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Introduction

● One-loop (NLO) computations for hadron collider processes are very important for 
successful hadron collider phenomenology  –  they often provide first approximation  in 
perturbative QCD which is  reliable.

● In the past few years – remarkable progress with one-loop computations, right in time for 
the LHC start up.

● Complexity of NLO computations increases with  partonic multiplicity of the process. The 
rule of thumb – increase of multiplicity by one unit requires decade of theoretical progress. 
This rule  was true for about 30 years but, finally, it was  broken.

                                           



  

Introduction

NLO predictions are currently available  for 
major production channels: 

 1) multiple jets (up to 4 jets )

2)  a gauge boson and up to 4 jets

3) multiple gauge bosons in association with 
jets ( up to VV + 2j)

4)  top quarks in association with jets (up to 
two) and gauge bosons (W,Z, photon)

5) Higgs and up to two jets

CLO
SED

In most cases, one can get the one-loop ingredients that are required for even higher-
multiplicity processes in a relatively straightforward way. The real  bottleneck now is the 
computation of real emission corrections for higher-multiplicity processes 



  

Introduction

● The breakthrough that I just described is the consequence of a radically new technique for 
one-loop computations that  has been developed in recent years.  The goal of these lectures 
is to review this technique. 

● We will start with a brief summary of traditional approaches for one-loop computations 
since it is important to understand what we attempt to improve upon; we will discuss the 
new framework after that.

                                           



  

Traditional approaches to one-loop computations

●  One-loop  integrals can be represented by a linear combination of four-, three-, two- and 
one-point master integrals  and a remainder which is called the rational part.  This 
distinction appears because the  reduction coefficients are computed in four dimensions (D 
→ 4 limit is taken)

                                           

Master integrals can be 
computed numerically using 
F77 program QCDloops 
(Ellis, Zanderighi)



  

Traditional approaches to one-loop computations

●  The reason any integral can be reduced to a linear combination of scalar integrals is, 
essentially, Lorentz invariance.  Let us  consider an example of how  such a reduction 
(Passarino-Veltman) can be performed

                                           
Contracting the integral with two vectors, p

1
 and p

2
, we obtain a system of linear equations



  

Traditional approaches to one-loop computations

● If we consider higher-rank integrals, we can see that a reduction pattern emerges

                                           

By contracting with p
1
 and p

2
, canceling  scalar products in numerators and denominators 

and equating terms with same momentum-dependence on the l.h.s and the r.h.s, we find 

C
00

 is obtained by contracting the integral with the metric tensor 



  

Traditional approaches to one-loop computations

● The emergent structure of reduction ; the complexity decreases when going from top to 
bottom . Fully established procedure to reduce any one-loop diagram to scalar integrals

                                           

are the 4-point, 3-point, 2-
point and tadpole integrals, 
respectively



  

Why non-traditional approaches ?

● There are few issues with traditional approaches that require care

– large number of diagrams  (factorial growth with the number of external particles) 

– huge expressions that appear in the course of the reduction procedure

– Gram determinants in high powers may lead to numerical instabilities

– for multi-particle processes, hard to express the result in terms of truly independent 
structures which may be important for getting rid of spurious complexity

● It was thought for a while that these features will be a show-stopper for the Passarino-
Veltman reduction but it did not happen; it turned out that all of these issues can be solved 
with a little bit of ingenuity and improved computing power

● However, in recent years an interesting alternative to the Passarino-Veltman reduction 
appeared. It was originally developed by Ossola, Papadopoulos and Pittau as a reduction 
procedure for one-loop integrals that operates at the level of an integrand. 

● It was realized later on that this OPP procedure can be connected in an interesting way to 
deeper aspects of Quantum Field theory such as unitarity. 

● Very often, the OPP procedure is presented using spinor-helicity formalism which is useful 
for certain things but leaves some other aspects of the construction (extension to D-
dimensions, inclusion of masses etc.)  somewhat unclear. We will start by preparting 
framework to discuss the OPP reduction procedure without spinor-helicity formalism.

                                           



  

Van Neerven – Vermaseren vector basis

● The important element of the construction of OPP procedure is the van Neerven – 
Vermaseren vector basis. 

● Consider a linear vector space spanned by two non-orthogonal vectors q
1
 and q

2
 .  While 

we can write                                 ,  it is not very convenient for finding c
1
 and c

2
 .   

● A more convenient basis is                                    , where 

                                           

Since we find

This representation may be useful for facilitating reduction if we think about momentum l as 
the loop momentum and momenta q

1,2
 as the propagator momenta in a Feynman diagram



  

Van Neerven – Vermaseren basis

● To extend this discussion to higher-dimensional spaces, we can re-write the basis vectors as

                                           

Consider now a Feynman integral that depends on N (independent) incoming momenta 
k

1
, ...,k

N
 .  Introduce the vNV basis by the straightforward generalization of the above

Beware that basis vectors are not orthonormal

For N < D, need to introduce additional basis for part of the vector space that is not 
spanned by the external momenta (the transverse space)

Completeness relation



  

Van Neerven – Vermaseren basis in two dimensions

● We will now use the vNV basis to investigate some properties of one-loop integrals in two 
dimensions. This is a useful exercise since

– everything that we will learn is directly generalizable to four-dimensions

– algebra is much more simple in two dimensions compared to a four-dimensional case

                                           

General statement:  in D-dimensional space-time, the basis of master 
integrals consists of D-point, (D-1)-point, ...one-point integrals, so all 
integrals higher than D-point are completely reducible .  We will try to 
understand  why this statement is true for D=2



  

Van Neerven – Vermaseren basis in two dimensions

● Contract the loop momentum with itself

                                           

Rewrite the last term in that equation using representation of l in terms of vNV basis vectors

Dividing by d
0
, d

1
, d

2
 and collecting the terms, we find the reduced form of the integrand

Note that each reduction coefficient is linear in momentum and that the integration over l can 
be easily performed because this vector integral in the numerator is projected on the transverse 
space for particular integrals.  This makes integration over loop momentum trivial



  

Van Neerven – Vermaseren basis in two dimensions

● As the next example – consider the reduction of a (special) rank-two tensor integral to 
scalar integrals in two dimensions. We will, however, consider a d-dimensional integral, to 
account for a possible UV divergence

                                           

We can find those coefficients in a different – and quite instructive – way 



  

Van Neerven – Vermasseren basis in two dimensions

● Rewrite the previous reduction formula as 

                                           

Note that the right hand side simplifies if the above equation is studied for the loop 
momenta such that d

1
 and/or  d

2
 vanish . In particular, by requiring that both d

1,2
 

vanish, we project the right hand side on b-coefficients only

Compute the left-hand side and the right-hand side for two values of the   l
c
 momentum

The reduction coefficients is found from the loop momenta that force  the two 
propagators to be on the mass-shell.  Clearly, these momenta are special.  Also this  
feature of the reduction is not at all obvious in the regular Passarino-Veltman approach. 

Note that the momentum for which both propagators vanish is, in general, complex



  

OPP reduction algorithm: parametrization of the integrand

● In a renormalizable quantum field theory, the rank of a tensor integral can not exceed the 
number of external legs. We will be concerned with this situation. 

● We will  prove the following equation for the integrand of a one-loop integral

                                           

Each propagator appears on the right hand at most in first power

The reduction formula is valid in D-dimensions assuming that external momenta are four-
dimensional

The highest level master integral is a five-point function – this is a 
consequence of dealing with D-dimensional space 

We will find that the reduction functions e,d,c,b,a have very particular dependence 
on the loop momentum that facilitates the reduction to master integrals



  

Parametrization of the intergand: the 5-point function

● We will begin with the discussion of the  five-point function.  The highest possible rank of 
a tensor integral is five. We assume that vectors u

i=1..5
 are ``external'' and therefore four-

dimensional 

                                           

First term on the right-hand side is a collection of rank-four four-point functions; the last term 
is a rank-four five-point function. We can disregard the four-point function for now and 
continue with five-points.

Repeating this procedure over and over we get rid of the tensor structure from the five-point 
function and conclude that, in the OPP reduction formula, the coefficient of the 5-point 
function is a constant



  

Parametrization of the integrand: the four-point function

● For the four-point function, the highest rank of a tensor integral is four. We use the vVN 
basis and perform a computation similar to the five-point case 

                                           

The first two terms on the right hand side are ``reduced''; they are either lower-point or lower-
rank integrals. The last term is the rank four again. To simplify it, repeat the same procedure 
for one of the scalar products



  

Parametrization of the intergand: the three-point function 

● For the three-point function, the highest rank of the integral is three. 

                                           

We have one constraint on the projection of the loop momentum on the transverse space

Use this constraint to trade some scalar products for other scalar products

and choose  as independent scalar products.



  

Parametrization of the integrand: the two- and one-point functions 

● We follow exactly the same way to derive the  parametrization of two- and one-point 
functions. We find

                                           

We have constructed the most general  parametrization of possible numerators of various 
N-point functions using physical and transverse space. Why this is a useful thing to do?

To understand this, lets try to integrate one of the terms in the OPP reduction formula 
over the loop momentum

Note that the above parametrization is only valid if q is not a light-like vector.  To deal 
with light-like vectors  – external massless particles – we need to use a differentl 
parametrization



  

Usefulness of the OPP parametrization 

● Recall how the OPP parametrization looks like:

                                           

We take a few of the contributing terms and check to what extent the integration over 
the loop momentum can be performed.  We begin with the 4-point function.

The integration over the transverse space can be performed trivially; it 
removes a large number of the reduction coefficients



  

Usefulness of the OPP parametrization 

● A similar simplification occurs for three-, two- and one-point integrals. The three-point 
example

                                           

The c(l) reduction function is parametrized in terms of traceless tensors defined on the 
transverse space.  The integration over directions of the transverse space can be done 
trivially



  

Usefulness of the OPP parametrization 

● The OPP parametrization allows us to integrate over the transverse momentum spaces in 
the trivial way, so that we can write the result of the reduction in full generality.

                                           

We see  that, to compute any one-loop integral, we require several momentum-independent 
coefficients e

0
, d

0
, c

0
, b

0
, a

0
 and a few terms that contribute to the rational part. 

We will now turn to the discussion of how these coefficients can be computed



  

How to compute the reduction coefficients: five-point 

● We have established that it is possible to write any relevant numerator function as 

                                           
We now discuss how to compute the reduction functions in the above equation. We begin 
with the five-point coefficient e which, as we know, is momentum-independent constant

It is more reasonable  to trade a constant, as a five-
point reduction coefficient, for 



  

Refining the  five-point computation 

● We get the constant, D-independent coefficient for the five-point because we compute 
regularized integrals rather than four-dimensional integrals.

● There is a price to pay: when we take the D →  4 limit, the computed five-point functions 
turn into a combination of the four-point functions, in accord with a general statement 
discussed earlier

● We have found, empirically, that this  leads to numerical instabilities which can be qutie 
severe.  To get rid of them, it is useful to change the normalization                                        
                                                                                                                                                  
           

● With this change, the five-point integral decouples completely in D → 4 limit and does not 
destructively impact calculation of the four-point reduction functions

                                           



  

How to compute the reduction coefficients: four-point function

● Having computed the five-point reduction coefficient, we can re-write the numerator 
function in a way that is suitable for the direct extraction of the four-point coefficients

                                           

The four-point function reduction coefficients can be computed using 
Num1 in which case there is no need to worry about leftovers of the five-
point function coefficients.

Once the four-point reduction coefficients are found, they are also taken to 
the ``left hand side'', offering the opportunity to find the three-point 
reduction coefficients in a simple way.



  

How to compute reduction coefficients : four-point function

● We need to design an algorithm that allows us to compute all the coefficients that enter the 
four-point reduction function . To a large extent, this is a repetition of what we just did for 
the five-point function.

                                           

Choose special  values of        to project on 
different reduction coefficients.



  

How to compute reduction coefficients : three-point function

● For the three-point reduction coefficient we use a similar procedure

                                           

Choosing                        we determine all the relevant c-coefficients

Discrete Fourier transform is a useful way to solve  the system of equations for ep-independent 
coefficients

A similar construction gives us also coefficients of the two-point and one-point functions 



  

Discrete Fourier transform for the three-point function 

● The discrete Fourier transform allows us to write simple formulas to find coefficients of the 
reduction function for three-points. Focus on the cut-constructible part.

                                           

A similar construction gives us also coefficients of the two-point and one-point functions 

The discrete Fourier transform is neither unique nor superior way to solve a system of 
linear equations



  

The OPP reduction: the re-cap

●  We now summarize what we learned about one-loop reduction procedure using the  OPP 
method 

                                           

OPP reduction coefficients can be obtained from values of the loop momentum such 
that certain combinations of propagators vanish

Once the integrand-level reduction is performed, the integral-level reduction is 
obtained straightforwardly by means of parametric (rather than real) integration



  

Why the OPP procedure is important

● The OPP procedure allows us to reduce any one-loop integral to a basis set. It can be used 
in a calculation of Feynman diagrams as any other reduction procedure.

● It is not clear to me if the OPP applied to individual diagrams is ``better'' than say the 
Passarino-Veltman.  OPP can be used to obtain numerical results  for individual Feynman 
diagrams without much preparation. This is in contrast to PV reduction of high-rank high-
point tensor integrals which requires quite a bit of analytic work.  On the other hand, PV 
reduction is analytic while the OPP is numerical. 

● The true  strength of the OPP reduction procedure is different. Recall that the OPP-
reduction coefficients can be computed using special values of the loop momenta. As we 
will explain now,  this allows us to organize computations based on OPP  in such a way 
that one deals directly with scattering amplitudes  bypassing Feynman diagrams entirely.  

● To accomplish this, scattering amplitudes need to be written in the ``color-ordered'' form. 
This is the next topic that we will discuss.

                                           



  

Color ordering for scattering amplitude

● While color algebra seems like a minor nuisance, compared to what we have to deal with 
anyhow, it is useful to organize calculations in QCD in such a way that color degrees of 
freedom factorize.  Consider tree-level gluon scattering. 

                                           

Up to possible permutations, any N-gluon scattering amplitude is then given by the matrix 
element of product of (N-2) F-matrices

Amplitudes that multiply traces 
of products of F and T matrices 
are called color-ordered 
scattering amplitudes



  

Properties of color ordered amplitudes
● For N-gluons, there is just one color-ordered amplitude (Bose symmetry)

● Color-ordered amplitudes are gauge-invariant

● Color-ordered amplitudes are cyclic-symmetric

● They satisfy reflection identity 

● and abelian identities, e.g                                                                                                          
                                                                                                                                            

● Color-ordered amplitudes can be computed from the color-stripped Feynman rules

● Only such diagrams where physical ordering of gluons coincides with their ordering  in a 
color-ordered amplitude                                             have to be considered

● These properties of color-ordered amplitudes are valid  both at tree- and the one-loop level 

                                           



  

Proof of the abelian identities
● As a simple illustration of the color-ordering concept, we will prove the Abelian identities   

                                                                                                                                                  
                                                                                             

                                           

Consider a gauge theory where the gauge group is the ``direct product'' of two groups 
SU(N

1
) and SU(N

2
) and consider the color-ordered amplitude in such a theory. The gluons 

from two different groups do not interact.

where structure constants vanish if gluon indices
 belong to different groups

Take n-gluons from the first and m-gluons from the second group. The scattering amplitude is 
zero – no scattering – but we can write it in a sophisticated way. 

Because  generators of different SU(N)'s commute, traces are not independent. Collecting 
similar terms, we find  that linear combinations of amplitudes that differ by relative 
placements of gluons that belong to two different gauge groups should vanish



  

Calculation of color-ordered amplitudes

● Color-ordered amplitudes can be calculated both analytically and numerically. Analytic 
computations are based on spinor-helicity methods that are applicable in a most 
straightforward way for D=4 and for massless particles.

● We will see that for one-loop computations tree-level color-ordered amplitudes in higher-
dimensional space-times and for massless and massive particle  will play an important role. 
A robust framework to compute those is provided by Berends-Giele recurrence relations

                                           

is the initial condition for the gluon current . To obtain amplitude from the 
current, need to multiply with the gluon polarization vector provided that 
the external momentum is light-like.



  

Calculation of color-ordered amplitudes

● Similar currents can be introduced for other amplitudes, for example qq + N gluons current 
satisfies the following relation

                                           

The Berends-Giele recursion relations for various currents provide a robust (masses are 
allowed, arbitrary space-time dimensionality is not  a problem)  way to calculate  
color-ordered amplitudes of arbitrary complexity.  

Since modern incarnations of Fortran contain a notion of recursive functions, coding up 
recursion relations becomes very easy 

Note that for dealing with fermion amplitudes, color-ordering is not sufficient and one has 
to introduce the so-called left- and right-  primitive ampltiudes 



  

BCFW relation for scattering amplitudes

● As an example  of how Berends-Giele recursion relations can be used, we will prove  a 
particular relation for scattering amplitudes due to Britto, Cachazo, Feng and Witten . 

● Consider a color-ordered N-gluon scattering amplitude  

                                           

The N-point amplitude is expressed through on-shell 
amplitudes of lower multiplicities, under the 
assumption that the amplitude vanishes at large z



  

BCFW relation for scattering amplitudes

● To prove that the amplitude vanishes at large values of z, we use Berends-Giele relations

                                           

The initial condition

Assume that 



  

Colorless loop integrals

● The importance of color-ordering is that  scattering amplitudes can be represented in a 
unique way. To see this note that 

                                           

because in a color-ordered amplitude external particles 
are physically ordered, there exists a well-defined 
``parent diagram''  – a diagram with the largest number of 
propagators that depend on the loop momentum. All 
other diagrams can be obtained from the parent one by 
pinching and pulling ( these operations do not change the 
 ordering of external particles).

Because of that, a one-loop color-ordered amplitude has a well-defined integrand  
that we can write as

At this point, we do know what the propagators are and we do not quite know what 
Num is. It turns out that we do not need to specify this explicitly since,  for a one-
loop computation, we need to know Num for very particular value of the loop 
momentum.



  

Colorless loop integrals, amplitudes and the OPP

● The key idea is to combine the existence of color-ordered representation for the amplitude  
and the OPP technology. These two things allow us to write 

                                           
Following our discussion of the OPP procedure, each of the reduction coefficients is 
computed from the loop momenta that forces relevant  subset of propagators to  vanish.     

 If this happens for the loop momentum l
c
 , the integrand factorizes into products of   tree 

on-shell amplitudes, as the consequence of  unitarity.  These amplitudes are almost 
conventional except that they are needed for complex on-shell momenta and in D-
dimensional space-time

We conclude that the OPP reduction coefficients for full color-ordered amplitudes  can be 
obtained directly from tree-level amplitudes – no Feynman diagrams are required



  

Four-point cut-constructible  coefficient: BCF relation

● One of the beautiful consequences of this analysis is a very simple formula for the 
reduction coefficients of any four-point function that contributes to N-point scattering 
amplitude

                                           

We have derived a very general result for the box 
reduction coefficient(s) first pointed out by Britto, 
Cachazo and Feng



  

Getting the amplitude in D-dimensions

● To determine all relevant coefficients that are produced by a four-cut, we should allow the 
loop momentum to be D- or more precisely 5-dimensional.  If we want to apply the same 
algorithm as before, we have to understand two things: 

– the D-dependence of the integrand 

– how calculation of tree-level scattering amplitudes in D-dim. space can be approached 

                                           

D-dependence of the integrand ( gluon scattering amplitudes) is linear.  For one-loop 
computations, it is sufficient to know the function N

1
(l)  (four-dimensional helicity scheme).

The  reduction procedure outlined above works for any integer D. To obtain N
1
  we need 

to compute the integrand for two different values of D and take the difference . For 
example,  D=5 and D=6 can be used. 

From the described procedure, it follows that we need to be able to compute  tree 
scattering amplitudes for higher-dimensional space-time to implement this construction



  

Getting the amplitude in D-dimensions

● We have the machinery to obtain amplitude in D-dimensions since  Berends-Giele 
recursion relations are  D-independent.

● The only thing we should carefully consider are the polarization degrees of freedom.

● Momenta are at most five-dimensional ( external – four-dimensional, loop-momentum – 
five-dimensional). 

● Gluon polarization states for 5-d momentum; three different polarization states

                                           

For fermions, very similar procedure can be employed ; it  requires extension of the  Dirac 
algebra and construction of spinors that are solutions of the Dirac equation in higher-dimensional 
space-times



  

The algorithm: numerical implementation

● For numerical implementation

–  fix the color-ordered amplitude; draw a parent diagram 

– specify all possible cuts that lead to non-vanishing contributions                                     
 in dimensional regularization, starting with  the quadruple cut

– loop momentum on the cut assumes complex values  

– each cut produces a sum of products of certain number of                                               
tree amplitudes

– tree-amplitudes for complex on-shell momenta are computed                                        
using   Berends-Giele recursion relations

– products of tree amplitudes provide reduction coefficients for master integrals

– for proper treatment of ultraviolet structure of the theory, one needs to perform this 
procedure in higher-dimensional (integer) space-time. For pure Yang-Mills, for 
example, D=5 and D=6 is sufficient to reconstruct full one-loop scattering amplitude   
from on-shell unitarity cuts.  

                                                                                                                                                                        
                                     .

                                                                                                                                                                        
                                                                                                                                                                        
                                                                                                                       

The procedure allows us to obtain an answer for a one-loop scattering amplitude  without 
having to deal with Feynman diagrams AND off-shell degrees of freedom including ghosts !



  

Complications: charged massive particles

● The OPP reduction procedure is independent of whether external or internal particles have 
masses. However, when we put the OPP and the unitarity ideas together,  a  peculiarity 
appear.

● The reason is that one-particle reducible corrections to the external legs – which we so 
easily disregard when we do diagram-based computations – are part of many contributions 
that are required to get gauge-invariant amplitudes  that contribute to a given cut.

                                           

Disregarding the singular part is not a good option 
since the remainder is not gauge-invariant. One of the 
most appealing features of our  construction gets, 
effectively, violated.

This problem is related to wave-function 
renormalization for massive external particles being 
not gauge-invariant ( although it is gauge-parameter 
independent for covariant gauges in dim. reg. 



  

The power of unitarity:  gluon amplitudes

N-gluon amplitudes can be calculated for arbitrary N. Explicit numerical results 
available for N through 20.  Factorial growth in the number of Feynman diagrams 
makes this computation impossible with traditional methods.

1993 2006
1985

Giele, Zanderighi

diagrams



  

Analytic methods

● Our discussion suggests that any scattering amplitude can be expressed  as a linear 
combination of boxes, triangles etc. Not counting the rational part, we need to know one 
coefficient per master integral to derive  the final result. Yet, we compute much more. Can 
we do better? 

                                           

The answer to this question is provided by computational techniques developed by 
Forde, Mastrolia and Badger. These techniques, in princple, are more suitable for 
analytic, rather than numerical, construction that was the main focus of our discussion 
so far.

The very first example of such approaches is the BCF relation for the box reduction 
coefficient that we derived earlier. We would like to see if a similar formula exists 
for three- and two-point functions 



  

The three-point cut-constructible coefficient

● We consider a three-point function that corresponds to cut propagators d
0
, d

1
, d

2

                                           

Recall that on a three-point cut, the loop momentum is fixed up to a one-parameter ambiguity



  

The three-point cut-constructible coefficient

● Therefore, we can write the triple-cut residue as 

                                           

We see, therefore, that the triple cut is a rational function of the variable t
+
 . The  Laurant 

expansion of this function at infinity can be used to obtain the required reduction 
coefficient of the relevant three-point function 

As the result, we are able to find a 
compact  result for the triplet cut of 
the reduction coefficient



  

The two-point cut-constructible coefficient

● We can use a similar framework to find  the cut-constructible coefficient of the two-point 
function; the resulting formula is, however, more complicated.

                                           

To understand this formula, we need to know the momentum parametrization for the double cut 
that is employed in writing it down. To write it down, we start from the canonical OPP formula

The formula for the double-cut coefficient implies that integration over y and z is performed 
in a particular way, by substituting powers of y and z by some constant terms. To understand 
why this is done, recall that dependence of the double-cut function on            is polynomial.    
       

Substitution 

allows us to project              on to           .   The z-substitutions are similar but more 
difficult to explain 



  

Examples

● We will consider some examples that will illustrate concepts that we discussed in these 
lectures.

● We will talk about two examples that will illustrate what is needed for constructing 
numerical  unitarity framework.

● We will be particularly interested in  the desplaying the rational part which reminds very 
much what happens with various QFT anomalies in perturbation theory

● Time permitting, we will also talk about spinor-helicity methods  and show an example  of 
how these methods can be efficiently used in one-loop computations.

                                           



  

The photon mass in the Schwinger model

● We will compute the mass of the photon in two-dimensional QED (the Schwinger model)

                                           

Since we deal here with massless theory, single cuts vanish identically; the non-vanishing 
result should come from  the double-cut

We can average over directions of the transverse  momentum components 



  

The Higgs boson decay to two photons
● The Higgs boon (scalar particle) decay to two photons through a loop of massless scalars 

(the equivalence theorem regime).  Note: no color ordering, so need to care about 
momentum assignments

                                           

The triple-cut condition for one of the diagrams:

The numerator on the triple cut is proportional to the product of             and           vertices. 
Because photon polarization vectors are transverse, we find that the numerator is proportional to   



  

The Higgs boson decay to two photons
● Next, we need to compute the double-cut, with the Higgs boson to the left of the cut and 

the photons to the right

                                           

The double-cut conditions

We can simplify this by using the following identities

This is not yet a coefficient of the relevant two-point function  because we need to subtract 
from it the contribution of the triple-cut computed previously

A simple computation yields                             which implies that the reduction 
coefficient of the two-point function vanishes                                  



  

The Higgs boson decay to two photons
● Therefore, we find that only triple cut contributes to the final result.

                                           
The amplitude for the Higgs boson to decay to two photons through the loop of massless 
particles is pure rational and can not be computed with four-dimensional set up .  From 
this perspective it looks very similar to the one-loop axial anomaly ( although it is not 
protected from higher-order corrections).



  

Spinor-helicity methods 
● An approach that is ultimately analytics requires spinor-helicity methods.  First, a 

reminder: in a massless theory,  spinors with positive and negative helicity assume a very 
simple form in the Weyl representation

                                           



  

Useful identities
● The spinor products satisfy some useful identities

                                           

These and other identities can be used to simplify results of the 
calculations,  in certain cases in a quite dramatic way



  

Three particle amplitudes
● The simplest thing we can do with these spinors is to compute the three-particle scattering 

amplitudes; they are important building blocks for unitarity-based computations.

                                           



  

The primitive amplitude for qqgg scattering 
● I would like to describe computation of  the maximally abelian amplitude foe qqgg 

scattering using unitarity and the spinor helicity methods.  The corresponding parent 
diagram for this primitive amplitude is shown below.  

● We can deduce the master integrals that are needed to compute this amplitude: there is one 
box, two triangles, two bubbbles and the rational part. 

                                           
The reduction coefficients can be further 
constrained using known divergences of the 
amplitude and divergences of integrals

Divergences fix coefficients of all integrals except the box and one two-point function. 
These are the two things that we need to compute 



  

The box reduction coefficient 
● We will discuss how to compute the box reduction coefficient. The general principle we 

know –  the result  should be given by the product of four tree amplitudes computed at the 
four-cut.

 

                                           Consider first the case of equal gluon helicities – the box reduction coefficient vanishes

The box reduction coefficient is the product of these amplitudes. We will now show that this 
product must vanish



  

The box reduction coefficient 
● Vanishing of the box coefficient for equal heliciities:

 

                                           

Hence, to have d
0
 none zero,           and            have to vanish. 

But this is not possible for generic p
3
 and p

4

We conclude that the box reduction coefficient of  the (- + + -) ampltiude vanishes



  

The box reduction coefficient 
● We will now compute the reduction coefficient for (+ - + -)  amplitude

 

                                           

This expression can be simplified using the completeness relation, e.g. 
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