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Outline of leture 1 of part 2PreliminariesConformal times of various epohsPerturbations: heliity (Lifshitz) deompositionWarm up: tensor modesSuperhorizon and subhorizon regimesSuperhorizon regime: onstant and deaying modesSolution inside the horizonSalar perturbations: equations.First glimpse: perturbations in dominant omponentRadiation at radiation dominationDark matter at matter dominationSummary



PreliminariesConformal time η :

dt = a(η)dηMetri in onformal oordinates:
ds2 = dt2−a2(t)dx2= a2(η)[dη2−dx2]Convenient: light travels along light one ds = 0 =⇒ dx = dη ,exatly like in Minkowski spae-time.

η = oordinate size of horizon at time η . Physial size atthat time = a(η) ·η . Comoving size (seen today) = a0 ·η .Hubble parameter
H =

da/dt
a

=
a′

a2



Friedmann equation in onformal time (prime = ∂/∂η)
a′2

a4 =
8π
3

GρSolutions:Radiation domination, RD: ρ ∝ a−4 =⇒ a(η) = onst ·η ,

a(t) ∝ t1/2 NB: prad = ρrad/3Matter domination, MD: ρ ∝ a−3 =⇒ a(η) = onst ·η2,

a(t) ∝ t2/3In either ase,

a′

a
∼ 1

η
, H ∼ 1

aη



Conformal times of various epohs
η =

∫ a

0

da
a2

1
H(a)

=

∫ z

∞

dz
a0H(z)where 1+ z = a0/a. Use

H = H0

√

ΩΛ +ΩM

(

a
a0

)3

+Ωrad

(

a
a0

)4

and �nd

η =
1

a0H0

∫ z

∞

1
√

ΩΛ +ΩM(1+ z)3+Ωrad(1+ z)4Reall

ΩΛ = 0.72 , ΩM = 0.28 , Ωrad = 8.4·10−5(neutrinos are massless for our purposes).



Equality: transition from radiation domination to matterdomination, 1+ zeq = ΩM/Ωrad = 3200,

ηeqa0 = 120MpPhoton last sattering ≈ reombination: z = 1100,
ηra0 = 280MpToday

η0a0 = 14 000MpNB: 1 Mp = 3 M light yrs.

Important numbers:
η0

ηr
= 50 ,

η0

ηeq
= 120

NB: We see 503 regions that had horizon size at reombination.





Perturbations: heliity (Lifshitz) deompositionPerturbations are small in amplitude until struture starts forming.De�nitely small at reombination, δρ/ρ ∼ δT/T ∼ 10−4−10−5 =⇒Linearized theory appropriateLinearized Einstein equations

δRµ
ν −

1
2

δ µ
ν δR = 8πGδT µ

νPlus linearized equations of ovariant onservation ofenergy-mometum

δ (∇σ T σ
µ ) = 0NB: Several omponents interating gravitationally only: right handside of Einstein eqs. involves sum of all omponents; ovariantonservation holds for eah omponent separately.



Perturbations in energy-momentum tensor of matter, in ideal�uid approximation (otherwise spatial omponents Ti j ontainanisotropi stress Πi j, with TrΠ≡Πii = 0)
Tµν = (ρ + p)uµuν − pgµνPerturbations of energy density δρ , pressure δ p and physialveloity vi = a(η)ui = a(η)dxi/ds, i = 1,2,3 (sine gµνuµuν = 1,omponent u0 is not independent).

NB: E�ets beyond ideal �uid approximation important, espeiallyfor short wavelengths and for neutrinos. Some will be pointed outlater on.



Perturbations of metri

ds2 = a2(η)(ηµν +hµν)dxµdxνBakground is invariant under spatial translations =⇒ go to 3dFourier spae,

hµν(η ,x) =
∫

d3k eikxhµν(η ,k) , same for δρ , δ p , v

NB: k is onformal (oordinate) momentum, onstant in time.Physial momentum p = k/a(η) gets redshifted.For given k, there remains unbroken SO(2) of rotations around

k =⇒ deompose into its representations =⇒ heliitydeomposition.



Heliity ±2: tensor modes, transverse traeless 3d tensors. Only
hi j (property of ideal �uid approximation),

kih
T T
i j = 0 hTT

ii = 0

Two polarizations, hi j = e(×)i j h(×)+ e(+)
i j h(+).Heliity ±1: vetor modes, transverse 3d vetors. vT

i , hT
0i,

hi j = kiW T
j + k jW T

i , with kivT
i = 0, et., two polarizations.Vetor modes = rotational motion of osmi medium.Parametrized by vortiity vT
i . Its amplitude (if present initially)deays as vT

i ∝ a−1(η) (angular momentum onservation inexpanding Universe) =⇒ Vetor modes most probablyirrelevant. We are not going to onsider vetor modes.Heliity 0: salar modes, 3d salars. δρ , δ p, vi = ikiv, h00 = 2Φ,

h0i = kiZ, hi j =−2Ψ ·δi j + kik jE.NB: v = veloity potential, vi(x) = ∂iv(x)



Warm up: tensor modesTensor modes: δρ = δ p = 0, vi = 0, h0i = h00 = 0, =⇒ δT µ
ν = 0(in ideal �uid approximation only).

hi j = hTT
i j = ∑

A=×,+
h(A)e(A)i j

Eah polarization has the same ation as massless salar �eld inexpanding Universe (modulo prefator):
S =

1
64πG

∫

d4x
√
−ḡ ḡµν∂µh(A)∂νh(A)

where ḡµν = a2(η)ηµν = unperturbed metri.



Expliitly

S =
1

64πG

∫

d4x a2(η)
[

(

∂ηh(A)
)2
−
(

∂ih
(A)

)2
]

Field equation

∂ 2
ηh(A)+2

a′

a
∂ηh(A)−∂i∂ih

(A) = 0or in 3d momentum representation
∂ 2

ηh(A)+2
a′

a
∂ηh(A)+k2h(A) = 0

Di�erent behaviour for k≪ a′/a and k≫ a′/a.Reall physial momentum p = k/a and H = a′/a2 =⇒These are regimes p≪ H and p≫ H, or λ ≫ H−1 and λ ≪ H−1,subhorizon and superhorizon, respetively.



At RD, MD epohs

a(η) ∝ η ,η2 =⇒ a′/a ∝ η−1 ,large at early times =⇒ mode of given onformal momentum k is�rst superhorizon and later superhorizon.In other words, H(t) ∝ t−1 dereases faster than
p(t) = k/a(t) ∝ t−1/2, t−2/3 =⇒ p≪ H at early times Fig.NB: Cosmologially interesting sales entered horizon quite late: athorizon rossing time η×

k
a(η×)

∼ H(η×)=⇒
k
a0

a0

a(η×)
∼ H(η×)=⇒p0

T×
T0
∼ T 2

×
M∗Pl

=⇒T× ∼ p0
MPl

T0For p0∼ (10 kp)−1 (halos of �rst stars) get

T× ∼ 30 keVmuh later than Big Bang Nuleosynthesis.



Regimes at radiation and matter domination

superhorizon subhorizonp1(t)

p2(t)

H(t)

tt×

p2 > p1



Early times: superhorizon regime, k→ 0 (e.g., at RD, a ∝ η)
∂ 2

ηh(A)+
2
η

∂ηh(A)= 0

Two solutions: onstant mode h(A)(η) = onstdeaying mode h(A)(η) ∝ η−1.sometimes alled growing modeDeaying mode: strongly inhomogeneous and anisotropiUniverse at early times.Must not be present !!!



In absene of deaying mode, solution is unique, up to overallamplitude.
Late times: subhorizon regime, WKB. General solution

h(A)(η) =
c

a(η)
sin(kη +ϕ)

Mathing to onstant mode (by solving the exat equation)

=⇒ ϕ = 0,

h(A)(η) =
c

a(η)
sinkηOsillations (gravity waves) with well de�ned phase

Story repeats for salar perturbations: aousti waves with wellde�ned phase determined by absene of deaying modeNB: Gravity wave amplitude dereases as a−1(η) after horizon entry.This is not true for aousti waves.



Salar perturbationsMore ompliated story.

Gauge �xingGauge invariane of General Relativity
gµν → g̃µν = gµν +∇µξ ν +∇ν ξ µ

ξ µ = gauge funtions (small).Can be used to eliminate h0i and longitudinal part of hi j ∝ ∂i∂ jE
=⇒ Conformal Newtonian gauge

ds2 = a2(η) [(1+ 2Φ )dη2− (1+2Ψ)dx2 ]Longitudinal part of perturbed {i j} Einstein equation:

Ψ =−Φ, for ideal �uid only.The only gravitational potential Φ.



Compliated ompositionIndependent omponents

λ = photons, baryons, dark matter, neutrinosCoupled via ommon gravitational potential ΦTo simplify:disregard neutrinos (sometimes possible to inlude them intoradiation omponent)Treat baryons and photons as single �uid before reombination(tight oupling approximation).

NB: Life beomes tu� beyond these approximations!Write and solve Boltzmann equations for partile distributionfuntions.



Complete set of equations in the ideal �uid approximation,onformal Newtonian gaugeEquations for bakgroundEinstein equations:

a′2

a4 =
8π
3

G ∑
λ

ρλ

2
a′′

a3 −
a′2

a4 =−8πG ∑
λ

pλ

Covariant energy onservation for eah omponent,

∇σ T σ µ = 0, µ = 0

ρ ′λ =−3
a′

a
(ρλ + pλ )NB: Dependene only on η =⇒ ordinary di�. eqs.



Perturbed Einstein equations

k2Φ+3
a′

a
Φ′+3

a′2

a2 Φ =−4πGa2 ·∑
λ

δρλ ,

Φ′+
a′

a
Φ =−4πGa2 ·∑

λ
[(ρ + p)v]λ ,

Φ′′+3
a′

a
Φ′+

(

2
a′′

a
− a′2

a2

)

Φ = 4πGa2 ·∑
λ

δ pλ

Covariant energy-momentum onservation for perturbations ineah omponent (ontinuity equation and Euler equation inexpansing Universe; reall vi = ∂iv)
δρ ′λ +3

a′

a
(δρλ +δ pλ )− (ρλ + pλ )(k

2vλ +3Φ′) = 0 ,

[(ρλ + pλ )vλ ]
′+4

a′

a
(ρλ + pλ )vλ +δ pλ +(ρλ + pλ )Φ = 0



NB: � system of linear ordinary di�. eqs. for given k;� more equations than unknowns, not all equationsindependent (beause of gauge invariane of original system)� Additionally, need equation of state for eah omponent,
pλ = pλ (ρλ )In partiular

δ pλ
δρλ

= u2
s

us = sound veloity in omponent λ .



First glimpse:perturbations in dominant omponentRadiation at radiation domination; dark matter at matterdomination (in approximation ρDM ≫ ρB).Forget about other omponents =⇒ single omponent Universewith ρ , p; δρ , δ p, v, ΦSet p = u2
s ρ (not always possible), δ p = u2

s δρCombine perturbed Einstein eqs.
k2Φ+3

a′

a
Φ′+3

a′2

a2 Φ =−4πGa2 ·δρ ,

Φ′′+3
a′

a
Φ′+

(

2
a′′

a
− a′2

a2

)

Φ = 4πGa2 ·δ p = 4πGa2u2
s δρ

with eqs. for bakground



Result

Φ′′+3
a′

a
(1+u2

s )Φ
′+u2

s k2Φ = 0Perturbations in radiation at RD stage: us = 1/
√

3, a = onst ·ηSuperhorizon regime (early times): again onstant anddeaying modes,

Φ = Φi = onst and Φ ∝ η−3 ∝ a−3Forbid deaying mode. Then from Einstein eqn.

δrad ≡
δρrad

ρrad
=−2Φi

also onstant in superhorizon regime.Without deaying mode initially, solution unique,expressed through J3/2(kusη).



After horizon entry (assuming this happens at RD stage)
Φ =−3Φi

cos(kusη)
(kusη)2Phase is uniquely determined by initial absene of deaying mode.These are aousti osillations. Einstein eq. in subhorizon regime

k2

a2Φ =−4πG ·δρ ⇐⇒ �∆� Φ = 4πG δρ , Poisson eq.

ρ ∝ H2 = (aη)−2 =⇒

δrad ≡
δρrad

ρrad
= 6Φi cos(kusη)

Aousti osillations with time-independent amplitude and wellde�ned phase.NB: Osillations in subhorizon regime an be obtained also instandard way, from energy-momentum onservation eqs. with Φ→ 0.



Perturbations in dark matter in matter dominated Universe(negleting baryons); us = 0, a = onst ·η2:
Φ′′+3

a′

a
Φ′ = Φ′′+

6
η

Φ′ = 0

Solutions Φ = onst and Φ ∝ 1/η5. Constant solution relevantat late times.Again use Poisson eqn.,
k2

a2Φ =−4πG ·δρ =−4πGρ
δρ
ρbut now with ρ ∝ a−3. Find at matter domination

δDM ≡
δρDM

ρDM
∝ a(η)

Gravitational instability in matter dominated Universe.



To summarize:At early times at the hot stage, perturbations are insuperhorizon regime, p≪ H. Assuming that the Universe wasnot strongly inhomogeneous in the beginning of hot Big Bangepoh, there is onstant mode only in this regime.NB: Long modes were still in superhorizon regime atreombination/last sattering epoh. They determine low lregion of CMB angular spetrum.Assuming that perturbations were there before they enteredhorizon, density perturbations of shorter wavelengths inbaryon-photon omponent experiene aousti osillations afterhorizon entry with well de�ned phase
δrad ≡

δρrad

ρrad
= 6Φi cos(kusη)

These osillations ontinue to reombination epoh, and in theend give rise to osillations in CMB angular spetrum.



These assumptions would not be valid if density perturbationswere generated at hot stage by some ausal mehanism (e.g.,tologial defets). That mehanism ould only work inside thehorizon, i.e., no perturbations would exist before horizon entry.Phases of aousti osillations would be random in that ase,this would yield non-osillatory CMB angular spetrum. Suh asenario is ruled out, sine there are osillations in CMBangular spetrum.Perturbations in dark matter (and in baryons afterreombination) grow as
δDM ≡

δρDM

ρDM
∝ a(η)

They eventually beome large, δDM ∼ 1 (and δB = δDM soonafter reombination), and form struture.In linear regime, their gravitational potential istime-independent,
Φ = onst .



NB: Due to e�et of dark energy, growth of δM has slowed downreently, and potential Φ started to derease. This applies to largewavelengths, whih are in linear regime (or have beome non-linearonly reently).Way to measure ΩΛ Fig.

Tensor perturbations, if any, deay as a−1(η) after horizonentry. They are most important for CMB at fairly low l.



Cluster ounting
Vikhlinin et.al. '2008



Outline of leture 2, part 2Initial onditionsAdiabati mode in superhorizon regimeEntropy (isourvature) modes

Dark matter at radiation dominationBaryons and photons at matter domination beforereombinationSummary of adiabati perturbationsSilk dampingBaryon aousti osillationsE�et of perturbations on CMB: general formulae



Initial onditionsFrom now on: assume that perturbations were superhorizon andthat there was no deaying mode.O� hand: various kinds of initial onditions for multi-omponentosmi medium, set up deep in superhorizon regimeAdiabati perturbations = perturbations in energy densitywith onstant in spae omposition
nDM

s
=

nB

s
= onst in spae

(similarly for neutrinos).In this ase nDM = onst ·T 3, and ρDM = mDMnDM, hene

δρDM

ρDM
≡ δDM = 3

δT
Twhile ρrad ∝ T 4 and therefore δρrad

ρrad
≡ δrad = 4δT

T



Integral of motion in superhorizon regime, kη → 0:Continuity equation with k = 0:

δρ ′λ +3
a′

a
(δρλ +δ pλ )−3(ρλ + pλ )Φ′ = 0

reall ρ ′λ =−3a′
a (ρλ + pλ ) and use p′λ/ρ ′λ = δ pλ/δρλ = u2

s to obtain

ζλ =−Φ+
δρλ

3(ρλ + pλ )
= onst in time

NB: this has been generalized beyond ideal �uid S.Weinberg' 2003Adiabati perturbation:
ζDM = ζB = ζγ = ζν ≡ ζThe only initial ondition for given k.Another notation: R = ζ +O(kη) in superhorizon regime.



All other quantities in superhorizon regime are expressed through ζ .Expressions slightly di�erent for RD and MD epohs.At radiation domination δrad ≡ δρrad/ρrad =−2Φi and prad = ρrad/3.Use

ζ = ζrad =−Φ+
1
4

δradto get

Φi =−
2
3

ζ =⇒ δrad =
4
3

ζ , δDM = δB = ζ

At matter domination we have instead δM =−2Φ (again fromEinstein eq. in superhorizon regime), and
ζ = ζDM =−Φ+

1
3

δDMhene

Φ =−3
5

ζ =⇒ δrad =
8
5

ζ , δDM = δB =
6
5

ζ



Isourvature (entropy) modes. E.g. dark matter entropy mode:No perturbation in energy density, only in omposition, nDM/svaries in spaeDeep at radiation domination this means that δρrad = 0,
δρDM 6= 0, or

SDM ≡ ζDM =
δ (nDM/s)

nDM/s
6= 0 , ζB = ζγ = ζν = 0

Also, Φi = 0 deep at RD.Similarly for baryon entropy mode.



Generally speaking, initial ondition is a linear ombination ofadiabati and entropy modes (plus neutrino isourvature modes oftwo types, but unlikely on physial grounds).If dark matter and baryon asymmetry were generated at hot stage,adiabati mode only. But it is up to experiment to deide.Existing data: onsistent with adiabati mode only.DM isourvature (entropy) mode onstrained
S 2

DM

ζ 2 < 0.07

(this is to be understood as ratio of power spetra, see below forde�ntion of power spetrum).Constraint on baryon entropy mode worse by a fator

(ΩDM/ΩB)
2∼ 20.



What does dark matter do at radiation domination?Use onservation equations for dark matter, with gravitationalpotential generated by radiation. These an be written as next slide
δ ′DM− k2vDM = 3Φ′

v′DM +
1
η

vDM =−Φ

Solution to homogeneous equation (Φ = 0):
vDM =

c1

η
, δDM = c1k2 logη + c2CDM isourvature mode: Φ = 0 at radiation domination =⇒

c1 = 0 (no mode growing towards η → 0 !) =⇒ δDM = onst intimeAdiabati mode: Φ 6= 0, produed by δrad , but Φ deays as η−2after horizon entry =⇒ gives kik to dark matter;

δDM ∝ logη after horizon entry.



Another form of onservation equations
δ ′λ +3

a′

a
(u2

s,λ −wλ )δλ − (1+wλ )k
2vλ= 3(1+wλ )Φ′

[(1+wλ )vλ ]
′+

a′

a
(1−3wλ )(1+wλ )vλ +u2

s,λ δλ=−(1+wλ )Φwhere

wλ=
pλ
ρλ

= barotropi index
u2

s,λ
=

δ pλ
δρλ

= sound veloity squared



Adiabati mode: initial ondition for dark matter perturbationsright after equality epoh (short wavelengths, enter horizon at RD,
kηeq≫ 1)

δDM = 9ζ log(0.15kηeq)NB: enhaned both logarithmially and numerially ompared toinitial δDM = ζ . Just right for struture formation.After equality epoh, δDM grow as a(η), starting from this value. Φstays onstant in time. Use Poisson equation and Friedmann eqs. toget at equality and later (using H2
eq =

1
2

8π
3 GρDM)

ΦDM =−
a2

eq

k2 ·4πGρDMδDM =−27
4

ζ
H2

eqa2
eq

k2 log(0.15kηeq)NB: Sign important for CMB.NB: Φ deays as funtion of k.Smaller spatial sales enter horizon earlier =⇒ have more time forlog growth =⇒ smaller strutures get formed earlier.



Growth of perturbations (linear regime)

tΛtrecteq t

Φ

δB

δDM

δγ

Radiation domination Matter domination Λ domination



What does baryon-photon omponent do at matter domination (butbefore reombination)?Aousti osillations ontinue,

δγ = 6Φi cos

(

∫ η

0
kus dη

)

=−4ζ cos

(

∫ η

0
kus dη

)

NB: us 6= 1/
√

3 beause of baryons. Prefator atually also gets smallorretion.Density ontrast in baryons
δB =

3
4

δγsine

δρB

ρB
= 3

δT
T

,
δργ

ργ
= 4

δT
T



Need also veloity. Take ontinuity equation and apply to photon (orbaryon) omponent =⇒ in absense of gravitational potential (hasdeayed away)

kvγB =
3
4k

δ ′γ = 3usζ sin

(

∫ η

0
kus dη

)

New e�et:Just before reombination: matter domination. There is gravitationalpotential ΦDM due to dark matter. Photons and baryons feel it.Euler equation for baryon-photon omponent:
[

(ργB + pγ)vγB
]′
+4

a′

a
(ργB + pγ)vγB +δ pγ +(ργB + pγ)ΦDM = 0Partiular solution for time-indpendent ΦDM: vγB = 0 and

δ pγ =−(ργ +ρB + pγ)ΦDM



Reall pγ = ργ/3, δ pγ = δργ/3 and get

δγ ≡
δργ

ργ
=−4(1+RB)ΦDM

where

RB =
3ρB

4ργ
= 0.48 at reombinationNB: protons only, ρB = 0.75nBtot mp: helium is neutral atreombination of hydrogen

RB is the parameter diretly measured by CMB observations =⇒determination of ΩBh2.



Adiabati perturbations at reombination: summaryLong modes, still superhorizon at reombination:
Φ =−3

5
ζ δγ =

8
5

ζShort modes, enter sound horizon at radiation domination:Perturbation in photon energy density/loal temperature

δγ ≡
δργ

ργ
= 4

(

δT
T

)

loc
≃−4ζ cos

(

∫ ηr

0
kus dη

)

−4(1+RB)ΦDM

Veloity

kvγB ≃ 3usζ sin

(

∫ η

0
kus dη

)

Gravitational potential (produed by dark matter)

ΦDM ≃−
27
4

ζ
H2

eqa2
eq

k2 log(0.15kηeq)



Intermediate modes, enter horizon between equality andreombination: qualitatively similar behavior to short modes



Properties of dark matter isourvature perturbations entirelydi�erent (baryon and DM isourvature perturbations are in fat verysimilar)
No initial perturbations in baryon-photon omponent.Aousti osillations triggered by gravitational potential ofdark matter. Initial ondition δγB = 0 =⇒ osillatory part

δγ = SDM ·A(k)sin

(

∫ η

0
kus dη

)

Phase di�ers by π/2.Short wavelengths enter horizon when ρDM small ompared toradiation =⇒ osillations suppressed at short sales,

A(k) ∝ k−1No log enhanement of δDM and ΦDM (not very important).



Shorter wavelengths: Silk dampingBeyond ideal �uid/tight oupling approximationPhoton mean free path λγ is �nite =⇒ photons di�use away =⇒aousti osillations get smeared out.Di�usion length in Hubble time

lS ∼ λγ
√

Ncoll

Ncoll ∼ H−1/τγ = H−1/λγ � number of photon ollisions witheletrons in Hubble time H−1 =⇒

lS ∼
√

λγH−1∼
√

(σT ne)−1H−1

σT = 0.67·10−24 m2, Thomson ross setion;

ne = 0.75
ρB

mp
= 8·10−6ΩBh2(1+ z)3 m−3

≃ 230 m−3 just before reombination



This gives for omoving sale

(1+ zr)lS ∼ 20 MpMore aurate analysis (beyond ideal �uid) gives
kS

a0
≃ 0.1 Mp−1 ,

and osillatory part of δγ

δγ ,osc ≃−4ζe− k2

k2
S cos

(

∫ ηr

0
kus dη

)

same e�et for veloity.



Baryon aousti osillationsBefore reombination, baryons osillate in time together withphotons.Immediately after reombination, osillations in time freeze out (nopressure =⇒ no osillations = aousti waves) at
δB =

3
4

δγ ≃−3ζe− k2

k2
S cos

(

∫ ηr

0
kus dη

)

These are osillations in momentum k.Furthermore, just before reombination baryon-photon omponenthas non-zero veloity
kvγB = 3usζe− k2

k2
S sin

(

∫ ηr

0
kus dη

)

These are initial onditions for evolution after reombination.



Soon after reombination baryons and dark matter equalize,
δB = δDM (baryons fall into potential wells produed by dark matter,and vie versa)Hene, the total matter density some time after reombination is alinear ombination of smooth and osillating funtions of momentum(solve onservation eqs. for baryons and dark matter; grav. potential

Φ is produed by both and obeys Poisson eqn.)
δCDM = δB =

a(η)
a(ηr)

[

ΩCDM

ΩM
δCDM(ηr)+

ΩB

ΩM

(

3
5

δB(ηr)+
kηr

5
kvB(ηr)

)]

where ΩM = ΩCDM +ΩB.Osillating part: small, sine ΩB is small, while δCDM is enhaned.Yet observed in power spetrum of galaxy distribution. Fig.NB: δDM, δB and vB are all proportional to one and the same ζ =⇒interferene bewtween smooth and osillating partsNB: Silk damping at k > 0.1 Mp−1



BAO in power spetrum
Perival et. al. '2007



Interpretation: If a region is overdense, dark matter stays there,baryons and photons move away as sound wave =⇒ orrelation ofmass densities at oordinate distane

rs =

∫ ηr

0
us dη

sound horizon at reombination. Fig.Comoving size

a0rs ≃ 155MpWell de�ned absolute length sale, standard ruler.In priniple, an measure angle at whih this sale is seen at di�erent

z (angular diameter distane, ∆θ = a0rs/Da(z) = rs/(η0−η(z))), andHubble parameter at di�etent z =⇒ expansion history and geometryof the Universe. In pratie, a ombination of Da(z) and H(z).

rs slightly depends on ΩM and ΩB, sine a0dη = H−1dz depends on ΩM, and

u2
s =

δ pγ

δργ +δρB
=

(1/3)ργ δγ

ργ δγ +ρB
3
4δγ

=
1

3(1+RB(η))But RB is well measured, and dependene on ΩM is weak.



BAO in orrelation funtion

NB: h−1 = (0.7)−1 = 1.43 Eisenstein et.al., SDSS '2005



E�et of perturbations on CMB: general formulaPropagation of a photon in metri (linear order in perturbations)
ds2 = (ηµν +hµν)dxµdxν

(sale fator a(η) ⇐⇒ overall redshift ⇐⇒ onformal invariane ofMaxwell's ation =⇒ forget).Geodesi equation

dPµ

dλ
+Γµ

νσ PνPσ = 0

Pµ = dxµ/dλ , λ = a�ne parameter. Use η as a parameter instead(time along world line); dη/dλ = P0 =⇒

dPµ

dη
+Γµ

νσ
Pν

P0

Pσ

P0 = 0

Take µ = 0 =⇒ evolution of photon energy.



Salar perturbations, onformal Newtonian gauge
ds2 = a2(η) [(1+ 2Φ )dη2− (1+2Ψ)dx2 ]hene

dP0

dη
=
(

Φ′−Ψ′
)

P0−2
(

Φ′+n∇Φ
)

P0

where n = P/P0 is unit vetor along photon trajetory.Last term = total derivative along trajetory =⇒

P0(ηa)−P0 (ηe)

P0 =

∫ ηa

ηe

(

Φ′−Ψ′
)

dη +2Φ(ηe)

ηe, ηa: times of emission and absorption; ignore Φ(ηa), as it givesoverall red/blueshift, independent on photon arrival diretion.



Now, let Ω be photon energy in loally Lorentz rest frame of osmiplasma at photon emission. Then

Ω = uµPµ

uµ = 4-veloity of plasma. In loally Lorentz rest frame
uµ = (1,0,0,0), while in osmi frame

uµ = (1−Φ,vi)(from gµνuµuν = (ηµν +hµν)uµuν = 1) =⇒
uµ = (1+Φ,−v)and

Ω = [1+Φ(ηe)−nv (ηe)]P
0(ηe)Finally, Ω ∝ T̄ +(δT )loc = T̄ (1+δγ/4).

Collet all terms, set ηe = ηr and get



δT
T

(nobs,η0) =
1
4

δγ +Φ Sahs�Wolfe
−nobsv Doppler
+
∫ η0

ηr

(

Φ′−Ψ′
)

dη Integrated SW
nobs =−n: diretion in the sky;All quantities in the right hand side taken at photon emissionposition x = nobs(η0−ηe), integral runs along photon world line.Key formula for CMB temperature anisotropy.Likewise, e�et of tensor perturbations (ISW only)

δT
T

(nobs,η0) =
1
2

∫ η0

ηr

dη ni (h
TT
i j )′ n j



Outline of leture 3, part 2

CMB temperature anisotropy: preliminariesWhat do we want to know � to zeroth order?Understanding CMB temperature spetrumSmall l, long waves.Aousti peaksHow tensor modes and entropy modes would show upExamples of sensitivity to osmologial parametersCMB polarizationConlusion



CMB temperature anisotropy
WMAP

T = 2.726◦K, δT
T
∼ 10−4−10−5



Deompose temperature �utuation in spherial harmonis(starting from l = 2; dipole ⇐⇒ Earth's motion)
δT (θ ,ϕ) = ∑

l,m

almYlm(θ ,ϕ)

Large l ⇐⇒ small angular salesWorking hypothesis: temperature �utuations = isotropiGaussian random �eld =⇒ alm: Gaussian random variables,

〈alma∗l′m′〉=Clmδll′δmm′Average over ensemble of Universes like ours.Isotropy: Clm =Cl independent of mTemperature �utuation
〈δT 2(n)〉= ∑

l

2l +1
4π

Cl ≈
∫

dl
l

l(l+1)
2π

Cl



CMB anisotropy spetrum



NB: Note funny sale on horizontal axis

NB: δT ∝ primordial salar perturbations (and tensor, if any) ⇐⇒hypothesize that ζ is isotropi Gaussian random �eld (hTT
i j also, ifany).In general, δT inherit orrelation properties of ζ ⇐⇒ searh fornon-Gaussianities, statistial anisotropy, et.

NB: Cosmi variane: we observe only one Universe.
2l+1 measurements of alm for given l =⇒ small l ⇔ large intrinsiunertainly,

∆Cl

Cl
=

1
√

l +1/2No ure. Fig.



Dl =
l(l+1)

2π Cl



What do we want to know � to zeroth order?I. Properties of primordial perturbations.Adiabati salar perturbationsAssuming isotropy and Gaussianity (Wik theorem fororrelation funtions)

〈ζ (x)ζ (x′)〉=
∫

d3k
4πk3eik(x−x′)

Pζ (k)

Pζ (k) = power spetrum. Parametrization
Pζ (k)≡ ∆2

ζ (k)≡ ∆2
R(k) = As

(

k
k0

)

ns−1

As = ∆2
R
(k0) = salar amplitude;

ns = salar spetral index (for historial reason); ns−1 =salar tilt;
k0 = �duial momentum (WMAP hoie: k0/a0 = 0.002Mp−1(NB: usual hoie a0 = 1).



NB: ns lose to 1. WMAP: ns = 0.963±0.012� 68% C.L.Also: running spetral index ns(k) = ns(k0)+
dns

d logk · log k
k0

.NB: �utuation

〈ζ 2(x)〉=
∫ ∞

0

dk
k

Pζ (k)

ns = 1⇐⇒ Flat (Harrison�Zeldovih) spetrum.Similarly for tensor modes:
〈h(A)(x)h(B)(x′)〉= 1

2
δ AB

∫

d3k
4πk3eik(x−x′)

PT (k)

PT (k) = AT

(

k
k0

)

nT

Tensor-to-salar ratio r = AT/As.Admixture of isourvature (entropy) modes.



II. Properties of the late Universe:

H0, Ω's, dark matter equation of state, spatial urvature
Ωk = 1/(a0H0)

2Also: optial depth due to re-ionization, i.e., zrei ; neutrino mass.



Understanding CMB temperature angular spetrum
δT
T

(n,η0) =

(

1
4

δγ +Φ
)

−nv+
∫ η0

ηr

(

Φ′−Ψ′
)

dηSahs-Wolfe Doppler Integrated SW
n = diretion in the sky, all quantities in the right hand side takenat photon emission position x = n(η0−ηr), integral runs alongphoton world line.Begin with Sahs�Wolfe e�et (set η0−ηr = η0)

δT
T

(n,η0) =

∫

d3k eiknη0ϕSW (k) , ϕSW (k)≡ 1
4

δγ(k)+Φ(k)Expand in spherial harmonis in n. Make use of the fat that

ϕSW (k) is random �eld with
〈ϕSW (k)ϕ∗SW (k′)〉= δ (k−k′)

1
4πk3PSW (k)

Calulate Cl =
1

2l+1 ∑m〈alma∗lm〉.



Outome

Cl/T 2
0 = 4π

∫ ∞

0

dk
k

PSW (k) j2l (kη0)where jl is spherial Bessel funtion. Next slide for simple alulationProperties:

jl(kη0) almost vanishes at kη0 < l (for l & 5).Interpretation: expansion in Ylm on a sphere of radius

η0 ⇐⇒ Fourier expansion in plane, normal to line of sight,with 2d momentum q≃ l/η0 (f. Laplaians q2 and

l(l+1)/η2
0). Perturbation ontributes, if its momentum is

k = (q,kT ). Hene, k2 > q2≃ l2/η2
0 .

jl(kη0) deays as (kη0)
−1 at kη0≫ l.Corollary: Most relevant for multipole l are perturbations ofmomenta k ∼ l/η0.



Trik

〈δT
T

(n)
δT
T

(n′)〉=
∫

d3k
4πk3PSW (k) eiknη0 e−ikn′η0Perform alulation for given k. Its ontribution to Cl is independentof the hoie of oordinate frame on the sphere =⇒ hoose framewith k along 3d axis. Theneiknη0 = eikη0 cosθ =∑

l

il(2l+1)Pl(cosθ ) jl(kη0)=∑
l

il
√

4π(2l+1)Yl0 jl(kη0)

and similarly for e−ikn′η0. Thus, the only non-vanishing ontributionto Cl omes from m = 0 in this frame, and
Cl/T 2

0 =
1

2l+1 ∑
m
〈alma∗lm〉=

1
2l +1

∫

d3k
4πk3PSW (k) ·4π(2l+1)

This trik � alulation of Cl in di�erent frames for di�erent k � ispartiularly onvenient for alulating e�et of tensor modes.



Small l ⇐⇒ long wavesStill superhorizon at reombination:

Φ =−3
5

ζ δγ =
8
5

ζ v = 0

Sahs�Wolfe only (ISW small, see below).
ϕSW =

1
4

δγ +Φ =−1
5

ζThus,

Cl/T 2
0 = 4π

∫ ∞

0

dk
k

1
25

Pζ (k) j2l (kη0) =
2π
25

1
l(l+1)

As

(

l
l0

)ns−1

Dl =
l(l+1)

2π Cl is independent of l for ns = 1. Almost no dependeneon osmologial parameters.Validity: k ∼ l/η0≪ η−1
r =⇒ l≪ η0/ηr = 50



Dl =
l(l+1)

2π Cl



Exersise:Take COBE �quadrupole� (in fat, inferred by COBE from severallow multipoles), de�ned as

Q2 =
5

4π
C2and aording to COBE

Q = 18 µKCalulate salar amplitude As for ns = 1. Compare with WMAPresult

As ≡ ∆2
R = (2.44±0.09) ·10−9[was Nobel Committee right about COBE?℄



Integrated Sahs�Wolfe e�et

δT
T

(n)ISW =

∫ η0

ηr

(

Φ′−Ψ′
)

dη

Φ =−Ψ time-independent at matter domination. =⇒ ISW relevantright after reombination (matter domination not exat, early ISW)and reently (e�et of dark energy, late ISW).Early ISW suppressed by

ρrad/ρM (η > ηr)< (1+ zr)/(1+ zeq)∼ 0.3 in amplitude.Relatively large for l ∼ (2−4)η0/ηr = 100−200 , where SW isquite large.Late ISW e�et works for largest angular sales, butnumerially small sine dark energy has not yet diluted Φsubstantially.There must be orrelations of temperature with largestrutures, due to ISW.Deteted. In priniple, a tool for measuring expansion rate =⇒properties of dark energy. Not at this stage yet.



Calulated angular spetrum. Adiabati perturbations.

This and other �gs.: see Challinor '2004



Aousti peaksSometimes alled Doppler peaks � wrong name.Major player: Sahs�Wolfe e�et. Doppler e�et numerially smaller,sine waves traveling normal to line of sight do not ontribute.Short and intermediate sales, l≫ 50:
ργ =−4A(k)ζ cos

(

∫ ηr

0
kus dη

)

−4(1+RB)Φ

Φ = ΦDM =−B(k)
k2 ζ

with A(k)≃ 1, B(k)≃ 27
4 H2

eqa2
eq log(0.15kηeq) at large kSahs�Wolfe term

ϕSW =
1
4

δγ +Φ = oslliatory part − RB ΦDMIf not for RB ≡ 3ρB/(4ργ), non-osillating term with ΦDM wouldanel out.



Physis: before reombination, temperature is the same everywhere,even though loal temperature is higher in potential well. If not forbaryons, photons esaped from the well would have the sametemperature as away from the well.Mismath: in thermal equilibrium are photons and baryons, but onlyphotons move out of potential well.



Anyway,

ϕSW = ζ ·
(

−A(k)coskrs +
B(k)
k2 RB

)

and

Cl/T 2
0 = 4π

∫ ∞

0

dk
k

Pζ (k)

∣

∣

∣

∣

−A(k)coskrs +
B(k)
k2 RB

∣

∣

∣

∣

2

j2l (kη0)

Corrspondene∗ k↔ l/η0 ⇐⇒ osillations in k ←→ osillations in lMaxima at krs ≃ πn =⇒ l ≃ πnη0/rs.Reall a0rs ≃ 155Mp, a0η0≃ 14 000Mp =⇒ maxima at l ≃ 290n(all sligtly shifted to the left). Fig.Interferene between osillating and non-osillating terms:onstrutive for odd n; destrutive for even n =⇒ odd peaks morepronouned.����������������������

∗Even more so for osillating part:
∫

dk cos(krs) j2l (kη0) is saturated very near k = l/η0; higher momenta get averaged out.





NB: Osillations get damped due to Silk e�et, damping fatore2k2/k2
s in amplitude squared =⇒ suppression for for k & ks/

√
2 =⇒

l & ls = ksη0/
√

2. Reall ks/a0≃ 0.1 Mp−1 =⇒ ls ≃ 1000.Overall deline due to B/k2.

What would tensor perturbations do?Reall that they deay as a−1(η) after horizon entry =⇒maximum e�et for k . 1/ηr, l < η0/ηr Fig.Di�ult to disriminate between tensor perturbations and redsalar tilt ns < 1. Fig.What would CDM entropy perturbations do?Grossly di�erent piture: sin(krs) instead of cos(krs),minima ←→ maxima.Rapid derease of amplitude at large k. Fig.



E�et of tensor perturbations



Salar tilt vs tensor power
WMAP



E�ets of adaiabati and entropy perturbations

adiabati perturbations entropy perturbations



Examples of sensitivity to osmologial parameters

Very sensitive to ΩB through RB = 3ρB/(4ργ). The larger ΩB,the stronger interferene e�et, enhanement of odd peaks andsuppression of even peaks. Fig.Peak positions very sensitive to spatial urvature: rs isstandard ruler at reombination, seen at di�erent angles inopen, �at and losed Universes.Some degeneray with ΩΛ that determines onformal lifetime

η0 =⇒ distane to surfae of last sattering. Fig.Degeneraies lifted by other data.Updated �t of parameters: see Partile Data Group.



E�et of baryons



E�et of urvature (left) and Λ



CMB polarizationPolarization in Thomson sattering:

dσ
dΩ

∝~εi ·~ε f

~εi , f = polarization vetors of inoming and outgoing photons.Photons with polarization normal to sattering plane satter atlarger ross setion than in-plane polarized photons.Unpolarized radiation oming to eletron before the very lastsattering from the right or left, is polarized in vertial diretionafter the very last sattering.Temperature anisotropy of radiation inident on eletron before thevery last sattering results in linear polarization of radiation we seetoday.This temperature anisotropy is generated similarly to δT we observenow, but loally, at time just preeding last sattering.



E-mode: hot (dashed) and old (solid) spot. B-mode



E- and B-modesPolarization tensor on elestial sphere

Pab =
〈EaEb− 1

2δab~E2〉
〈~E2〉

~E = eletri �eld, normal to line of sight, a,b = 1,2.Can be written in terms of salar PE and pseudosalar PB:

Pab(n) =−
(

∇a∇b−
1
2

δab

)

PE(n)− εc
(a∇b)∇c PB(n)

Repeat the story: deompose PE and PB in spherial harmonis,de�ne aE
lm, aB

lm and orrelation and ross-orrelation spetra:

〈aE
lmaE ∗

l′m′〉= δll′δmm′C
EE
l ,

〈aT
lmaE ∗

l′m′〉= δll′δmm′C
TE
l , et.



On symmetry grounds: do not expet EB and T B ross-orrelations.
EE and T E spetra measured (with rather large errors)

Point: salar perturbations produe only E-mode. Tensorperturbations produe both E- and B-modeSmall e�et: exists to the extent that photon experienesintegrated Sahs�Wolfe e�et when traveling betweenlast-before-last sattering to last sattering events (true also for

E-mode; re-ionization helps for very long waves).Suppression fator
λγ

λpert
∼ k∆η .

∆η
ηr
≃ 0.04 of δT

T

λγ = photon mean free path before the very last sattering(thikness of last sattering shell ∆η),

λpert = 2πa/k = wavelength of perturbation at reombination.Yet the most promising way of deteting tensor perturbations



To onlude:

CMB enodes a lot of information about late Universe andprimordial perturbationsPrimordial perturbations is a window to pre-hot osmologialepoh.No doubt that this epoh existed: CMB properties an only beexplained by assuming that perturbations were built in at thevery beginning of the hot stage.Still we know only very basi fats about primordialperturbations.



More to omePreise determination of salar tilt (Plank)Primordial tensor perturbations (maybe Plank)Non-Gaussianity (maybe already observed, wath outPlank)Statistial anisotropy (maybe already observed, wath outPlank)Isourvature perturbations (will be great surprize)

Hopefully, not only limits....
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