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PreliminariesConformal time η :

dt = a(η)dηMetri
 in 
onformal 
oordinates:
ds2 = dt2−a2(t)dx2= a2(η)[dη2−dx2]Convenient: light travels along light 
one ds = 0 =⇒ dx = dη ,exa
tly like in Minkowski spa
e-time.

η = 
oordinate size of horizon at time η . Physi
al size atthat time = a(η) ·η . Comoving size (seen today) = a0 ·η .Hubble parameter
H =

da/dt
a

=
a′

a2



Friedmann equation in 
onformal time (prime = ∂/∂η)
a′2

a4 =
8π
3

GρSolutions:Radiation domination, RD: ρ ∝ a−4 =⇒ a(η) = 
onst ·η ,

a(t) ∝ t1/2 NB: prad = ρrad/3Matter domination, MD: ρ ∝ a−3 =⇒ a(η) = 
onst ·η2,

a(t) ∝ t2/3In either 
ase,

a′

a
∼ 1

η
, H ∼ 1

aη



Conformal times of various epo
hs
η =

∫ a

0

da
a2

1
H(a)

=

∫ z

∞

dz
a0H(z)where 1+ z = a0/a. Use

H = H0

√

ΩΛ +ΩM

(

a
a0

)3

+Ωrad

(

a
a0

)4

and �nd

η =
1

a0H0

∫ z

∞

1
√

ΩΛ +ΩM(1+ z)3+Ωrad(1+ z)4Re
all

ΩΛ = 0.72 , ΩM = 0.28 , Ωrad = 8.4·10−5(neutrinos are massless for our purposes).



Equality: transition from radiation domination to matterdomination, 1+ zeq = ΩM/Ωrad = 3200,

ηeqa0 = 120Mp
Photon last s
attering ≈ re
ombination: z = 1100,
ηra0 = 280Mp
Today

η0a0 = 14 000Mp
NB: 1 Mp
 = 3 M light yrs.

Important numbers:
η0

ηr
= 50 ,

η0

ηeq
= 120

NB: We see 503 regions that had horizon size at re
ombination.





Perturbations: heli
ity (Lifshitz) de
ompositionPerturbations are small in amplitude until stru
ture starts forming.De�nitely small at re
ombination, δρ/ρ ∼ δT/T ∼ 10−4−10−5 =⇒Linearized theory appropriateLinearized Einstein equations

δRµ
ν −

1
2

δ µ
ν δR = 8πGδT µ

νPlus linearized equations of 
ovariant 
onservation ofenergy-mometum

δ (∇σ T σ
µ ) = 0NB: Several 
omponents intera
ting gravitationally only: right handside of Einstein eqs. involves sum of all 
omponents; 
ovariant
onservation holds for ea
h 
omponent separately.



Perturbations in energy-momentum tensor of matter, in ideal�uid approximation (otherwise spatial 
omponents Ti j 
ontainanisotropi
 stress Πi j, with TrΠ≡Πii = 0)
Tµν = (ρ + p)uµuν − pgµνPerturbations of energy density δρ , pressure δ p and physi
alvelo
ity vi = a(η)ui = a(η)dxi/ds, i = 1,2,3 (sin
e gµνuµuν = 1,
omponent u0 is not independent).

NB: E�e
ts beyond ideal �uid approximation important, espe
iallyfor short wavelengths and for neutrinos. Some will be pointed outlater on.



Perturbations of metri


ds2 = a2(η)(ηµν +hµν)dxµdxνBa
kground is invariant under spatial translations =⇒ go to 3dFourier spa
e,

hµν(η ,x) =
∫

d3k eikxhµν(η ,k) , same for δρ , δ p , v

NB: k is 
onformal (
oordinate) momentum, 
onstant in time.Physi
al momentum p = k/a(η) gets redshifted.For given k, there remains unbroken SO(2) of rotations around

k =⇒ de
ompose into its representations =⇒ heli
ityde
omposition.



Heli
ity ±2: tensor modes, transverse tra
eless 3d tensors. Only
hi j (property of ideal �uid approximation),

kih
T T
i j = 0 hTT

ii = 0

Two polarizations, hi j = e(×)i j h(×)+ e(+)
i j h(+).Heli
ity ±1: ve
tor modes, transverse 3d ve
tors. vT

i , hT
0i,

hi j = kiW T
j + k jW T

i , with kivT
i = 0, et
., two polarizations.Ve
tor modes = rotational motion of 
osmi
 medium.Parametrized by vorti
ity vT
i . Its amplitude (if present initially)de
ays as vT

i ∝ a−1(η) (angular momentum 
onservation inexpanding Universe) =⇒ Ve
tor modes most probablyirrelevant. We are not going to 
onsider ve
tor modes.Heli
ity 0: s
alar modes, 3d s
alars. δρ , δ p, vi = ikiv, h00 = 2Φ,

h0i = kiZ, hi j =−2Ψ ·δi j + kik jE.NB: v = velo
ity potential, vi(x) = ∂iv(x)



Warm up: tensor modesTensor modes: δρ = δ p = 0, vi = 0, h0i = h00 = 0, =⇒ δT µ
ν = 0(in ideal �uid approximation only).

hi j = hTT
i j = ∑

A=×,+
h(A)e(A)i j

Ea
h polarization has the same a
tion as massless s
alar �eld inexpanding Universe (modulo prefa
tor):
S =

1
64πG

∫

d4x
√
−ḡ ḡµν∂µh(A)∂νh(A)

where ḡµν = a2(η)ηµν = unperturbed metri
.



Expli
itly

S =
1

64πG

∫

d4x a2(η)
[

(

∂ηh(A)
)2
−
(

∂ih
(A)

)2
]

Field equation

∂ 2
ηh(A)+2

a′

a
∂ηh(A)−∂i∂ih

(A) = 0or in 3d momentum representation
∂ 2

ηh(A)+2
a′

a
∂ηh(A)+k2h(A) = 0

Di�erent behaviour for k≪ a′/a and k≫ a′/a.Re
all physi
al momentum p = k/a and H = a′/a2 =⇒These are regimes p≪ H and p≫ H, or λ ≫ H−1 and λ ≪ H−1,subhorizon and superhorizon, respe
tively.



At RD, MD epo
hs

a(η) ∝ η ,η2 =⇒ a′/a ∝ η−1 ,large at early times =⇒ mode of given 
onformal momentum k is�rst superhorizon and later superhorizon.In other words, H(t) ∝ t−1 de
reases faster than
p(t) = k/a(t) ∝ t−1/2, t−2/3 =⇒ p≪ H at early times Fig.NB: Cosmologi
ally interesting s
ales entered horizon quite late: athorizon 
rossing time η×

k
a(η×)

∼ H(η×)=⇒
k
a0

a0

a(η×)
∼ H(η×)=⇒p0

T×
T0
∼ T 2

×
M∗Pl

=⇒T× ∼ p0
MPl

T0For p0∼ (10 kp
)−1 (halos of �rst stars) get

T× ∼ 30 keVmu
h later than Big Bang Nu
leosynthesis.



Regimes at radiation and matter domination

superhorizon subhorizonp1(t)

p2(t)

H(t)

tt×

p2 > p1



Early times: superhorizon regime, k→ 0 (e.g., at RD, a ∝ η)
∂ 2

ηh(A)+
2
η

∂ηh(A)= 0

Two solutions: 
onstant mode h(A)(η) = 
onstde
aying mode h(A)(η) ∝ η−1.sometimes 
alled growing modeDe
aying mode: strongly inhomogeneous and anisotropi
Universe at early times.Must not be present !!!



In absen
e of de
aying mode, solution is unique, up to overallamplitude.
Late times: subhorizon regime, WKB. General solution

h(A)(η) =
c

a(η)
sin(kη +ϕ)

Mat
hing to 
onstant mode (by solving the exa
t equation)

=⇒ ϕ = 0,

h(A)(η) =
c

a(η)
sinkηOs
illations (gravity waves) with well de�ned phase

Story repeats for s
alar perturbations: a
ousti
 waves with wellde�ned phase determined by absen
e of de
aying modeNB: Gravity wave amplitude de
reases as a−1(η) after horizon entry.This is not true for a
ousti
 waves.



S
alar perturbationsMore 
ompli
ated story.

Gauge �xingGauge invarian
e of General Relativity
gµν → g̃µν = gµν +∇µξ ν +∇ν ξ µ

ξ µ = gauge fun
tions (small).Can be used to eliminate h0i and longitudinal part of hi j ∝ ∂i∂ jE
=⇒ Conformal Newtonian gauge

ds2 = a2(η) [(1+ 2Φ )dη2− (1+2Ψ)dx2 ]Longitudinal part of perturbed {i j} Einstein equation:

Ψ =−Φ, for ideal �uid only.The only gravitational potential Φ.



Compli
ated 
ompositionIndependent 
omponents

λ = photons, baryons, dark matter, neutrinosCoupled via 
ommon gravitational potential ΦTo simplify:disregard neutrinos (sometimes possible to in
lude them intoradiation 
omponent)Treat baryons and photons as single �uid before re
ombination(tight 
oupling approximation).

NB: Life be
omes tu� beyond these approximations!Write and solve Boltzmann equations for parti
le distributionfun
tions.



Complete set of equations in the ideal �uid approximation,
onformal Newtonian gaugeEquations for ba
kgroundEinstein equations:

a′2

a4 =
8π
3

G ∑
λ

ρλ

2
a′′

a3 −
a′2

a4 =−8πG ∑
λ

pλ

Covariant energy 
onservation for ea
h 
omponent,

∇σ T σ µ = 0, µ = 0

ρ ′λ =−3
a′

a
(ρλ + pλ )NB: Dependen
e only on η =⇒ ordinary di�. eqs.



Perturbed Einstein equations

k2Φ+3
a′

a
Φ′+3

a′2

a2 Φ =−4πGa2 ·∑
λ

δρλ ,

Φ′+
a′

a
Φ =−4πGa2 ·∑

λ
[(ρ + p)v]λ ,

Φ′′+3
a′

a
Φ′+

(

2
a′′

a
− a′2

a2

)

Φ = 4πGa2 ·∑
λ

δ pλ

Covariant energy-momentum 
onservation for perturbations inea
h 
omponent (
ontinuity equation and Euler equation inexpansing Universe; re
all vi = ∂iv)
δρ ′λ +3

a′

a
(δρλ +δ pλ )− (ρλ + pλ )(k

2vλ +3Φ′) = 0 ,

[(ρλ + pλ )vλ ]
′+4

a′

a
(ρλ + pλ )vλ +δ pλ +(ρλ + pλ )Φ = 0



NB: � system of linear ordinary di�. eqs. for given k;� more equations than unknowns, not all equationsindependent (be
ause of gauge invarian
e of original system)� Additionally, need equation of state for ea
h 
omponent,
pλ = pλ (ρλ )In parti
ular

δ pλ
δρλ

= u2
s

us = sound velo
ity in 
omponent λ .



First glimpse:perturbations in dominant 
omponentRadiation at radiation domination; dark matter at matterdomination (in approximation ρDM ≫ ρB).Forget about other 
omponents =⇒ single 
omponent Universewith ρ , p; δρ , δ p, v, ΦSet p = u2
s ρ (not always possible), δ p = u2

s δρCombine perturbed Einstein eqs.
k2Φ+3

a′

a
Φ′+3

a′2

a2 Φ =−4πGa2 ·δρ ,

Φ′′+3
a′

a
Φ′+

(

2
a′′

a
− a′2

a2

)

Φ = 4πGa2 ·δ p = 4πGa2u2
s δρ

with eqs. for ba
kground



Result

Φ′′+3
a′

a
(1+u2

s )Φ
′+u2

s k2Φ = 0Perturbations in radiation at RD stage: us = 1/
√

3, a = 
onst ·ηSuperhorizon regime (early times): again 
onstant andde
aying modes,

Φ = Φi = 
onst and Φ ∝ η−3 ∝ a−3Forbid de
aying mode. Then from Einstein eqn.

δrad ≡
δρrad

ρrad
=−2Φi

also 
onstant in superhorizon regime.Without de
aying mode initially, solution unique,expressed through J3/2(kusη).



After horizon entry (assuming this happens at RD stage)
Φ =−3Φi

cos(kusη)
(kusη)2Phase is uniquely determined by initial absen
e of de
aying mode.These are a
ousti
 os
illations. Einstein eq. in subhorizon regime

k2

a2Φ =−4πG ·δρ ⇐⇒ �∆� Φ = 4πG δρ , Poisson eq.

ρ ∝ H2 = (aη)−2 =⇒

δrad ≡
δρrad

ρrad
= 6Φi cos(kusη)

A
ousti
 os
illations with time-independent amplitude and wellde�ned phase.NB: Os
illations in subhorizon regime 
an be obtained also instandard way, from energy-momentum 
onservation eqs. with Φ→ 0.



Perturbations in dark matter in matter dominated Universe(negle
ting baryons); us = 0, a = 
onst ·η2:
Φ′′+3

a′

a
Φ′ = Φ′′+

6
η

Φ′ = 0

Solutions Φ = 
onst and Φ ∝ 1/η5. Constant solution relevantat late times.Again use Poisson eqn.,
k2

a2Φ =−4πG ·δρ =−4πGρ
δρ
ρbut now with ρ ∝ a−3. Find at matter domination

δDM ≡
δρDM

ρDM
∝ a(η)

Gravitational instability in matter dominated Universe.



To summarize:At early times at the hot stage, perturbations are insuperhorizon regime, p≪ H. Assuming that the Universe wasnot strongly inhomogeneous in the beginning of hot Big Bangepo
h, there is 
onstant mode only in this regime.NB: Long modes were still in superhorizon regime atre
ombination/last s
attering epo
h. They determine low lregion of CMB angular spe
trum.Assuming that perturbations were there before they enteredhorizon, density perturbations of shorter wavelengths inbaryon-photon 
omponent experien
e a
ousti
 os
illations afterhorizon entry with well de�ned phase
δrad ≡

δρrad

ρrad
= 6Φi cos(kusη)

These os
illations 
ontinue to re
ombination epo
h, and in theend give rise to os
illations in CMB angular spe
trum.



These assumptions would not be valid if density perturbationswere generated at hot stage by some 
ausal me
hanism (e.g.,tologi
al defe
ts). That me
hanism 
ould only work inside thehorizon, i.e., no perturbations would exist before horizon entry.Phases of a
ousti
 os
illations would be random in that 
ase,this would yield non-os
illatory CMB angular spe
trum. Su
h as
enario is ruled out, sin
e there are os
illations in CMBangular spe
trum.Perturbations in dark matter (and in baryons afterre
ombination) grow as
δDM ≡

δρDM

ρDM
∝ a(η)

They eventually be
ome large, δDM ∼ 1 (and δB = δDM soonafter re
ombination), and form stru
ture.In linear regime, their gravitational potential istime-independent,
Φ = 
onst .



NB: Due to e�e
t of dark energy, growth of δM has slowed downre
ently, and potential Φ started to de
rease. This applies to largewavelengths, whi
h are in linear regime (or have be
ome non-linearonly re
ently).Way to measure ΩΛ Fig.

Tensor perturbations, if any, de
ay as a−1(η) after horizonentry. They are most important for CMB at fairly low l.



Cluster 
ounting
Vikhlinin et.al. '2008



Outline of le
ture 2, part 2Initial 
onditionsAdiabati
 mode in superhorizon regimeEntropy (iso
urvature) modes

Dark matter at radiation dominationBaryons and photons at matter domination beforere
ombinationSummary of adiabati
 perturbationsSilk dampingBaryon a
ousti
 os
illationsE�e
t of perturbations on CMB: general formulae



Initial 
onditionsFrom now on: assume that perturbations were superhorizon andthat there was no de
aying mode.O� hand: various kinds of initial 
onditions for multi-
omponent
osmi
 medium, set up deep in superhorizon regimeAdiabati
 perturbations = perturbations in energy densitywith 
onstant in spa
e 
omposition
nDM

s
=

nB

s
= 
onst in spa
e

(similarly for neutrinos).In this 
ase nDM = 
onst ·T 3, and ρDM = mDMnDM, hen
e

δρDM

ρDM
≡ δDM = 3

δT
Twhile ρrad ∝ T 4 and therefore δρrad

ρrad
≡ δrad = 4δT

T



Integral of motion in superhorizon regime, kη → 0:Continuity equation with k = 0:

δρ ′λ +3
a′

a
(δρλ +δ pλ )−3(ρλ + pλ )Φ′ = 0

re
all ρ ′λ =−3a′
a (ρλ + pλ ) and use p′λ/ρ ′λ = δ pλ/δρλ = u2

s to obtain

ζλ =−Φ+
δρλ

3(ρλ + pλ )
= 
onst in time

NB: this has been generalized beyond ideal �uid S.Weinberg' 2003Adiabati
 perturbation:
ζDM = ζB = ζγ = ζν ≡ ζThe only initial 
ondition for given k.Another notation: R = ζ +O(kη) in superhorizon regime.



All other quantities in superhorizon regime are expressed through ζ .Expressions slightly di�erent for RD and MD epo
hs.At radiation domination δrad ≡ δρrad/ρrad =−2Φi and prad = ρrad/3.Use

ζ = ζrad =−Φ+
1
4

δradto get

Φi =−
2
3

ζ =⇒ δrad =
4
3

ζ , δDM = δB = ζ

At matter domination we have instead δM =−2Φ (again fromEinstein eq. in superhorizon regime), and
ζ = ζDM =−Φ+

1
3

δDMhen
e

Φ =−3
5

ζ =⇒ δrad =
8
5

ζ , δDM = δB =
6
5

ζ



Iso
urvature (entropy) modes. E.g. dark matter entropy mode:No perturbation in energy density, only in 
omposition, nDM/svaries in spa
eDeep at radiation domination this means that δρrad = 0,
δρDM 6= 0, or

SDM ≡ ζDM =
δ (nDM/s)

nDM/s
6= 0 , ζB = ζγ = ζν = 0

Also, Φi = 0 deep at RD.Similarly for baryon entropy mode.



Generally speaking, initial 
ondition is a linear 
ombination ofadiabati
 and entropy modes (plus neutrino iso
urvature modes oftwo types, but unlikely on physi
al grounds).If dark matter and baryon asymmetry were generated at hot stage,adiabati
 mode only. But it is up to experiment to de
ide.Existing data: 
onsistent with adiabati
 mode only.DM iso
urvature (entropy) mode 
onstrained
S 2

DM

ζ 2 < 0.07

(this is to be understood as ratio of power spe
tra, see below forde�ntion of power spe
trum).Constraint on baryon entropy mode worse by a fa
tor

(ΩDM/ΩB)
2∼ 20.



What does dark matter do at radiation domination?Use 
onservation equations for dark matter, with gravitationalpotential generated by radiation. These 
an be written as next slide
δ ′DM− k2vDM = 3Φ′

v′DM +
1
η

vDM =−Φ

Solution to homogeneous equation (Φ = 0):
vDM =

c1

η
, δDM = c1k2 logη + c2CDM iso
urvature mode: Φ = 0 at radiation domination =⇒

c1 = 0 (no mode growing towards η → 0 !) =⇒ δDM = 
onst intimeAdiabati
 mode: Φ 6= 0, produ
ed by δrad , but Φ de
ays as η−2after horizon entry =⇒ gives ki
k to dark matter;

δDM ∝ logη after horizon entry.



Another form of 
onservation equations
δ ′λ +3

a′

a
(u2

s,λ −wλ )δλ − (1+wλ )k
2vλ= 3(1+wλ )Φ′

[(1+wλ )vλ ]
′+

a′

a
(1−3wλ )(1+wλ )vλ +u2

s,λ δλ=−(1+wλ )Φwhere

wλ=
pλ
ρλ

= barotropi
 index
u2

s,λ
=

δ pλ
δρλ

= sound velo
ity squared



Adiabati
 mode: initial 
ondition for dark matter perturbationsright after equality epo
h (short wavelengths, enter horizon at RD,
kηeq≫ 1)

δDM = 9ζ log(0.15kηeq)NB: enhan
ed both logarithmi
ally and numeri
ally 
ompared toinitial δDM = ζ . Just right for stru
ture formation.After equality epo
h, δDM grow as a(η), starting from this value. Φstays 
onstant in time. Use Poisson equation and Friedmann eqs. toget at equality and later (using H2
eq =

1
2

8π
3 GρDM)

ΦDM =−
a2

eq

k2 ·4πGρDMδDM =−27
4

ζ
H2

eqa2
eq

k2 log(0.15kηeq)NB: Sign important for CMB.NB: Φ de
ays as fun
tion of k.Smaller spatial s
ales enter horizon earlier =⇒ have more time forlog growth =⇒ smaller stru
tures get formed earlier.



Growth of perturbations (linear regime)

tΛtrecteq t

Φ

δB

δDM

δγ

Radiation domination Matter domination Λ domination



What does baryon-photon 
omponent do at matter domination (butbefore re
ombination)?A
ousti
 os
illations 
ontinue,

δγ = 6Φi cos

(

∫ η

0
kus dη

)

=−4ζ cos

(

∫ η

0
kus dη

)

NB: us 6= 1/
√

3 be
ause of baryons. Prefa
tor a
tually also gets small
orre
tion.Density 
ontrast in baryons
δB =

3
4

δγsin
e

δρB

ρB
= 3

δT
T

,
δργ

ργ
= 4

δT
T



Need also velo
ity. Take 
ontinuity equation and apply to photon (orbaryon) 
omponent =⇒ in absense of gravitational potential (hasde
ayed away)

kvγB =
3
4k

δ ′γ = 3usζ sin

(

∫ η

0
kus dη

)

New e�e
t:Just before re
ombination: matter domination. There is gravitationalpotential ΦDM due to dark matter. Photons and baryons feel it.Euler equation for baryon-photon 
omponent:
[

(ργB + pγ)vγB
]′
+4

a′

a
(ργB + pγ)vγB +δ pγ +(ργB + pγ)ΦDM = 0Parti
ular solution for time-indpendent ΦDM: vγB = 0 and

δ pγ =−(ργ +ρB + pγ)ΦDM



Re
all pγ = ργ/3, δ pγ = δργ/3 and get

δγ ≡
δργ

ργ
=−4(1+RB)ΦDM

where

RB =
3ρB

4ργ
= 0.48 at re
ombinationNB: protons only, ρB = 0.75nBtot mp: helium is neutral atre
ombination of hydrogen

RB is the parameter dire
tly measured by CMB observations =⇒determination of ΩBh2.



Adiabati
 perturbations at re
ombination: summaryLong modes, still superhorizon at re
ombination:
Φ =−3

5
ζ δγ =

8
5

ζShort modes, enter sound horizon at radiation domination:Perturbation in photon energy density/lo
al temperature

δγ ≡
δργ

ργ
= 4

(

δT
T

)

loc
≃−4ζ cos

(

∫ ηr

0
kus dη

)

−4(1+RB)ΦDM

Velo
ity

kvγB ≃ 3usζ sin

(

∫ η

0
kus dη

)

Gravitational potential (produ
ed by dark matter)

ΦDM ≃−
27
4

ζ
H2

eqa2
eq

k2 log(0.15kηeq)



Intermediate modes, enter horizon between equality andre
ombination: qualitatively similar behavior to short modes



Properties of dark matter iso
urvature perturbations entirelydi�erent (baryon and DM iso
urvature perturbations are in fa
t verysimilar)
No initial perturbations in baryon-photon 
omponent.A
ousti
 os
illations triggered by gravitational potential ofdark matter. Initial 
ondition δγB = 0 =⇒ os
illatory part

δγ = SDM ·A(k)sin

(

∫ η

0
kus dη

)

Phase di�ers by π/2.Short wavelengths enter horizon when ρDM small 
ompared toradiation =⇒ os
illations suppressed at short s
ales,

A(k) ∝ k−1No log enhan
ement of δDM and ΦDM (not very important).



Shorter wavelengths: Silk dampingBeyond ideal �uid/tight 
oupling approximationPhoton mean free path λγ is �nite =⇒ photons di�use away =⇒a
ousti
 os
illations get smeared out.Di�usion length in Hubble time

lS ∼ λγ
√

Ncoll

Ncoll ∼ H−1/τγ = H−1/λγ � number of photon 
ollisions withele
trons in Hubble time H−1 =⇒

lS ∼
√

λγH−1∼
√

(σT ne)−1H−1

σT = 0.67·10−24 
m2, Thomson 
ross se
tion;

ne = 0.75
ρB

mp
= 8·10−6ΩBh2(1+ z)3 
m−3

≃ 230 
m−3 just before re
ombination



This gives for 
omoving s
ale

(1+ zr)lS ∼ 20 Mp
More a

urate analysis (beyond ideal �uid) gives
kS

a0
≃ 0.1 Mp
−1 ,

and os
illatory part of δγ

δγ ,osc ≃−4ζe− k2

k2
S cos

(

∫ ηr

0
kus dη

)

same e�e
t for velo
ity.



Baryon a
ousti
 os
illationsBefore re
ombination, baryons os
illate in time together withphotons.Immediately after re
ombination, os
illations in time freeze out (nopressure =⇒ no os
illations = a
ousti
 waves) at
δB =

3
4

δγ ≃−3ζe− k2

k2
S cos

(

∫ ηr

0
kus dη

)

These are os
illations in momentum k.Furthermore, just before re
ombination baryon-photon 
omponenthas non-zero velo
ity
kvγB = 3usζe− k2

k2
S sin

(

∫ ηr

0
kus dη

)

These are initial 
onditions for evolution after re
ombination.



Soon after re
ombination baryons and dark matter equalize,
δB = δDM (baryons fall into potential wells produ
ed by dark matter,and vi
e versa)Hen
e, the total matter density some time after re
ombination is alinear 
ombination of smooth and os
illating fun
tions of momentum(solve 
onservation eqs. for baryons and dark matter; grav. potential

Φ is produ
ed by both and obeys Poisson eqn.)
δCDM = δB =

a(η)
a(ηr)

[

ΩCDM

ΩM
δCDM(ηr)+

ΩB

ΩM

(

3
5

δB(ηr)+
kηr

5
kvB(ηr)

)]

where ΩM = ΩCDM +ΩB.Os
illating part: small, sin
e ΩB is small, while δCDM is enhan
ed.Yet observed in power spe
trum of galaxy distribution. Fig.NB: δDM, δB and vB are all proportional to one and the same ζ =⇒interferen
e bewtween smooth and os
illating partsNB: Silk damping at k > 0.1 Mp
−1



BAO in power spe
trum
Per
ival et. al. '2007



Interpretation: If a region is overdense, dark matter stays there,baryons and photons move away as sound wave =⇒ 
orrelation ofmass densities at 
oordinate distan
e

rs =

∫ ηr

0
us dη

sound horizon at re
ombination. Fig.Comoving size

a0rs ≃ 155Mp
Well de�ned absolute length s
ale, standard ruler.In prin
iple, 
an measure angle at whi
h this s
ale is seen at di�erent

z (angular diameter distan
e, ∆θ = a0rs/Da(z) = rs/(η0−η(z))), andHubble parameter at di�etent z =⇒ expansion history and geometryof the Universe. In pra
ti
e, a 
ombination of Da(z) and H(z).

rs slightly depends on ΩM and ΩB, sin
e a0dη = H−1dz depends on ΩM, and

u2
s =

δ pγ

δργ +δρB
=

(1/3)ργ δγ

ργ δγ +ρB
3
4δγ

=
1

3(1+RB(η))But RB is well measured, and dependen
e on ΩM is weak.



BAO in 
orrelation fun
tion

NB: h−1 = (0.7)−1 = 1.43 Eisenstein et.al., SDSS '2005



E�e
t of perturbations on CMB: general formulaPropagation of a photon in metri
 (linear order in perturbations)
ds2 = (ηµν +hµν)dxµdxν

(s
ale fa
tor a(η) ⇐⇒ overall redshift ⇐⇒ 
onformal invarian
e ofMaxwell's a
tion =⇒ forget).Geodesi
 equation

dPµ

dλ
+Γµ

νσ PνPσ = 0

Pµ = dxµ/dλ , λ = a�ne parameter. Use η as a parameter instead(time along world line); dη/dλ = P0 =⇒

dPµ

dη
+Γµ

νσ
Pν

P0

Pσ

P0 = 0

Take µ = 0 =⇒ evolution of photon energy.



S
alar perturbations, 
onformal Newtonian gauge
ds2 = a2(η) [(1+ 2Φ )dη2− (1+2Ψ)dx2 ]hen
e

dP0

dη
=
(

Φ′−Ψ′
)

P0−2
(

Φ′+n∇Φ
)

P0

where n = P/P0 is unit ve
tor along photon traje
tory.Last term = total derivative along traje
tory =⇒

P0(ηa)−P0 (ηe)

P0 =

∫ ηa

ηe

(

Φ′−Ψ′
)

dη +2Φ(ηe)

ηe, ηa: times of emission and absorption; ignore Φ(ηa), as it givesoverall red/blueshift, independent on photon arrival dire
tion.



Now, let Ω be photon energy in lo
ally Lorentz rest frame of 
osmi
plasma at photon emission. Then

Ω = uµPµ

uµ = 4-velo
ity of plasma. In lo
ally Lorentz rest frame
uµ = (1,0,0,0), while in 
osmi
 frame

uµ = (1−Φ,vi)(from gµνuµuν = (ηµν +hµν)uµuν = 1) =⇒
uµ = (1+Φ,−v)and

Ω = [1+Φ(ηe)−nv (ηe)]P
0(ηe)Finally, Ω ∝ T̄ +(δT )loc = T̄ (1+δγ/4).

Colle
t all terms, set ηe = ηr and get



δT
T

(nobs,η0) =
1
4

δγ +Φ Sa
hs�Wolfe
−nobsv Doppler
+
∫ η0

ηr

(

Φ′−Ψ′
)

dη Integrated SW
nobs =−n: dire
tion in the sky;All quantities in the right hand side taken at photon emissionposition x = nobs(η0−ηe), integral runs along photon world line.Key formula for CMB temperature anisotropy.Likewise, e�e
t of tensor perturbations (ISW only)

δT
T

(nobs,η0) =
1
2

∫ η0

ηr

dη ni (h
TT
i j )′ n j



Outline of le
ture 3, part 2

CMB temperature anisotropy: preliminariesWhat do we want to know � to zeroth order?Understanding CMB temperature spe
trumSmall l, long waves.A
ousti
 peaksHow tensor modes and entropy modes would show upExamples of sensitivity to 
osmologi
al parametersCMB polarizationCon
lusion



CMB temperature anisotropy
WMAP

T = 2.726◦K, δT
T
∼ 10−4−10−5



De
ompose temperature �u
tuation in spheri
al harmoni
s(starting from l = 2; dipole ⇐⇒ Earth's motion)
δT (θ ,ϕ) = ∑

l,m

almYlm(θ ,ϕ)

Large l ⇐⇒ small angular s
alesWorking hypothesis: temperature �u
tuations = isotropi
Gaussian random �eld =⇒ alm: Gaussian random variables,

〈alma∗l′m′〉=Clmδll′δmm′Average over ensemble of Universes like ours.Isotropy: Clm =Cl independent of mTemperature �u
tuation
〈δT 2(n)〉= ∑

l

2l +1
4π

Cl ≈
∫

dl
l

l(l+1)
2π

Cl



CMB anisotropy spe
trum



NB: Note funny s
ale on horizontal axis

NB: δT ∝ primordial s
alar perturbations (and tensor, if any) ⇐⇒hypothesize that ζ is isotropi
 Gaussian random �eld (hTT
i j also, ifany).In general, δT inherit 
orrelation properties of ζ ⇐⇒ sear
h fornon-Gaussianities, statisti
al anisotropy, et
.

NB: Cosmi
 varian
e: we observe only one Universe.
2l+1 measurements of alm for given l =⇒ small l ⇔ large intrinsi
un
ertainly,

∆Cl

Cl
=

1
√

l +1/2No 
ure. Fig.



Dl =
l(l+1)

2π Cl



What do we want to know � to zeroth order?I. Properties of primordial perturbations.Adiabati
 s
alar perturbationsAssuming isotropy and Gaussianity (Wi
k theorem for
orrelation fun
tions)

〈ζ (x)ζ (x′)〉=
∫

d3k
4πk3eik(x−x′)

Pζ (k)

Pζ (k) = power spe
trum. Parametrization
Pζ (k)≡ ∆2

ζ (k)≡ ∆2
R(k) = As

(

k
k0

)

ns−1

As = ∆2
R
(k0) = s
alar amplitude;

ns = s
alar spe
tral index (for histori
al reason); ns−1 =s
alar tilt;
k0 = �du
ial momentum (WMAP 
hoi
e: k0/a0 = 0.002Mp
−1(NB: usual 
hoi
e a0 = 1).



NB: ns 
lose to 1. WMAP: ns = 0.963±0.012� 68% C.L.Also: running spe
tral index ns(k) = ns(k0)+
dns

d logk · log k
k0

.NB: �u
tuation

〈ζ 2(x)〉=
∫ ∞

0

dk
k

Pζ (k)

ns = 1⇐⇒ Flat (Harrison�Zeldovi
h) spe
trum.Similarly for tensor modes:
〈h(A)(x)h(B)(x′)〉= 1

2
δ AB

∫

d3k
4πk3eik(x−x′)

PT (k)

PT (k) = AT

(

k
k0

)

nT

Tensor-to-s
alar ratio r = AT/As.Admixture of iso
urvature (entropy) modes.



II. Properties of the late Universe:

H0, Ω's, dark matter equation of state, spatial 
urvature
Ωk = 1/(a0H0)

2Also: opti
al depth due to re-ionization, i.e., zrei ; neutrino mass.



Understanding CMB temperature angular spe
trum
δT
T

(n,η0) =

(

1
4

δγ +Φ
)

−nv+
∫ η0

ηr

(

Φ′−Ψ′
)

dηSa
hs-Wolfe Doppler Integrated SW
n = dire
tion in the sky, all quantities in the right hand side takenat photon emission position x = n(η0−ηr), integral runs alongphoton world line.Begin with Sa
hs�Wolfe e�e
t (set η0−ηr = η0)

δT
T

(n,η0) =

∫

d3k eiknη0ϕSW (k) , ϕSW (k)≡ 1
4

δγ(k)+Φ(k)Expand in spheri
al harmoni
s in n. Make use of the fa
t that

ϕSW (k) is random �eld with
〈ϕSW (k)ϕ∗SW (k′)〉= δ (k−k′)

1
4πk3PSW (k)

Cal
ulate Cl =
1

2l+1 ∑m〈alma∗lm〉.



Out
ome

Cl/T 2
0 = 4π

∫ ∞

0

dk
k

PSW (k) j2l (kη0)where jl is spheri
al Bessel fun
tion. Next slide for simple 
al
ulationProperties:

jl(kη0) almost vanishes at kη0 < l (for l & 5).Interpretation: expansion in Ylm on a sphere of radius

η0 ⇐⇒ Fourier expansion in plane, normal to line of sight,with 2d momentum q≃ l/η0 (
f. Lapla
ians q2 and

l(l+1)/η2
0). Perturbation 
ontributes, if its momentum is

k = (q,kT ). Hen
e, k2 > q2≃ l2/η2
0 .

jl(kη0) de
ays as (kη0)
−1 at kη0≫ l.Corollary: Most relevant for multipole l are perturbations ofmomenta k ∼ l/η0.



Tri
k

〈δT
T

(n)
δT
T

(n′)〉=
∫

d3k
4πk3PSW (k) eiknη0 e−ikn′η0Perform 
al
ulation for given k. Its 
ontribution to Cl is independentof the 
hoi
e of 
oordinate frame on the sphere =⇒ 
hoose framewith k along 3d axis. Theneiknη0 = eikη0 cosθ =∑

l

il(2l+1)Pl(cosθ ) jl(kη0)=∑
l

il
√

4π(2l+1)Yl0 jl(kη0)

and similarly for e−ikn′η0. Thus, the only non-vanishing 
ontributionto Cl 
omes from m = 0 in this frame, and
Cl/T 2

0 =
1

2l+1 ∑
m
〈alma∗lm〉=

1
2l +1

∫

d3k
4πk3PSW (k) ·4π(2l+1)

This tri
k � 
al
ulation of Cl in di�erent frames for di�erent k � isparti
ularly 
onvenient for 
al
ulating e�e
t of tensor modes.



Small l ⇐⇒ long wavesStill superhorizon at re
ombination:

Φ =−3
5

ζ δγ =
8
5

ζ v = 0

Sa
hs�Wolfe only (ISW small, see below).
ϕSW =

1
4

δγ +Φ =−1
5

ζThus,

Cl/T 2
0 = 4π

∫ ∞

0

dk
k

1
25

Pζ (k) j2l (kη0) =
2π
25

1
l(l+1)

As

(

l
l0

)ns−1

Dl =
l(l+1)

2π Cl is independent of l for ns = 1. Almost no dependen
eon 
osmologi
al parameters.Validity: k ∼ l/η0≪ η−1
r =⇒ l≪ η0/ηr = 50



Dl =
l(l+1)

2π Cl



Ex
ersise:Take COBE �quadrupole� (in fa
t, inferred by COBE from severallow multipoles), de�ned as

Q2 =
5

4π
C2and a

ording to COBE

Q = 18 µKCal
ulate s
alar amplitude As for ns = 1. Compare with WMAPresult

As ≡ ∆2
R = (2.44±0.09) ·10−9[was Nobel Committee right about COBE?℄



Integrated Sa
hs�Wolfe e�e
t

δT
T

(n)ISW =

∫ η0

ηr

(

Φ′−Ψ′
)

dη

Φ =−Ψ time-independent at matter domination. =⇒ ISW relevantright after re
ombination (matter domination not exa
t, early ISW)and re
ently (e�e
t of dark energy, late ISW).Early ISW suppressed by

ρrad/ρM (η > ηr)< (1+ zr)/(1+ zeq)∼ 0.3 in amplitude.Relatively large for l ∼ (2−4)η0/ηr = 100−200 , where SW isquite large.Late ISW e�e
t works for largest angular s
ales, butnumeri
ally small sin
e dark energy has not yet diluted Φsubstantially.There must be 
orrelations of temperature with largestru
tures, due to ISW.Dete
ted. In prin
iple, a tool for measuring expansion rate =⇒properties of dark energy. Not at this stage yet.



Cal
ulated angular spe
trum. Adiabati
 perturbations.

This and other �gs.: see Challinor '2004



A
ousti
 peaksSometimes 
alled Doppler peaks � wrong name.Major player: Sa
hs�Wolfe e�e
t. Doppler e�e
t numeri
ally smaller,sin
e waves traveling normal to line of sight do not 
ontribute.Short and intermediate s
ales, l≫ 50:
ργ =−4A(k)ζ cos

(

∫ ηr

0
kus dη

)

−4(1+RB)Φ

Φ = ΦDM =−B(k)
k2 ζ

with A(k)≃ 1, B(k)≃ 27
4 H2

eqa2
eq log(0.15kηeq) at large kSa
hs�Wolfe term

ϕSW =
1
4

δγ +Φ = os
lliatory part − RB ΦDMIf not for RB ≡ 3ρB/(4ργ), non-os
illating term with ΦDM would
an
el out.



Physi
s: before re
ombination, temperature is the same everywhere,even though lo
al temperature is higher in potential well. If not forbaryons, photons es
aped from the well would have the sametemperature as away from the well.Mismat
h: in thermal equilibrium are photons and baryons, but onlyphotons move out of potential well.



Anyway,

ϕSW = ζ ·
(

−A(k)coskrs +
B(k)
k2 RB

)

and

Cl/T 2
0 = 4π

∫ ∞

0

dk
k

Pζ (k)

∣

∣

∣

∣

−A(k)coskrs +
B(k)
k2 RB

∣

∣

∣

∣

2

j2l (kη0)

Corrsponden
e∗ k↔ l/η0 ⇐⇒ os
illations in k ←→ os
illations in lMaxima at krs ≃ πn =⇒ l ≃ πnη0/rs.Re
all a0rs ≃ 155Mp
, a0η0≃ 14 000Mp
 =⇒ maxima at l ≃ 290n(all sligtly shifted to the left). Fig.Interferen
e between os
illating and non-os
illating terms:
onstru
tive for odd n; destru
tive for even n =⇒ odd peaks morepronoun
ed.����������������������

∗Even more so for os
illating part:
∫

dk cos(krs) j2l (kη0) is saturated very near k = l/η0; higher momenta get averaged out.





NB: Os
illations get damped due to Silk e�e
t, damping fa
tore2k2/k2
s in amplitude squared =⇒ suppression for for k & ks/

√
2 =⇒

l & ls = ksη0/
√

2. Re
all ks/a0≃ 0.1 Mp
−1 =⇒ ls ≃ 1000.Overall de
line due to B/k2.

What would tensor perturbations do?Re
all that they de
ay as a−1(η) after horizon entry =⇒maximum e�e
t for k . 1/ηr, l < η0/ηr Fig.Di�
ult to dis
riminate between tensor perturbations and reds
alar tilt ns < 1. Fig.What would CDM entropy perturbations do?Grossly di�erent pi
ture: sin(krs) instead of cos(krs),minima ←→ maxima.Rapid de
rease of amplitude at large k. Fig.



E�e
t of tensor perturbations



S
alar tilt vs tensor power
WMAP



E�e
ts of adaiabati
 and entropy perturbations

adiabati
 perturbations entropy perturbations



Examples of sensitivity to 
osmologi
al parameters

Very sensitive to ΩB through RB = 3ρB/(4ργ). The larger ΩB,the stronger interferen
e e�e
t, enhan
ement of odd peaks andsuppression of even peaks. Fig.Peak positions very sensitive to spatial 
urvature: rs isstandard ruler at re
ombination, seen at di�erent angles inopen, �at and 
losed Universes.Some degenera
y with ΩΛ that determines 
onformal lifetime

η0 =⇒ distan
e to surfa
e of last s
attering. Fig.Degenera
ies lifted by other data.Updated �t of parameters: see Parti
le Data Group.



E�e
t of baryons



E�e
t of 
urvature (left) and Λ



CMB polarizationPolarization in Thomson s
attering:

dσ
dΩ

∝~εi ·~ε f

~εi , f = polarization ve
tors of in
oming and outgoing photons.Photons with polarization normal to s
attering plane s
atter atlarger 
ross se
tion than in-plane polarized photons.Unpolarized radiation 
oming to ele
tron before the very lasts
attering from the right or left, is polarized in verti
al dire
tionafter the very last s
attering.Temperature anisotropy of radiation in
ident on ele
tron before thevery last s
attering results in linear polarization of radiation we seetoday.This temperature anisotropy is generated similarly to δT we observenow, but lo
ally, at time just pre
eding last s
attering.



E-mode: hot (dashed) and 
old (solid) spot. B-mode



E- and B-modesPolarization tensor on 
elestial sphere

Pab =
〈EaEb− 1

2δab~E2〉
〈~E2〉

~E = ele
tri
 �eld, normal to line of sight, a,b = 1,2.Can be written in terms of s
alar PE and pseudos
alar PB:

Pab(n) =−
(

∇a∇b−
1
2

δab

)

PE(n)− εc
(a∇b)∇c PB(n)

Repeat the story: de
ompose PE and PB in spheri
al harmoni
s,de�ne aE
lm, aB

lm and 
orrelation and 
ross-
orrelation spe
tra:

〈aE
lmaE ∗

l′m′〉= δll′δmm′C
EE
l ,

〈aT
lmaE ∗

l′m′〉= δll′δmm′C
TE
l , et
.



On symmetry grounds: do not expe
t EB and T B 
ross-
orrelations.
EE and T E spe
tra measured (with rather large errors)

Point: s
alar perturbations produ
e only E-mode. Tensorperturbations produ
e both E- and B-modeSmall e�e
t: exists to the extent that photon experien
esintegrated Sa
hs�Wolfe e�e
t when traveling betweenlast-before-last s
attering to last s
attering events (true also for

E-mode; re-ionization helps for very long waves).Suppression fa
tor
λγ

λpert
∼ k∆η .

∆η
ηr
≃ 0.04 of δT

T

λγ = photon mean free path before the very last s
attering(thi
kness of last s
attering shell ∆η),

λpert = 2πa/k = wavelength of perturbation at re
ombination.Yet the most promising way of dete
ting tensor perturbations



To 
on
lude:

CMB en
odes a lot of information about late Universe andprimordial perturbationsPrimordial perturbations is a window to pre-hot 
osmologi
alepo
h.No doubt that this epo
h existed: CMB properties 
an only beexplained by assuming that perturbations were built in at thevery beginning of the hot stage.Still we know only very basi
 fa
ts about primordialperturbations.



More to 
omePre
ise determination of s
alar tilt (Plan
k)Primordial tensor perturbations (maybe Plan
k)Non-Gaussianity (maybe already observed, wat
h outPlan
k)Statisti
al anisotropy (maybe already observed, wat
h outPlan
k)Iso
urvature perturbations (will be great surprize)

Hopefully, not only limits....
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