e�e
tive waythe variable po
o, whi
h is an abbreviation for \power 
ounting", is de�ned viaS po
o(:'POWER');after the de
laration of the prepro
essor variable POWER. This de�nition ensures that theterms involving po
on with n >'POWER' are automati
ally set to zero. Depending on theproblem po
o should also be 
onsidered in the spe
ial treat �les.� The appli
ation of the re
urren
e relations 
an lead to spurious 1=" poles (
f. Ap-pendix A) whi
h are in general quite dangerous if an expansion in " is performed inintermediate steps. In MATAD at most three 1=" poles arise from the re
urren
e relations.Together with a possible 1="3 term from the three-loop integrals an expansion up to order"6 has to be done in intermediate steps in order to get the 
orre
t 
onstant term.� For quite a lot of appli
ations the topology BN (
f. Fig 4) plays a 
ru
ial role. Theoriginal re
urren
e pro
edure for this toplogy to master integrals was proposed in [5℄: Ina �rst step the exponent of three out of the four massive denominators are redu
ed toone. Then the exponents of the massless lines are redu
ed to zero. Finally the remainingline is treated and one arrives (apart from simple integrals) at an integral 
onsisting offour massive lines 
onne
ting two verti
es. It is 
onne
ted to the 
orresponding masterintegral of Fig. 4 through a simple relation.The equation involved in the last re
ursion step is quite involved. It generates fromea
h term more than ten terms at ea
h 
all. Note that the exponent of the last mas-sive denominator gets in
reased by the pro
eeding steps. This enormously slows downthe 
al
ulation | in some 
ases it makes it even impossible. The idea to 
ir
umventthis problem is based on the observation that the massless exponents 
an be redu
edto zero even if none of the massive ones is redu
ed to one. The 
orresponding re
ur-ren
e relations are short and thus one arrives with only little e�ort at three-loop integralswith four massive lines, BN (0; 0; n3; n4; n5; n6) (
f. Fig. 5 where all lines are massive andthe exponents of the denominators are given by n3, n4, n5 and n6). These diagrams arenow treated in the following way: Temporarily an external momentum is introdu
ed whi
h14




ows through one of the lines. We 
hoose line 3 for de�niteness. In a se
ond step the oper-ator 2q = �=�q��=�q� is applied and q is set to zero afterwards. This leads to an equation
onne
ting BN(0; 0; n3; n4; n5; n6), BN(0; 0; n3�1; n4; n5; n6) and BN (0; 0; n3�2; n4; n5; n6)BN(0; 0; n3; n4; n5; n6) = � 14M2(n3 � 2)(n3 � 1)2qBN(0; 0; n3 � 2; n4; n5; n6)+ �2D + 4(n3 � 1)4M2(n3 � 1) BN(0; 0; n3 � 1; n4; n5; n6) ; (4)whi
h 
an be applied until n3 = 3. As the other indi
es are not a�e
ted the same pro
edure
an be applied to them as well and one ends up with the integrals BN(0; 0; 1; 1; 1; 1),BN(0; 0; 2; 1; 1; 1), BN(0; 0; 2; 2; 1; 1), BN (0; 0; 2; 2; 2; 1) and BN (0; 0; 2; 2; 2; 2). Both theirvalues for q = 0 and the result for the appli
ation of (2q)n has to be known where theindex n depends on how often Eq. (4) had to be applied. The overall number of theintegrals needed is still small and for most pra
ti
al appli
ations well below 100. They
an be 
omputed on
e and for all using the method of Ref. [5℄ and 
an be 
olle
ted in atable. Currently the table 
ontains all results up to n = 10 and partly for n = 11. In 
asethe table is too small the original re
urren
e pro
edure [5℄ has to be used. This is doneby de�ning the prepro
essor variable BNRECOLD in the main �le.4 ExamplesIn this se
tion we want to dis
uss some typi
al examples whi
h 
an be treated withMATAD. In parti
ular the 
ontent of the TREAT folds and the swit
hes in main.<prb> shallbe dis
ussed in detail. In Se
tion 4.1 two-loop 
orre
tions to the photon polarizationfun
tion are 
onsidered and in Se
tion 4.2 the 
al
ulation of three-loop vertex 
orre
tions
ontributing to the Higgs de
ay into gluons is dis
ussed. As a last example we 
onsiderthe 
omputation of the fermion propagator in the limit of a small external momentum.4.1 Photon polarization fun
tionIn this se
tion only a 
al
ulation of two-loop diagrams is presented. However, we wantto take this opportunity to show a 
on
ept whi
h 
an also be used for the treatment ofmore 
omplex problems. In parti
ular it is shown how the 
omplete 
al
ulation 
an beautomated and one 
an ensure that all results are indeed up-to-date.To be pre
ise, we want to 
onsider the two-loop diagrams indu
ed by a massive quarkto the photon polarization fun
tion. The problem shall be 
alled Pi. Then the �le Pi.dialooks as follows:** problem: Pi**--#[ TREAT0: 15



#message proje
t out transversal partmultiply, (d_(mu1,mu2)-q1(mu1)*q1(mu2)/q1.q1)*deno(3,-2);.sort*--#℄ TREAT0:*--#[ TREAT1:*--#℄ TREAT1:*--#[ TREAT2:*--#℄ TREAT2:*--#[ TREATMAIN:*--#℄ TREATMAIN:** 2-loop diagrams for problem Pi**--#[ d2l1:((-1)*Dg(nu1,nu2,p5)*S(mu1,q1,p1m,nu1,q1,p2m,mu2,p3m,nu2,p4m)*1);#define TOPOLOGY "T1"*--#℄ d2l1:*--#[ d2l2:((-1)*Dg(nu1,nu2,p4)*S(mu1,q1,-p2m,mu2,p1m,nu2,p3m,nu1,p1m)*1);#define TOPOLOGY "T2"*--#℄ d2l2:*--#[ d2l3:((-1)*Dg(nu1,nu2,p4)*S(nu1,p3m,nu2,p1m,mu2,-q1,-p2m,mu1,p1m)*1);#define TOPOLOGY "T2"*--#℄ d2l3:The fun
tion deno(x,y) means 1=(x + y") and 
an be used for denominators. TREAT0
ontains the proje
tor to the transversal part and the three 
ontributing diagrams arenamed d2l1, d2l2 and d2l3. The external momentum is denoted by q1. The mass of thequarks, whi
h in the �nal result appears as M, is introdu
ed through adding the symbolm to the 
orresponding momentum whi
h is de�ned through the topologies T1 and T2 inFig. 3. We want to assume that q21 � M2 and thus perform an expansion in q1. This is16



a
hieved with the notation S(...,q1,p1m,...). For more details 
on
erning the notionwe refer to Appendix C.The �le mainPi reads:#define PRB "Pi"#define PROBLEM0 "1"#define DALAQN "q1"#define GAUGE "xi"#define POWER "4"#define CUT "1"#define FOLDER "Pi"***#define DIAGRAM "d2l1"#-#in
lude main.genFor most of the spe
i�ed variables we refer to Appendix C.4. We only want to mention thata general gauge parameter xi is 
hosen with the 
ommand #define GAUGE "xi". Thisallows for an expli
it 
he
k that the �nal result, i.e. the sum of the three diagrams is gaugeparameter independent. The de�nition #define POWER "4" requests for an expansion upto fourth order in q1. The de�nition of the variable DIAGRAM is 
ommented as it will bede�ned during the 
all of mainPi (see below).The 
omputation of ea
h diagram 
ould be started separately and the results 
ould besummed at the end. Instead we want to take the opportunity to present a method whi
his unavoidable for problems where a large number of diagrams 
ontribute. In the followingwe want to present two more �les whi
h 
an easily be adopted to other problems. The�rst one, makePi, is a so-
alled GNU make �le and 
ould look as follows:SHELL = /bin/shDIA2 = \problems/Pi/results/d2l1.res\problems/Pi/results/d2l2.res\problems/Pi/results/d2l3.resproblems/Pi/results/Pi.2.res: $(DIA2)matadform problems/Pi/
omPi > problems/Pi/log/
omPi.logii = $(notdir $(basename $�))$(DIA2): problems/Pi/mainPiif [ -f problems/Pi/results/$(ii).res ℄; \then rm problems/Pi/results/$(ii).res; fitime matadform -d DIAGRAM=$(ii) \problems/Pi/mainPi > problems/Pi/log/$(ii).log;if [ -f problems/Pi/results/$(ii).res ℄; \then rm problems/Pi/log/$(ii).log; fiFor details 
on
erning the individual 
ommands we refer to the literature [17℄. For usit is only important that at the beginning the diagrams we want to 
ompute are listed.17



Furthermore, after the line `problems/Pi/results/Pi.2.res: $(DIA2)' the 
ommand isgiven whi
h spe
i�es what shall be done on
e the 
omputation of the individual diagramsis �nished: The diagrams are summed with the help of the program 
omPi** 
omPi*#-#in
lude de
lare.matad#define PRB "Pi".global#do i=1,3load problems/'PRB'/results/d2l'i'.res;#enddog res'PRB'2 =#do i=1,3+ d2l'i'#enddo;b ep;print;.store#+save problems/'PRB'/results/res'PRB'.2.res res'PRB'2;.endTo initiate the 
al
ulation one simply has to spe
ify the 
ommand> make -f problems/Pi/makePiwhere make has to 
all the GNU version [17℄ of the make 
ommand. The �nal result isstored in the �le problems/Pi/results/resPi.2.res. It readsresPi2 =+ ep^-1 * ( - 6*Q1.Q1 + 8/5*Q1.Q1^2*M^-2 )+ ep * ( - 35/6*Q1.Q1 - 6*Q1.Q1*z2 + 8/5*Q1.Q1^2*M^-2*z2 + 3116/1215*Q1.Q1^2*M^-2 )+ 13/3*Q1.Q1 - 128/405*Q1.Q1^2*M^-2;Indeed, as expe
ted, there is no tra
e of the gauge parameter xi.
18



4.2 Higgs de
ay into two gluonsParty for 
onvenien
e and partly for histori
al reasons the notation of the input topologiesin Fig. 3 is 
losely 
onne
ted to two-point fun
tions. However, MATAD only deals withva
uum diagrams independent of the number of external legs. In this se
tion we want toshow that also problems involving at �rst sight three-point fun
tions 
an be approa
hedusing MATAD.Let us 
onsider QCD 
orre
tions to the de
ay of the Standard Model Higgs bosoninto two gluons. It is 
onvenient to 
onstru
t an e�e
tive theory where the top quark isintegrated out. Details on the theoreti
al ba
kground 
an be found in [18℄. Here it shallonly be mentioned that the 
oeÆ
ient fun
tion whi
h 
ontains the dependen
e on themass of the top quark, Mt, 
an be 
omputed from triangle diagrams as pi
tured in Fig. 8.A

ording to their Lorentz stru
ture the result 
an be written as followsK(Mt) (q�1q�2 � q1q2g��) ; (5)where q1 and q2 are the momenta of the gluons with polarization ve
tors ��(q1) and ��(q2).Thus the vertex diagrams have to be expanded up to linear order both in q1 and q2 andan appropriate proje
tor has to be applied in order to get K(Mt).
Figure 8: Sample diagram 
ontributing to the de
ay of the Higgs boson. Solid and loopedlines represent quarks and gluons, respe
tively.The �le 
ontaining the diagrams 
ould look as follows** problem: hgg**--#[ TREAT0:multiply, (a*deno(2,-2)*(q1.q2*d_(mu,nu)-q2(nu)*q1(mu)-q2(mu)*q1(nu))+b*deno(2,-2)*(-q1.q2*d_(mu,nu)+(3-2*ep)*q2(nu)*q1(mu)+q2(mu)*q1(nu)));.sort*--#℄ TREAT0:*--#[ TREAT1:*--#℄ TREAT1: 19



*--#[ TREAT2:*--#℄ TREAT2:*--#[ TREATMAIN:*--#℄ TREATMAIN:*--#[ d3l335:((-1)*M*Dg(nu1,nu2,p1)*Dg(nu7,nu8,-p4)*Dg(nu3,nu4,q1,-p1)*Dg(nu5,nu6,q2,p1)*S(-q1,-p3m,nu7,-q1,p5m,nu4,-p2m,nu6,q2,p5m,nu8,q2,-p3m)*V3g(mu,q1,nu1,-p1,nu3,p1-q1)*V3g(nu,q2,nu2,p1,nu5,-p1-q2)*1);#define TOPOLOGY "O4"*--#℄ d3l335:where the diagram d3l335 
orresponds to the one shown in Fig. 8. The fold TREAT0
ontains (up to an overall fa
tor (q1:q2)�2) the proje
tor on the 
oeÆ
ients in front of thestru
tures g�� and q�1q�2 of Eq. (5). They are marked by the symbols a and b, respe
tively.Thus the transversality of Eq. (5) 
an be expli
itly 
he
ked in the sum of all 
ontributingdiagrams (the result of a single diagram does in general not have a transverse stru
ture).The 
orresponding main-�le is very similar to the one listed in Se
tion 4.1. The onlydi�eren
e (apart from repla
ing Pi by hgg) is that the 
ommands#define DALAQN "q1"#define GAUGE "xi"#define POWER "4"#define CUT "1"should be repla
ed by#define DALA12 "1"#define GAUGE "0"#define POWER "2"#define CUT "0"The third line ensures that an expansion of the integrand up to se
ond order in theexternal momenta is performed and the �rst one sets q21 and q22 to zero and fa
tors outthe s
alar produ
t q1q2. #define CUT "0" sets " to zero in the �nal result as the termsof O(") are anyway not 
omputed 
ompletely at three-loop order. In this example we
hoose Feynman gauge whi
h is a
hieved with #define GAUGE "0".After 
alling MATAD it takes of the order of a minute to obtain the result:20



d3l335 =+ ep^-2 * ( 40*Q1.Q2*M^2*a + 344/9*Q1.Q2^2*a - 232/9*Q1.Q2^2*b )+ ep^-1 * ( - 308/3*Q1.Q2*M^2*a - 3530/27*Q1.Q2^2*a + 1786/27*Q1.Q2^2*b )+ 60*Q1.Q2*M^2*z2*a + 734/3*Q1.Q2*M^2*a - 1936/9*Q1.Q2^2*z3*a + 1136/9*Q1.Q2^2*z3*b + 172/3*Q1.Q2^2*z2*a - 116/3*Q1.Q2^2*z2*b + 46817/81*Q1.Q2^2*a - 26239/81*Q1.Q2^2*b;Note that the terms proportional to Q1.Q2*M^2 
an
el after adding all 
ontributing dia-grams.4.3 Fermion propagatorIn this example we 
ompute the small-momentum expansion of a three-loop diagramwhi
h 
ontributes to the fermion propagator. Re
ently these kind of diagrams have been
onsidered in di�erent kinemati
al regions in order to obtain the three-loop relation be-tween the MS and on-shell quark mass [19, 11℄. This subse
tion 
ontains all relevant inputinformation whereas the 
omplete output is given in Appendix E.The fermion self energy, �(q), 
an be de
omposed into a s
alar and ve
tor part�(q) = M�S(q2) + q=�V (q2) ; (6)where q is the external momentum and M is the mass of the quark. We are interested inthe 
omputation of the s
alar fun
tions �S and �V .The �le mainfp looks as follows#define PRB "fp"#define PROBLEM0 "1"#define DALAQN "q1"#define GAUGE "0"#define POWER "1"#define CUT "0"#define FOLDER "fp"#define DIAGRAM "d3l79"#-#in
lude main.genThe variable POWER is de�ned in su
h a way that an expansion up to third order isperformed. This leads to the 
onstant and order q2=M2 terms for the fun
tions �S and�V as �(q) itself has mass dimension one. The 
orresponding proje
tors and the diagramto be 
omputed look as follows (fp.dia):** problem: fp* 21



*--#[ TREAT0:multiply, 1/4*(1/M + a * g_(1,q1)/q1.q1);*--#℄ TREAT0:*--#[ TREAT1:*--#℄ TREAT1:*--#[ TREAT2:*--#℄ TREAT2:*--#[ TREATMAIN:*--#℄ TREATMAIN:*--#[ d3l79:((1)*Dg(nu3,nu4,p5)*Dg(nu5,nu6,-p6)*Dg(nu1,nu2,-q1,-p1)*S(nu2,-p1m,nu5,-p4m,nu4,-p3m,nu6,-p2m,nu3,-p1m,nu1)*1);#define TOPOLOGY "O4"*--#℄ d3l79:Note that in the fold TREAT0 the ve
tor part gets multiplied by a in order to distinguish�V from �S in the �nal result. The input for the diagram 
orresponds to the one pi
turedin Fig. 9. The 
omplete output appearing on the s
reen and the result 
an be found inthe Appendix E.
Figure 9: Sample diagram 
ontributing to the fermion propagator. Solid and looped linesrepresent quarks and gluons, respe
tively.
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arriedout.AppendixA Integration-by-partsThe method of integration-by-parts plays a fundamental role in the 
omputation of multi-loop diagrams [2℄. For this reason we want to demonstrate its underlying idea by 
onsid-ering a typi
al example.The integration-by-parts algorithm uses the fa
t that the D-dimensional integral overa total derivative is equal to zero:Z dDp ��p� f(p; : : :) = 0 : (7)By expli
itly performing the di�erentiations one obtains re
urren
e relations 
onne
tingFeynman integrals of di�erent 
omplexity. The proper 
ombination of di�erent re
urren
erelations allows any Feynman integral (at least single-s
ale ones) to be redu
ed to a smallset of so-
alled master integrals. The latter ones have to be evaluated only on
e and forall, either analyti
ally or numeri
ally.
21
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Figure 10: Two-loop master diagram. The arrows denote the dire
tion of momentum
ow.Let us for de�niteness 
onsider the s
alar two-loop diagram of Fig. 10. The 
orre-sponding Feynman integral shall be denoted byI(n1; : : : ; n5) = Z dDp(2�)D dDk(2�)D 1(p21 +m21)n1 � � � (p25 +m25)n5 ; (8)23



where p1; : : : ; p5 are 
ombinations of the loop momenta p; k and the external momentumq (we work in Eu
lidean spa
e here). n1; : : : ; n5 are 
alled the indi
es of the integral.Consider the sub-loop de�ned by the lines 2, 3 and 5, and take its loop momentum tobe p = p5. If we then apply the operator (�=�p5) � p5 to the integrand of I, we obtain arelation of the form (7), wheref(p5; : : :) = p�5(p25 +m25)n5(p22 +m22)n2(p23 +m23)n3 : (9)Performing the di�erentiation and using momentum 
onservation at ea
h vertex one de-rives the following equation:h� n33+ �5� � 4� +m24 �m25 �m23�� n22+ �5� � 1� +m21 �m25 �m22�+D � 2n5 � n3 � n2 + 2n5m255+i I(n1; : : : ; n5) = 0 ; (10)where the operators 1�; 2�; : : : are used in order to raise and lower the indi
es:I�I(: : : ; ni; : : :) = I(: : : ; ni � 1; : : :). In Eq. (10), generally referred to as the trianglerule, it is understood that the operators to the left of I(n1; : : : ; n5) are applied beforeintegration. If the 
ondition m5 = 0; m3 = m4 and m1 = m2 holds, in
reasing one indexalways means to redu
e another one. Therefore this re
urren
e relation may be used toshift the indi
es n1, n4 or n5 to zero whi
h leads to mu
h simpler integrals.The triangle rule 
onstitutes an important building blo
k for the general re
urren
erelations. The strategy is to 
ombine several independent equations of the kind (10) inorder to arrive at relations 
onne
ting one 
ompli
ated integral to a set of simpler ones.For example, while the dire
t evaluation of even the 
ompletely massless 
ase for thediagram in Fig. 10 is non-trivial, appli
ation of the triangle rule (10) leads toI(n1; : : : ; n5) = 1D � 2n5 � n2 � n3 hn22+ �5� � 1��+ n33+ �5� � 4�� i I(n1; : : : ; n5) :(11)Repeated appli
ation of this equation redu
es one of the indi
es n1, n4 or n5 to zero. Forexample, for the simplest 
ase (n1 = n2 = : : : = n5 = 1) one obtains the equation pi
turedin Fig. 11: The non-trivial diagram on the l.h.s. is expressed as a sum of two quite simpleintegrals whi
h 
an be solved by applying the one-loop formula. This example also showsa possible trap of the integration-by-parts te
hnique. In general its appli
ation introdu
esarti�
ial 1=" poles whi
h 
an
el only after 
ombining all terms. They require the expansionof the individual terms up to suÆ
iently high powers in " in order to obtain, for example,the �nite part of the original diagram. This point must 
arefully be respe
ted in 
omputerrealizations of the integration-by-parts algorithm: One must not 
ut the series at too lowpowers be
ause then the result goes wrong; keeping too many terms, on the other hand,may intolerably slow down the performan
e.In our example, the l.h.s. in Fig. 11 is �nite, ea
h term on the r.h.s., however, develops1="2 poles. The �rst three orders in the expansion for " ! 0 
an
el, and the O(") termof the square bra
ket, together with the 1=" in front of it, leads to the well-known result(omitting fa
tors 1=16�2): I(1; 1; 1; 1; 1) = 6�(3)=q2, where q is the external momentum.24



= 1"" | #
Figure 11: Symboli
 equation resulting from Eq. (11) applied to the diagram I(1; 1; 1; 1; 1).The dot indi
ates that the respe
tive denominator appears twi
e.In general, the su

essive appli
ation of re
urren
e relations generates a huge numberof terms out of a single diagram. Therefore, a 
al
ulation 
arried out by hand be
omesvery tedious and the use of 
omputer algebra is essential.B The topology �lesThis part of the appendix provides a 
omplete list of those massive/massless 
ombinationswhi
h are implemented in the topology �les in
/TOPOLOGY/topXY. In the following tablesfor all three-loop topologies of Fig. 3 the lines are listed whi
h have to be massive. All otherlines may be massless or absent. In some 
ases some of the lines have to be 
ompletelyabsent, i.e. it is even not allowed for them to be massless. This is expli
itly spe
i�ed inthe 
olumns \absent".L1massive absent massive absent massive absent massive absent1 | 2 | 1,2 |T1massive absent massive absent massive absent massive absent1,2 | 1,2,4 | 1,2,3,4 | 1,4 |2,4 | 1 | 2 | 1,2,5 |T2massive absent massive absent massive absent massive absent1,3 | 2 | 1,2,3 | 2,4 |3,4 | 3 | 1,2 |BEmassive absent massive absent massive absent massive absent1,2,3,4,5 | 1,2,3 | 4,5 |BUmassive absent massive absent massive absent massive absent1,3,6,7 | 4,5,6,7 |
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LAmassive absent massive absent massive absent massive absent1,2,3,4,5,6 | 1,3,4,6,7,8 | 1,6,7 | 3,4,8 |1,2,3 | 1,3,7,8 4,5,6 1,7 4,5,6 3,8 4,5,6NOmassive absent massive absent massive absent massive absent1,2,3,4,5,6 | 1,2,3 |N2massive absent massive absent massive absent massive absent1,2,3,4,5,6 | 1,2,3,4 | 5,6 | 2,3 |N3massive absent massive absent massive absent massive absent1,2,3,4,5 | 2 | 1,3,4,5 | 3,4 |3,4,5 | 4,5 | 1,3 | 1,5 |O1massive absent massive absent massive absent massive absent1,2,3,4,6,7 | 1,2,3,4 | 6,7 | 1,2,6,7 |1,2 | 1,5,6 3,4 1,5,7 3,4 5,6 |5 | 5,7 | 1,5,7 | 7 |1,5 | 1 | 1,7 | 6 |1,6,7 | 1,2,7 3,4O2massive absent massive absent massive absent massive absent1,2,3,4,7 | 3,4,7 | 1,2 | 7 |
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O4massive absent massive absent massive absent massive absent1,2,6,7 | 1,2,6 | 7 | 1,3,5,6 71,3,5 | 3,5 | 1,5 | 5 |1,3,5,7 | 3,5,7 | 1,2 | 1 |2 | 1,6 | 2,6 | 1,3,7 63,7 6 2,6 | 1,3,5,7 6 1,5,7 61,2,7 6 2,3 7 1,2,3 7 3,4 73,4,5 7 1,3,4 7 1,2,5 7 1,3,4,5,6 71,4,5,6 7 1,3,4,5 7 1,4,5 7 1,4 73,4,6 7 1,2,3,4 7 2,3,4 7 1,2,3,4,5 71,2,4,5 7 1,3,4,6 7 1,2,3,5 7 2,3,5 73,4,5,6 7 4,5,6 7 2,3,4,5 7 2,4,5 72,4 7 1,2,4 7 1,5 7 1,3 73 7 2,5 7 1,2 7 4,5 74 7 1,2,4,5,6 7 2,4,5,6 7 6 74,6 7 3,5,6 7 3,6 7 1,5,6 72,5,6 7 1,3,6 7 1,2,5,6 7 1,2,4,6 72,4,6 7 5,6 7 1,4,6 7Y1massive absent massive absent massive absent massive absent1,2,3,6 | 1,3 | 3 | 3,5,6 |Y2massive absent massive absent massive absent massive absent1,2,3,5 | 2 | 1,3,5 | 3 |5 | 1,3 | 1,5 |Y3massive absent massive absent massive absent massive absent1,2,3,5 | 1,3,5 | 2 | 5 |3,5 | 1,3 |C Some details on the notationC.1 Notation of the inputIn this subse
tion we des
ribe the notation to be used for the input.On one side of the following expressions the FORM notation is used whereas the otherside displays the 
orresponding mathemati
al terms. It is always assumed that pi (i =1; : : : ; 9) is a loop momentum and qi (i = 1; : : : ; 3) is a small momentum in whi
h anexpansion is performed.If s
alar integrals are to be 
omputed with MATAD the following notation has to be27



used: massless lines: 1p21 ; 1p22 ; : : : �! 1/p1.p1, 1/p2.p2; : : :1�(p1+q1)2 ; : : : �! Dl(p1,q1); : : :massive lines: 1M2�p21 ; 1M2�p22 ; : : : �! s1m, s2m; : : :1M2�(p1+q1)2 ; : : : �! Dh(p1,q1); : : : (12)Fermions are treated with the help of the (non-
ommutative) fun
tion S and the fun
tionDg 
an be used for the gluon propagator:S(mu) = 
� ; S(p1) = p1=�p21 ;S(p1m) = M+p1=M2�p21 ; S(q1,p1) = p1=+q1=�(p1+q1)2 ;S(q1,p1m) = M+p1=+q1=M2�(p1+q1)2 ;Dg(mu,nu,p1) = �g���� p�1 p�1�p21�p21 ; Dg(mu,nu,q1,p1) = �g���� (p1+q1)�(p1+q1)��(p1+q1)2�(p1+q1)2 : (13)
Instead of S also SS, SSS or SSSS may be used whi
h is useful in 
ase more than onefermion line is involved. The verti
es between three gluons and gluon and ghosts areimplemented through the following fun
tions (where the 
olour fa
tors are not taken intoa

ount):V3g(i1,p1,i2,p2,i3,p3) = (p2 � p1)i3 gi1i2 + (p3 � p2)i1 gi2i3 + (p1 � p3)i2 gi3i1 ;Vgh(i1,p1) = �pi11 : (14)If small momenta are present they 
an simply be added to p1, p2 or p3. In analogy to theexpansion in a small momentum it is possible to introdu
e fun
tions where an expansionin small masses 
an be performed.In the above expressions instead of q1 also q2 or q3 may be 
hosen as momenta inwhi
h an expansion is done. For the loop momenta p1, . . . , p9 is allowed.For the Feynman rules given above the user has to 
he
k the 
onsisten
y with own sign
onventions. In parti
ular all unne
essary fa
tors like, e.g., the strong 
oupling 
onstantare omitted. Also the imaginary unit, i, is suppressed. Furthermore the Feynman rulesare 
hosen in su
h a way that the verti
es are proportional to i and all propagators areproportional to 1=i whi
h leads to 
onvenient 
an
ellations. Thus ea
h diagram 
an bewritten asi 1i Z dDkj(2�)D!l � [expression formed by the Feynman rules of (13) and (14) ℄ ; (15)where l is the number of loops. The fa
tor 1=i in front of the integration momentadisappears after the Wi
k rotation. The overall fa
tor i, whi
h o

urs for all diagramsand whi
h is independent of the number of loops, is omitted.28



C.2 Notation and 
onventions of the outputAt this point some words about the notation of the output of MATAD are in order. Asalready mentioned, the �nal expressions are expanded in " where | following generalMS 
onventions | the fa
tors 
E and ln 4� have been dropped. Furthermore the fa
tors(1=16�2)l and (1=M2")l where l is the number of loops are omitted. Con
erning theremaining symbols the translation is given in the following table:" epEu
lidean external momenta Q, Q1, Q2, . . .�2; �3; : : : (Rieman zeta fun
tion) z2, z3, . . .mass appearing in the integrals Mparametrization of the �nite partsof the master integrals D5, D4, . . . (see Appendix C.3)Note that all momenta whi
h o

ur in the output have to be interpreted in Eu
lideanspa
e.C.3 Master integralsMATAD does not insert the 
omplete �nite parts of the master integrals automati
ally.Instead they are parameterized by the symbols D5, D4, DM, DN, B4, ... where the notationis adopted from the one introdu
ed in Fig. 4. In the following list one 
an �nd the
orresponding analyti
al expressions [5, 9, 10, 11, 20℄1D6 = 6�3 � 17�4 � 4�2 ln2 2 + 23 ln4 2 + 16Li4 �12�� 4 �Cl2 ��3��2 ;D5 = 6�3 � 46927 �4 + 83 �Cl2 ��3��2 � 16 Xm>n>0 (�1)m 
os(2�n=3)m3n� �8:2168598175087380629133983386010858249695 ;D4 = 6�3 � 7712�4 � 6 �Cl2 ��3��2 ;D3 = 6�3 � 154 �4 � 6 �Cl2 ��3��2 ;DM = 6�3 � 112 �4 � 4 �Cl2 ��3��2 ;DN = 6�3 � 4�2 ln2 2 + 23 ln4 2� 212 �4 + 16Li4 �12� ;B4 = �4�2 ln2 2 + 23 ln4 2� 132 �4 + 16Li4 �12� ;E3 = �1393 � �p3 ln2 38 � 17�3p372 � 212 �2 + 13�31Note that there is a misprint in Eq. (22) of Ref. [11℄: all four appearing Clausen fun
tions must besquared and the 
oeÆ
ient of �4 in the se
ond to last equation must read \�22" instead of \�31=2".29



+ 10p3Cl2 ��3�� 6p3Im "Li3  e�i�=6p3 !# ;S2 = 49p3Cl2 ��3� ;OepS2 = �76332 � 9�p3 ln2 316 � 35�3p348 + 19516 �2 � 154 �3 + 5716�4+ 45p32 Cl2 ��3�� 27p3Im "Li3  e�i�=6p3 !# ;T1ep = �452 � �p3 ln2 38� 35�3p3216 � 92�2 + �3 + 6p3Cl2 ��3�� 6p3Im "Li3  e�i�=6p3 !# ; (16)with Cl2(x) = Im[Li2(eix)℄. Li2, Li3 and Li4 are the Di-, Tri- and Quadrilogarithm,respe
tively. S2 both appears in the diagram of Fig. 5 and the two-loop diagram of Fig. 1where all three lines have the same mass. Their O(") parts, whi
h 
an 
ontribute to the�nite part of the three-loop results, 
ontain OepS2 and T1ep, respe
tively. We shouldmention that those expressions of Eq. (16) whi
h 
oin
ide with an existing topology (e.g.D5 $ topD5) indeed agree with the �nite part of the 
orresponding master integral. Onthe other hand B4, e.g., 
omprises the 
ompli
ated parts of the �nite part of the masterintegral 
orresponding to topBN, however, not the 
omplete one. D6 is not yet implementedinto MATAD and listed for 
ompleteness only.C.4 Parameters and swit
hes in main.<prb>In the following a brief des
ription of the swit
hes in the �le main<prb> is given. In all
ases the FORM syntax reads #define <VAR> "<VAL>" where <VAR> is the variable to bede�ned and <VAL> the 
orresponding value.It is required to de�ne at least the following �ve variables:DIAGRAM: name of the diagram to be 
omputed.FOLDER: the �le 
ontaining the spe
ial treat �les and the diagrams is 
alled'FOLDER'.dia.GAUGE: determines the 
hoi
e for the gauge parameter. The variable � as de�nedin the fun
tion Dg in Eq. (13) is repla
ed by the value of GAUGE. In parti
ular#define GAUGE "0" 
orresponds to Feynman gauge and with #define GAUGE "xi"the 
al
ulation is performed for general gauge parameter.POWER: determines the depth of the expansion in the small quantities.PRB: name of problem. PRB 
orresponds to the name of the fold where the problem-dependent �les 
an be found. 30



The de�nition of the remaining variables is optional:BNRECOLD: if this variable is de�ned the original re
urren
e pro
edure of Ref. [5℄ is usedfor the topology BN.CUT: determines the depth of the expansion in " of the �nal result. At one-, two- andthree-loop order at most the terms of order "2, "1, respe
tively, "0 are reliable. Thedefault value is \2".DALA12: expansion in q1q2. If this variable is set q21 and q22 are set to zero and pow-ers in q1q2 are fa
tored out. Currently only the expansion up to order (q1q2)4 isimplemented. Note that only positive powers of q1q2 
an be treated.DALAQN: apply d'Alembert operator, 2q = �=�q��=�q�, in order to fa
tor out powers inq2. In the argument of DALAQN the momentum is spe
i�ed with respe
t to whi
h thederivatives are performed.NOR: is an abbreviation for Number Of Re
ursions. As the naive use of the repeat{endrepeat 
onstru
tion signi�
antly slows down the performan
e the most 
ompli-
ated pro
edures are bu�ered by a #do{#enddo 
onstru
tion. 'NOR' 
onstitutes theupper bound of the do-loop. The default value is \10".PROBLEM0/1/2/MAIN: If one of these variables is set a spe
ial treat �le is read at the
orresponding position. The value has to agree with the one de�ned in the �le<prb>.dia.TIME: If this variable is set the statisti
s is printed at various steps of the 
al
ulation.There are more swit
hes in in
/main.gen. However, they should not be modi�ed asmost of them are in an experimental stage and not suÆ
iently tested.D List of �lesIn this appendix we provide a list of all �les belonging to MATAD. The dire
tory in
 
on-tains essentially the in
lude-�les. In parti
ular some of the pro
edures are 
olle
ted in�les whi
h are in
luded at the very beginning. The tables for the topology BN are lo
atedin in
/TABLEDAL and in
/TABLEREC. The dire
tories in
/TREAT and in
/TOPOLOGY es-sentially 
ontain the �les treating the individual (input and basi
) topologies and in thefolder pr
 some auxiliary pro
edures are 
olle
ted.form.set in
/ matadform pr
/ problems/in
:TABLEDAL/ bnm2m expandDr nomBM redu
eBM_2 tblBNTABLEREC/ de
lare.matad expepgam nomBN redu
eBNTOPOLOGY/ denoexp expnomdeno nomde
omBN redu
eBN131



TREAT/ expandBN main.gen re
ursion_2 redu
eBN_2bnbm2pr
 expandBNM matad.info red
ut symmetryBMbnbmpr
 expandBNM_2 matminpr
 red
utnomdeno symmetryBNin
/TABLEDAL:BNd.tbl BNd0.tblin
/TABLEREC:BN.tbl BNn1.tbl BNn1n2.tbl BNn2.tblin
/TOPOLOGY:topBE topBN topBU topE3 topM2 topN3 topO4.add topY3topBM topBN1 topD4 topE4 topM3 topNO topT1 topemptytopBM1 topBN2 topD5 topL1 topM4 topO1 topT2topBM2 topBN3 topDM topLA topM5 topO2 topY1topBM_2 topBN_2 topDN topM1 topN2 topO4 topY2in
/TREAT:treat.dala12 treatbm2 treatbn2 treatd5 treate4 treatm4treat.dalaav treatbm_2 treatbn3 treatdm treatm1 treatm5treatbm treatbn treatbn_2 treatdn treatm2 treatn1treatbm1 treatbn1 treatd4 treate3 treatm3 treatt1pr
:aver.pr
 
utep.pr
 dalaqn.pr
 difve
s
.pr
 solveS.pr
 treat.pr
aver1.pr
 dala12s
.pr
 dalas
.pr
 po
htabl.pr
 tabBN.pr
Files taken over from MINCERone.pr
 simplify.pr
 finish.pr
 tabtwo.pr
a

u.pr
 dotwo.pr
 newtwo.pr
 two.pr
triangl2.pr
 triangle.pr
 po
htabl.pr
E Fermion propagator: outputIn this appendix we present the 
omplete output of the example dis
ussed in Se
tion 4.3.Calling MATAD> matadform problems/fp/mainfpleads toFORM version 2.3 Apr 24 1997** mainfp*#define PRB "fp"#define PROBLEM0 "1" 32



#define DALAQN "q1"#define GAUGE "0"#define POWER "1"#define CUT "0"#define FOLDER "fp"#define DIAGRAM "d3l79"#-*~~ MATAD -- 
omputation of MAssive TADpoles*~~ read generi
 main file*~~ read diagramG dia=#in
lude problems/'PRB'/'FOLDER'.dia # 'DIAGRAM'((1)*Dg(nu3,nu4,p5)*Dg(nu5,nu6,-p6)*Dg(nu1,nu2,-q1,-p1)*S(nu2,-p1m,nu5,-p4m,nu4,-p3m,nu6,-p2m,nu3,-p1m,nu1)*1);#define TOPOLOGY "O4"*--#℄ d3l79:#-*~~ Treat the tra
es*~~ In
lude spe
ial treat-file 0*~~ Feynman rules for verti
es and propagators:*~~ gluon-ghost-ghost-vertex*~~ 3-gluon-vertex*~~ gluon propagator*~~ ghost propagator*~~ expand denominators*~~ Dh*~~ Dl*~~ 1*~~ 1*~~ Change notation to p1,p2,...*~~ Tra
e 1*~~ Tra
e 2*~~ Tra
e 3*~~ Tra
e 4*~~ treat DL(x)*~~ Do Wi
k-rotation*~~ Apply d Alembertian w.r.t. q1*~~ average done*~~ Expand Dr(p,q)*~~ 1*~~ q_i -> Q_i*~~ in
lude TOPOLOGY-file*~~ this is topO4*~~ Re
ursion of type d5*~~ this is topD5*~~ numerator*~~ do re
ursion 33



*~~ - done*~~ Re
ursion of type d4*~~ this is topD4*~~ numerator*~~ do re
ursion*~~ - done*~~ Re
ursion of type dm*~~ this is topDM*~~ numerator*~~ do re
ursion*~~ - done*~~ Re
ursion of type dn*~~ this is topDN*~~ numerator*~~ do re
ursion*~~ - done*~~ Re
ursion of type e4*~~ this is topE4*~~ numerator*~~ do re
ursion*~~ - done*~~ Re
ursion of type e3*~~ this is topE3*~~ numerator*~~ do re
ursion*~~ - done*~~ Re
ursion of type bn_2*~~ this is topBN_2*~~ numerator*~~ do re
ursion*~~ Use table for BN*~~ - done*~~ Re
ursion of type bn1*~~ this is topBN1*~~ numerator*~~ do re
ursion*~~ - done*~~ Re
ursion of type bn2*~~ this is topBN2*~~ numerator*~~ do re
ursion*~~ - done*~~ Re
ursion of type bn3*~~ this is topBN2*~~ numerator*~~ do re
ursion*~~ - done*~~ Re
ursion of type bm_2*~~ this is topBM_2*~~ numerator*~~ do re
ursion*~~ - done 34



*~~ Re
ursion of type bm1*~~ this is topBM1*~~ numerator*~~ do re
ursion*~~ - done*~~ Re
ursion of type bm2*~~ this is topBM2*~~ numerator*~~ do re
ursion*~~ - done*~~ Integration of the simple integrals*~~ Re
ursion of type m1*~~ this is topM1*~~ Re
ursion of type m2*~~ this is topM2*~~ Re
ursion of type m3*~~ this is topM3*~~ Re
ursion of type m4*~~ this is topM4*~~ Re
ursion of type m5*~~ this is topM5*~~ perform integration*~~ Re
ursion of type t1*~~ this is treatn1*~~ Re
ursion of type n1*~~ this is treatn1*~~ Simplify*~~ Do the "rest"-integrationTime = 5.33 se
 Generated terms = 23d3l79 Terms in output = 23Bytes used = 410d3l79 =+ ep^-3 * ( - 8/3 - 1/3*a )+ ep^-2 * ( 56/3 - 20/3*a )+ ep^-1 * ( 112/3 - 16*z3 + 19/2*z2*a - 20*z2 - 97/12*a )+ 334/3 + 1215/2*S2*a - 1620*S2 + 16*D3*a - 40*D3 - 1141/3*z3*a + 2368/3*z3 + 144*z4*a - 288*z4 + 57*z2*a - 156*z2 - 32*a*B4 - 77/6*a + 64*B4;save problems/'PRB'/results/'DIAGRAM'.res 'DIAGRAM';.end
35
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