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Preliminaries

® C(Conformal time n:
dt =a(n)dn

Metric in conformal coordinates:
ds? = dt? — a?(t)dx?= a(n)[dn? — dx?|

Convenient: light travels along light cone ds=0 =— dx=dn,
exactly like in Minkowski space-time.

® I = coordinate size of horizon at time . Physical size at
that time = a(n)-n. Comoving size (seen today) =ap-n.

o Hubble parameter
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® [Friedmann equation in conformal time (prime = 3d/dn)

a? 8m

G
a4 3 P
® Solutions:

» Radiation domination, RD: p Da=% = a(n) = const - 1,
a(t) O0tY2  NB: prag = Prad/3

» Matter domination, MD: pJa—> — a(n) = const - n2,
a(t) 0t2/3

In either case,



Conformal times of various epochs

/a da 1 /Z dz
= J, @ H(a 20H (2)

where 14+2z=agp/a. Use
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and find
1

- L
aoHo Joo /QA+Qm (14 2)3 + Qrag(1+2)4

Recall
Qr=0.72, Qu=028, Q.,q=84-10"

(neutrinos are massless for our purposes).



® [Equality: transition from radiation domination to matter
domination, 14 Zeg = Qm/Qrag = 3200Q

Negd0 = 120 Mpc
® Photon last scattering ~ recombination: z=110Q
Nrag = 280 Mpc

® Today
Noag = 14 000Mpc

NB: 1 Mpc = 3 M light yrs.

Important numbers:

Mo _gg 110 _ 19

My MNeq

NB: We see 50° regions that had horizon size at recombination.






Perturbations: helicity (Lifshitz) decomposition

Perturbations are small in amplitude until structure starts forming.

Definitely small at recombination, dp/p ~ 6T /T ~ 104107 —
Linearized theory appropriate

Linearized Einstein equations

1
ORE — 555‘ OR=8nGoT}

Plus linearized equations of covariant conservation of
energy-mometum

6(|:|O'Tuo-) — O

NB: Several components interacting gravitationally only: right hand
side of Einstein egs. involves sum of all components; covariant
conservation holds for each component separately.



® Perturbations in energy-momentum tensor of matter, in ideal
fluid approximation (otherwise spatial components Tjj contain

anisotropic stress ljj, with Trl1 =T = 0)

Tuv = (P + pP)Uu’ — pguy

Perturbations of energy density 0p, pressure Op and physical
velocity Vl = a(n)u' = a(n)dx'/ds, i = 1,2,3 (since gy utu’ =1,

component W is not independent).

NB: Effects beyond ideal fluid approximation important, especially
for short wavelengths and for neutrinos. Some will be pointed out
later on.



® Perturbations of metric
ds® = a*(n) (Nuv + hyv)dx#dx”

® Background is invariant under spatial translations =— go to 3d
Fourier space,

huv(n,x):/ d3k eikxhuv(n,k), same for 0p, Op, V

NB: K is conformal (coordinate) momentum, constant in time.
Physical momentum p =k/a(n) gets redshifted.

® For given K, there remains unbroken SO(2) of rotations around

K — decompose into its representations — helicity
decomposition.



® Helicity +2: tensor modes, transverse traceless 3d tensors. Only
hij (property of ideal fluid approximation),

khii' =0 hi"=0

Two polarizations, hjj = el(jx)h(x) + ,(;r)h(ﬂ.

® Helicity ££1: vector modes, transverse 3d vectors. Vi : hol,
hij = k,WT +kJWT with k,ViT = 0, etc., two polarizations.

Vector modes — rotational motlon of cosmic medium.
Parametrized by vorticity v'. Its amplitude (if present initially)

decays as v Oa 1(n) (angular momentum conservation in

expanding Universe) = Vector modes most probably
irrelevant. We are not going to consider vector modes.

® Helicity 0: scalar modes, 3d scalars. 0p, Op, Vi = ikjVv, hgg = 2D,
hoi = kiZ, hjj = —2W- & + kkE

NB: v = velocity potential, v;(X) = div(X)



Warm up: tensor modes

Tensor modes: 6p =0p=0, v =0, hgy = hgo=0, = OT}' =0
(in ideal fluid approximation only).

hp=hT= 5 AN
A=x,+

Each polarization has the same action as massless scalar field in
expanding Universe (modulo prefactor):

1 by aav e hA g KA
8_64nG/dx\/_‘gg 9.h™3,h

where g,y = a%(n)Nyy = unperturbed metric.



Explicitly

o s | o (o))’

Field equation
/
02n"+2% 6)h(M 40" =0

or in 3d momentum representation
a/
a§h<A>+zga,, hA+k?h™ =0

Different behaviour for k < @ /a and k> d'/a.
Recall physical momentum p=Kk/aand H =a' /a® —

These are regimes p<H and p>H,or A > H tand A < H™1
subhorizon and superhorizon, respectively.



At RD, MD epochs

ain)0n,n* = d/alnt,

large at early times = mode of given conformal momentum K is
first superhorizon and later superhorizon.

In other words, H(t) Ot~1 decreases faster than
p(t) =k/a(t) Ot=Y2, t72/3 — p < H at early times

Fig.
NB: Cosmologically interesting scales entered horizon quite late: at
horizon crossing time 1y

k k ag T, T? Mp,

For po ~ (10kpc)~* (halos of first stars) get

Ty ~ 30 keV

much later than Big Bang Nucleosynthesis.



Regimes at radiation and matter domination
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® Early times: superhorizon regime, K— 0 (e.g., at RD, alln)

52h(A)+E§ hA =0
n n n

Two solutions: constant mode h*) (1) = const

decaying mode h™(n) O n~1.

sometimes called growing mode

Decaying mode: strongly inhomogeneous and anisotropic
Universe at early times.

Must not be present !!!



In absence of decaying mode, solution is unique, up to overall
amplitude.

® Late times: subhorizon regime, WKB. GGeneral solution

A (1) = —— sin(kn + ¢)

a(n)
Matching to constant mode (by solving the exact equation)
— (p — O7
C
h(n) = —— sinkn
=3

Oscillations (gravity waves) with well defined phase

Story repeats for scalar perturbations: acoustic waves with well
defined phase determined by absence of decaying mode

NB: Gravity wave amplitude decreases as a~*(1) after horizon entry.
This is not true for acoustic waves.



Scalar perturbations

More complicated story.

® Gauge fixing
Gauge invariance of General Relativity
ghV — GV = gV + OHEY £ OV EH

EH = gauge functions (small).

Can be used to eliminate hg and longitudinal part of hjj L dd{E
—> Conformal Newtonian gauge

ds’ = a%(n) [(1+ 2P )dn? — (1+2¥) dx?]

Longitudinal part of perturbed {ij} Einstein equation:
WY = -, for ideal fluid only.

The only gravitational potential @.



Complicated composition

Independent components
A = photons, baryons, dark matter, neutrinos

Coupled via common gravitational potential @
To simplity:

® disregard neutrinos (sometimes possible to include them into
radiation component)

® 'Treat baryons and photons as single fluid before recombination
(tight coupling approximation).

NB: Life becomes tuff beyond these approximations!

Write and solve Boltzmann equations for particle distribution
functions.



Complete set of equations in the ideal fluid approximation,
conformal Newtonian gauge

® [Equations for background

» FEinstein equations:

a? 8m
PV gG ;PA
a// a/2
2a3 — a4: —81nG ; P

o Covariant energy conservation for each component,

DO'TO-“ 207 I.,l :O

NB: Dependence only on N = ordinary diff. egs.



® Perturbed Einstein equations

2 a_ , La° 2
A

a/

O+ —b=—4nGa’-
+ ;[(m VLA »
a/ a// a/2
1 “ . _ 2
O +3acb+<2a az)CD AnGa: ;5@\

® C(ovariant energy-momentum conservation for perturbations in
each component (continuity equation and Euler equation in
expansing Universe; recall vi = djV)

a/
50} +3_(3pr +3Px) = (or + P2) (KVy +30) =0,

/

(s IO/\)V/\]/+45(P/\ +pPA)Va+0py +(py +py)P=0



NB: — system of linear ordinary diff. eqgs. for given k;

— more equations than unknowns, not all equations
independent (because of gauge invariance of original system)

— Additionally, need equation of state for each component,

PA = Pa(Pa)
In particular
opr -
Joul s

Us = sound velocity in component A.



First glimpse:
perturbations in dominant component

Radiation at radiation domination; dark matter at matter
domination (in approximation Ppm > Pg).

® Forget about other components = single component Universe

With p? p; 5p7 6p7 V? q)
® Set p=Uuip (not always possible), dp = UZdp
® C(Combine perturbed Einstein egs.

a/ a/2
k?d + 3acb’ +3_50= —4AnGa®- dp ,
a// a/2
a a2

/
o +32 + (2 ) ® = 4n1Ga’ - dp = 4nGa‘uidp
a

with eqs. for background



Result

/

a
P+ 3= (1+U5)P +ugk®® = 0
a

® Perturbations in radiation at RD stage: us=1/ V'3, a=const- N

» Superhorizon regime (early times): again constant and
decaying modes,

d=d =const and ®On>0Oa3
Forbid decaying mode. Then from Einstein eqn.

)
Prad

also constant in superhorizon regime.

o Without decaying mode initially, solution unique,
expressed through Jz/o(kusn).



After horizon entry (assuming this happens at RD stage)

cog kusn)
(kusn )2

Phase is uniquely determined by initial absence of decaying mode.

P = —3P;

These are acoustic oscillations. Einstein eq. in subhorizon regime

—P=-A4AnG-0p <+— “OA” ®P=4nGop, Poisson eq.

_ 5Prad
5rad B Prad

= 6®; cos(kusn)

Acoustic oscillations with time-independent amplitude and well
defined phase.

NB: Oscillations in subhorizon regime can be obtained also in
standard way, from energy-momentum conservation eqs. with @ — 0.



® Perturbations in dark matter in matter dominated Universe
(neglecting baryons); us = 0, a = const - N?:

/
6
CD”+3%CD’ =0 =0

Solutions ® = const and ® [J1/n°. Constant solution relevant
at late times.

Again use Poisson eqn.,

k? dp
¥CD = —4nG-0p = —4nGp— 5

but now with p 0 a3. Find at matter domination

OPpM
PDM

dom = Ha(n)

Gravitational instability in matter dominated Universe.



To summarize:

® At early times at the hot stage, perturbations are in
superhorizon regime, p << H. Assuming that the Universe was
not strongly inhomogeneous in the beginning of hot Big Bang
epoch, there is constant mode only in this regime.

NB: Long modes were still in superhorizon regime at
recombination /last scattering epoch. They determine low |
region of CMB angular spectrum.

® Assuming that perturbations were there before they entered
horizon, density perturbations of shorter wavelengths in
baryon-photon component experience acoustic oscillations after
horizon entry with well defined phase

_ 5prad
5rad B Prad

= 6®; cos(kusn )

These oscillations continue to recombination epoch, and in the
end give rise to oscillations in CMB angular spectrum.



® These assumptions would not be valid if density perturbations
were generated at hot stage by some causal mechanism (e.g.,
tological defects). That mechanism could only work inside the
horizon, i.e., no perturbations would exist before horizon entry.
Phases of acoustic oscillations would be random in that case,
this would yield non-oscillatory CMB angular spectrum. Such a
scenario is ruled out, since there are oscillations in CMB
angular spectrum.

® Perturbations in dark matter (and in baryons after
recombination) grow as

OPpMm
PDM

oM = Ja(n)

They eventually become large, dpm ~ 1 (and dg = dpy soon
after recombination), and form structure.

In linear regime, their gravitational potential is
time-independent,
® = const .



NB: Due to effect of dark energy, growth of oy has slowed down
recently, and potential @ started to decrease. This applies to large
wavelengths, which are in linear regime (or have become non-linear

only recently).

Way to measure Qnp
Fig.

® Tensor perturbations, if any, decay as a 1(n) after horizon
entry. They are most important for CMB at fairly low |.
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3

Cluster counting
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°

°

© © o o

Outline of lecture 2, part 2

Initial conditions

# Adiabatic mode in superhorizon regime
» Entropy (isocurvature) modes

Dark matter at radiation domination

Baryons and photons at matter domination before
recombination

Summary of adiabatic perturbations
Silk damping
Baryon acoustic oscillations

Effect of perturbations on CMB: general formulae



Initial conditions

From now on: assume that perturbations were superhorizon and
that there was no decaying mode.

Off hand: various kinds of initial conditions for multi-component
cosmic medium, set up deep in superhorizon regime

® Adiabatic perturbations = perturbations in energy density
with constant in space composition

Npm  NB :
= — const 1n space
S S

(similarly for neutrinos).

In this case npy = constoT?’, and Ppm = MpmNpm, hence

OPpwMm oT
= = 3—
PDM ow T

while prag O T# and therefore % = Oad = 45T—T



Integral of motion in superhorizon regime, kn — O:

Continuity equation with k= 0:
/ a/ /
0Py +3-(0py +0Px) —3(ox + )P =0

recall p} = —3%/(,0,\ +py) and use P, /p; = py/dpy = UZ to obtain

g5
3(Px +Pa)

= const 1n time

(=-0+

NB: this has been generalized beyond ideal fluid
S.Weinberg’ 2003

® Adiabatic perturbation:

iom={B={=( =

The only initial condition for given K.
Another notation: Z = { +0O(kn) in superhorizon regime.



All other quantities in superhorizon regime are expressed through (.
Expressions slightly different for RD and MD epochs.

At radiation domination &ad = 0Prad/Prad = —2P; and Prad = Prad/3-
Use

1
Z — Zrad = -+ Zérad

to get
2 4
CDi:—éZ — 5rad:§Z, Opm = 0B = ¢
At matter domination we have instead oy = —2® (again from

Einstein eq. in superhorizon regime), and

(= {pm = —CD—I—%aDI\/I

hence

3 8

6
CD:—EZ — @adzgza 5DM:58255



® [socurvature (entropy) modes. E.g. dark matter entropy mode:

No perturbation in energy density, only in composition, Npy /S
varies 1In space

Deep at radiation domination this means that 0prag = 0,

5pD|\/| # 07 or

5(nD|\/|/S)

oM = (pm = ow /S

#07 ZB:ZVZZV:O

Also, ®; =0 deep at RD.

Similarly for baryon entropy mode.



Generally speaking, initial condition is a linear combination of
adiabatic and entropy modes (plus neutrino isocurvature modes of
two types, but unlikely on physical grounds).

If dark matter and baryon asymmetry were generated at hot stage,
adiabatic mode only. But it is up to experiment to decide.

Existing data: consistent with adiabatic mode only.
DM isocurvature (entropy) mode constrained
T Bu

72 <007

(this is to be understood as ratio of power spectra, see below for

defintion of power spectrum).
Constraint on baryon entropy mode worse by a factor

(Qpm/QB)? ~ 20.



What does dark matter do at radiation domination?

Use conservation equations for dark matter, with gravitational
potential generated by radiation. These can be written as

next slide

6I/DM — k2VD|\/| — 3CD/

1
Vom + EVDM =—-®

Solution to homogeneous equation (® = 0):

C
VDM = ﬁl . dpm = C1k?logn + ¢

® CDM isocurvature mode: @ = 0 at radiation domination —
c1 = 0 (no mode growing towards n — 0!) = dpm = const in
time

® Adiabatic mode: ® # 0, produced by &gg, but ® decays as N2
after horizon entry = gives kick to dark matter;
opm L logn after horizon entry.



Another form of conservation equations

a/
5, +35(u§7/\ — W) )0, — (14w, kv = 3(1+w, )P’
/

a
(14w )va ]+ 5(1—3W/\)(1+W/\)V/\ +U5, 0= —(1+w,)®

where
_ P .
W)= — = barotropic index
P
o
U2 = o _ sound velocity squared

> Op)



Adiabatic mode: initial condition for dark matter perturbations
right after equality epoch (short wavelengths, enter horizon at RD,

KNeq > 1)
dpm = 9¢ 10g(0.15Kneq)

NB: enhanced both logarithmically and numerically compared to
initial dpm = {. Just right for structure formation.

After equality epoch, dpy grow as a(n), starting from this value. ®

stays constant in time. Use Poisson equation and Friedmann eqgs. to

. . 18
get at equality and later (using H2 = 55 Gppwm)

2

) 47TGPD|\/|5D|\/|—— Z Mg log(0.15kNeg)

k2

Ppv =

NB: Sign important for CMB.
NB: @ decays as function of k.

Smaller spatial scales enter horizon earlier =— have more time for
log growth = smaller structures get formed earlier.



Growth of perturbations (linear regime)

Radiation domination Matter domination /\ domination




What does baryon-photon component do at matter domination (but
before recombination)?

Acoustic oscillations continue,

n n
Oy = 6®; cos(/ Kus dn) = —4( cos(/ Kus dn)
0 0

NB: Us # 1/v/3 because of baryons. Prefactor actually also gets small
correction.

Density contrast in baryons

since



Need also velocity. Take continuity equation and apply to photon (or
baryon) component = in absense of gravitational potential (has
decayed away)

Kvyg = % — 3ug( sm(/ KUs dn)

New effect:

Just before recombination: matter domination. There is gravitational
potential ®py due to dark matter. Photons and baryons feel it.

Euler equation for baryon-photon component:

/

[Py -+ Py)vie] +4~ (Py+ Py)Vye + 3Py + (Py8 + Py) Pom = 0
Particular solution for time-indpendent ®py: vyg = 0 and

Opy = —(Py+ P+ Py)Pom



Recall py, = py/3, dpy, = dpy/3 and get

o)
Oy = OPy = —4(1+Rg)Ppm
Py
where
3
Rg = P8 —0.48 at recombination
4py

NB: protons only, pg = 0.75Ngtot Mp: helium is neutral at
recombination of hydrogen

Rg is the parameter directly measured by CMB observations =—
determination of Qgh?.



Adiabatic perturbations at recombination: summary

® Long modes, still superhorizon at recombination:

3 38
O=—20 &=

® Short modes, enter sound horizon at radiation domination:

» Perturbation in photon energy density /local temperature

Nr
5, = opy — 4 (5—T) ~ —4( cos( Kus dn) —4(1+Rs)Ppm
Py T loc 0

® Velocity
n
kvys ~ 3UsZ Sin (/ KUs dr/)
0

» Gravitational potential (produced by dark matter)

Ppm =~ — Z T;:leq 109(0.15KNeq)



® Intermediate modes, enter horizon between equality and
recombination: qualitatively similar behavior to short modes



Properties of dark matter isocurvature perturbations entirely
different (baryon and DM isocurvature perturbations are in fact very
similar)

® No initial perturbations in baryon-photon component.

Acoustic oscillations triggered by gravitational potential of
dark matter. Initial condition o8 =0 = oscillatory part

n
Oy = DM -A(k)sin(/ Kus dn)
0

Phase differs by /2.

Short wavelengths enter horizon when ppy small compared to
radiation — oscillations suppressed at short scales,

Ak) Okt

® No log enhancement of dpy and Ppy (not very important).



Shorter wavelengths: Silk damping

Beyond ideal fluid /tight coupling approximation

Photon mean free path Ay is finite = photons diffuse away —-
acoustic oscillations get smeared out.

Diftusion length in Hubble time

|S ~ /\y\/ I\lcoll

Neoll ~H™1/1,=H™1/A, — number of photon collisions with
electrons in Hubble time H™1 —

ISN \/)FN \/(aTne)—lH—l

or = 0.67-107%* cm?, Thomson cross section;

Ne — 0.75%: 8.10 %Qgh?(1+2)% cm 3
P

~230cm > just before recombination



This gives for comoving scale
(14 2z )ls~ 20 Mpc
More accurate analysis (beyond ideal fluid) gives

K
101 Mpec 1,
ao

and oscillatory part of oy

—% Nr
Oyosc = —4{e 'S cos( KU dn)
0

same effect for velocity.



Baryon acoustic oscillations
Before recombination, baryons oscillate in time together with
photons.

Immediately after recombination, oscillations in time freeze out (no
pressure = no oscillations = acoustic waves) at

3 > fIr
OB Zéyz—SZe S COS ; kus dn

These are oscillations in momentum K.

Furthermore, just before recombination baryon-photon component
has non-zero velocity

K2

s Nr
kv,g = 3use *Ssin (/ kus dn)
0

These are initial conditions for evolution after recombination.



Soon after recombination baryons and dark matter equalize,
d8 = Opm (baryons fall into potential wells produced by dark matter,
and vice versa)

Hence, the total matter density some time after recombination is a
linear combination of smooth and oscillating functions of momentum
(solve conservation eqgs. for baryons and dark matter; grav. potential

® is produced by both and obeys Poisson eqn.)

Q Q 3 kN,
dcpm = OB = :((gr)) ga\ﬂ Acom (Nr) + Q—I\j <§5B(’7r) — %kVB(rlr)>]

where Qpm = Qcpm + Qp.

Oscillating part: small, since Qg is small, while dcpym is enhanced.

Yet observed in power spectrum of galaxy distribution.

Fig.
NB: opm, 0 and Vg are all proportional to one and the same { —
interference bewtween smooth and oscillating parts

NB: Silk damping at k> 0.1 Mpc !



log;o P(K) / P(K)gmootn
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BAO in power spectrum
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Percival et. al. ’2007



Interpretation: If a region is overdense, dark matter stays there,
baryons and photons move away as sound wave —>- correlation of
mass densities at coordinate distance

Nr
rs:/ Us dn
0

sound horizon at recombination.
Fig.
Comoving size

aols ~ 155 Mpc

Well defined absolute length scale, standard ruler.
In principle, can measure angle at which this scale is seen at different

Z (angular diameter distance, AO = agrs/Da(z) =rs/(No—nN(2))), and
Hubble parameter at diffetent z =—> expansion history and geometry
of the Universe. In practice, a combination of Da(2z) and H(2).

rs slightly depends on Qy and Qg, since agdn = H'dz depends on Qp, and

U2= 5py _ (1/3)pV5V _ 1
S 5py—|- 5p|3 py6y+p8%5y 3(1+ RB(rl))

But Rg is well measured, and dependence on Q) is weak.



BAO in correlation function
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NB: h™1=(07)"1=1.43 Eisenstein et.al., SDSS ’2005



Effect of perturbations on CMB: general formula

Propagation of a photon in metric (linear order in perturbations)

(scale factor a(n) <= overall redshift <= conformal invariance of
Maxwell’s action = forget).

Geodesic equation

dp¥
d—/\ T rl\japvpa =0

PY =dx*/dA, A = affine parameter. Use ) as a parameter instead
(time along world line); dn/dA = P° —-
ﬂ M P” P?

an oo po =0

Take 4 =0 = evolution of photon energy.



Scalar perturbations, conformal Newtonian gauge

ds’ = a%(n) [(1+ 2P )dn? — (1+2W¥) dx?]

hence
dp’ & —W)PO — 2 (d + nid) PP

where N = P/PY is unit vector along photon trajectory.

Last term = total derivative along trajectory —

(@' —W)dn + 2P (ne)

P°(1a) —P?(ne) _ (™
PO - /,,

e

Ne, Na: times of emission and absorption; ignore ®(n,), as it gives
overall red /blueshift, independent on photon arrival direction.



Now, let Q be photon energy in locally Lorentz rest frame of cosmic
plasma at photon emission. Then

ut = 4-velocity of plasma. In locally Lorentz rest frame
u* = (1,0,0,0), while in cosmic frame

U = (11—, V)
(from gyyU*u’ = (Nuy +hyy)uHuY =1) —

and

Q=[1+®(ne) —nv(Ne)] Po(ne)
Finally, Q O T + (8T )joc = T (14 ,/4).

Collect all terms, set Ne = Ny and get



oT 1
Ed (Nobs, No) :Z5y—|— ® Sachs—Wolfe
—NobsV Doppler
No
+ (CD’ — LIJ’) dn Integrated SW
Nr

Nops = —N: direction in the sky;

All quantities in the right hand side taken at photon emission
position X = Ngps(No — Ne), integral runs along photon world line.

Key formula for CMB temperature anisotropy.

Likewise, effect of tensor perturbations (ISW only)

oT 1 (Mo
= (Nobs, Mo) = 5 i dn i (hi") n



°

Outline of lecture 3, part 2

CMB temperature anisotropy: preliminaries
What do we want to know — to zeroth order?
Understanding CMB temperature spectrum

o Small |, long waves.

® Acoustic peaks

» How tensor modes and entropy modes would show up
o Examples of sensitivity to cosmological parameters

CMB polarization

Conclusion



CMB temperature anisotropy

oT
T =2.726K, =~ 104-10




® Decompose temperature fluctuation in spherical harmonics
(starting from | = 2; dipole <= Earth’s motion)

0T(0,¢9)= zaImYlm(ea )

Large | <= small angular scales

Working hypothesis: temperature fluctuations = isotropic
Gaussian random field =— aj;: Gaussian random variables,

(Amdyy) = CimA Oy

Average over ensemble of Universes like ours.
Isotropy: G = C independent of m

® Temperature fluctuation

(5T — 2I+1CIN/dII
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NB: Note funny scale on horizontal axis

NB: 0T O primordial scalar perturbations (and tensor, if any) <=
T
|

hypothesize that ( is isotropic Gaussian random field ( also, if

any).

In general, 0T inherit correlation properties of { <= search for
non-(Gaussianities, statistical anisotropy, etc.

NB: Cosmic variance: we observe only one Universe.

2l + 1 measurements of ayy, for given | = small | < large intrinsic
uncertainly,

AC 1

C  J1+1/2

No cure.
Fig.



21T
6000}
2000 _
5 » WMAP 3-year |
:g‘ § * BOOMERANGO3
2 3000%

100 500 1000 1500 2000 2500
{

1 10



What do we want to know — to zeroth order?

[. Properties of primordial perturbations.

® Adiabatic scalar perturbations

Assuming isotropy and Gaussianity (Wick theorem for
correlation functions)

3K iy
2020 = [ oK) o (k
P;(K) = power spectrum. Parametrization
Py(K) = D2(K) = D2 (K) = A = |t
(K =820 =830 = As[

As=N%,(kg) = scalar amplitude;

Ns = scalar spectral index (for historical reason); ng— 1 =
scalar tilt;

ko = fiducial momentum (WMAP choice: Ky/ag = 0.002 Mpec~t
(NB: usual choice ag =1).



NB: ns close to 1. WMAP: ng=0.9634+-0.012 @ 68% C.L.

dns

Also: running spectral index ns(k) = ns(ko) + gk - IOg%.

NB: fluctuation
© dk
2
X)) = — (K
@) = [ L2
ns =1 <= Flat (Harrison-Zeldovich) spectrum.

® Similarly for tensor modes:

A B oy Lsag [ K k)
(Y (x)h™ (X)) = 50 P (K)

2 ATHG
o= me ()

Tensor-to-scalar ratio r = At /As.

® Admixture of isocurvature (entropy) modes.



II. Properties of the late Universe:

Ho, Q’s, dark matter equation of state, spatial curvature
Qx = 1/(agHo)?

Also: optical depth due to re-ionization, i.e., Z« ; neutrino mass.



Understanding CMB temperature angular spectrum

oT 1 no
?(n,no) _<Zc‘5y+ CD) —nv+ [ (@' —W)dn
Nr

Sachs-Wolfe  Doppler Integrated SW
N = direction in the sky, all quantities in the right hand side taken

at photon emission position X =nNn(nNg— ny), integral runs along
photon world line.

Begin with Sachs—Wolfe effect (set ng—nr = No)

oT

S(nin0) = [ e Mgan(k) . faw(k) = 78(K) + (k)

Al

T

Expand in spherical harmonics in n. Make use of the fact that
¢sw (k) is random field with

(dsw (K)ban(k')) = d(k — k’)4—m@3”sxv(k)

Calculate C = ZI—JJ'Fl S m{amay,)-



Outcome

© dk .
C/Tg=am | a9 iEkno)

where || is spherical Bessel function.

Next slide for simple calculation

Properties:

® | (kno) almost vanishes at kng <1 (for | 2 5).
Interpretation: expansion in Y|y on a sphere of radius
No <= Fourier expansion in plane, normal to line of sight,
with 2d momentum g~ |/ng (cf. Laplacians g° and
|(1 +-1)/né). Perturbation contributes, if its momentum is

k = (q,kt). Hence, k? > g% ~12/n43.

® ji(kno) decays as (kno)~* at kng > 1.

Corollary: Most relevant for multipole | are perturbations of
momenta K~ 1/no.



Trick

5T, . oT d3k D
= (N =—(n") = P k) e iknng ,—ikn'ng
Perform calculation for given K. Its contribution to C is independent
of the choice of coordinate frame on the sphere =— choose frame

with K along 3d axis. Then

ek — ¢ikoCost Zi' (20 +1)R(cosh) ji (kno) = Z“ V/AT(2! +1)Yioji (ko)

and similarly for e~ "0, Thus. the only non-vanishing contribution
Yy 3 Yy g

to G comes from m= 0 in this frame, and

1 1 d3k
2 * .
G/To = 2|+1;<84ma*m 2111 a@ ow (k) -4m2l +1)

This trick — calculation of C; in different frames for different kK — is
particularly convenient for calculating effect of tensor modes.



Small | <= long waves

Still superhorizon at recombination:
3 8
"0 §=¢

Sachs—Wolfe only (ISW small, see below).

1 1

Thus,

dk 1 o 1 |\ s
C|/T02=47T/0 k25c@z(k)h(k'70) 2510 )AS(B>

9 = ( )C| is independent of | for ng= 1. Almost no dependence
on Cosmologlcal parameters.

Validity: K~1/ng < n;t = | < no/ny =50
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Excersise:

Take COBE “quadrupole” (in fact, inferred by COBE from several
low multipoles), defined as

5
2
=—C
Q=G
and according to COBE

Q=18 uK

Calculate scalar amplitude As for ng= 1. Compare with WMAP
result

As= N, = (2.4440.09)-107°
|was Nobel Committee right about COBE?|



Integrated Sachs—Wolfe effect

oT Mo
— (Miaw = (@'~ W)dn
Nr
® = —W time-independent at matter domination. =— ISW relevant

right after recombination (matter domination not exact, early ISW)
and recently (effect of dark energy, late ISW).

® Early ISW suppressed by
Prad/Pv (N > Nr) < (1+2%)/(14Zeg) ~ 0.3 in amplitude.
Relatively large for | ~ (2—4)no/ny = 100— 200, where SW is
quite large.

® Late ISW effect works for largest angular scales, but
numerically small since dark energy has not yet diluted ®
substantially.

® There must be correlations of temperature with large
structures, due to ISW.

Detected. In principle, a tool for measuring expansion rate —-
properties of dark energy. Not at this stage yet.



Calculated angular spectrum. Adiabatic perturbations.

Total
SW

Doppler
ISW

10 100 1000

This and other figs.: see Challinor 2004



Acoustic peaks

Sometimes called Doppler peaks — wrong name.

Major player: Sachs—Wolte effect. Doppler effect numerically smaller,
since waves traveling normal to line of sight do not contribute.

® Short and intermediate scales, | > 50:

Nr
py = —4Ak)¢ cos( Kus dn) —4(14+Rg)®
0
B(k
P = Ppy = —%Z

with A(K) ~ 1, B(k) ~ 2H2,a2,10g(0.15kney) at large K
2 Meqeq e

® Sachs—Wolfe term
1 :
sy = 215)/"’ ® = osclliatory part — Rg ®Ppm

If not for Rg = 3pr/(4py), non-oscillating term with ®py would
cancel out.



Physics: before recombination, temperature is the same everywhere,
even though local temperature is higher in potential well. If not for
baryons, photons escaped from the well would have the same
temperature as away from the well.

Mismatch: in thermal equilibrium are photons and baryons, but only
photons move out of potential well.



Anyway,

Psw = - (—A( k) coskrs+ Blg) RB)

and

2

d 2 (ko)

C|/T02:4n/0 ?@Z(k)| (k)coskrS+B()RB

Corrspondence™ K< | /ng <= oscillations in kK <— oscillations in |
Maxima at krs~ mm = | ~ rmno/rs.

Recall agrs ~ 155 Mpc, agng ~ 14 000Mpc — maxima at | ~ 290
(all sligtly shifted to the left).

Fig.
Interference between oscillating and non-oscillating terms:

constructive for odd n; destructive for even N = odd peaks more
pronounced.

“Even more so for oscillating part:

[ dk cogkrs)j?(kno) is saturated very near k=1/no; higher momenta get averaged out.
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NB: Oscillations get damped due to Silk effect, damping factor
o2/ in amplitude squared = suppression for for k > ks/v/2 —
| > 1s=ksNo/v/2. Recall ks/ag ~ 0.1 Mpc~! = Is~ 1000

Overall decline due to B/K?.

® What would tensor perturbations do?
Recall that they decay as a~1(n) after horizon entry —
maximum effect for K< 1/n, | < no/ne
Fig.
Difficult to discriminate between tensor perturbations and red
scalar tilt ng < 1.
Fig.
® What would CDM entropy perturbations do?
Grossly different picture: sin(krs) instead of cogkrs),

minima <—> maxima.
Rapid decrease of amplitude at large k.

Fig.
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Effects of adaiabatic and entropy perturbations

11 T T | [T
10 100 1000

l [

adiabatic perturbations entropy perturbations



Examples of sensitivity to cosmological parameters

® Very sensitive to Qg through Rg = 3pg/(4py). The larger Qg,

the stronger interference effect, enhancement of odd peaks and
suppression of even peaks.

Fig.

® Peak positions very sensitive to spatial curvature: rg is
standard ruler at recombination, seen at different angles in
open, flat and closed Universes.

Some degeneracy with Qa that determines conformal lifetime
No =— distance to surface of last scattering.

Fig.
Degeneracies lifted by other data.

® Updated fit of parameters: see Particle Data Group.
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CMB polarization

Polarization in Thomson scattering:

do _ .,
T 0E.
4o - Ef

& ¢ — polarization vectors of incoming and outgoing photons.

Photons with polarization normal to scattering plane scatter at
larger cross section than in-plane polarized photons.

Unpolarized radiation coming to electron before the very last
scattering from the right or left, is polarized in vertical direction
after the very last scattering.

Temperature anisotropy of radiation incident on electron before the
very last scattering results in linear polarization of radiation we see
today.

This temperature anisotropy is generated similarly to OT we observe
now, but locally, at time just preceding last scattering.






E- and B-modes

Polarization tensor on celestial sphere

<EaEb - %5ab|§2>
(E?)

I:)ab —

E — electric field, normal to line of sight, a,b=1,2.

Can be written in terms of scalar P and pseudoscalar Ba:

1
Pap(n) = — (Dan — §5ab) PE(n) — €%3Hp) e Ra(N)

Repeat the story: decompose Be and Ps in spherical harmonics,
define aFm, ale and correlation and cross-correlation spectra:

<a|Ema|E'r>rkf> = a|’5mm(C|EE ,
(amdiin) = &G =, etc.



On symmetry grounds: do not expect EB and TB cross-correlations.

EE and TE spectra measured (with rather large errors)

<

<

Point: scalar perturbations produce only E-mode. Tensor
perturbations produce both E- and B-mode

Small effect: exists to the extent that photon experiences
integrated Sachs—Wolfe effect when traveling between

last-before-last scattering to last scattering events (true also for
E-mode; re-ionization helps for very long waves).
Suppression factor

Ay An oT
—— ~kAn $—~004 of —
)\pert T~ Ny T

Ay = photon mean free path before the very last scattering

(thickness of last scattering shell An),
Apart = 2Ta/K = wavelength of perturbation at recombination.

® Yet the most promising way of detecting tensor perturbations



To conclude:

CMB encodes a lot of information about late Universe and
primordial perturbations

Primordial perturbations is a window to pre-hot cosmological
epoch.

No doubt that this epoch existed: CMB properties can only be
explained by assuming that perturbations were built in at the
very beginning of the hot stage.

Still we know only very basic facts about primordial
perturbations.



® More to come
# Precise determination of scalar tilt (Planck)
# Primordial tensor perturbations (maybe Planck)

# Non-Gaussianity (maybe already observed, watch out
Planck)

» Statistical anisotropy (maybe already observed, watch out
Planck)

» Isocurvature perturbations (will be great surprize)

Hopetully, not only limits....
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