Introduction to Theoretical Particle Physics

Lecture: Prof. Dr. K. Melnikov
Exercises: Dr. C. Brønnum-Hansen, Dr. M. Jaquier

Exercise Sheet 14

Issue: 24.01. - Submission: 31.01. @ 12:00 Uhr - Discussion: 04.02 and 05.02.

Exercise 28: Polarisation sum

4 points

The outer product of the polarisation states of vector particles is a quantity which appears in many calculations. For a massive on-shell vector particle, the polarisation vectors $\epsilon_{i}^{\mu}(p)$ span the space transverse to the momentum of the particle ($p_{\mu} \epsilon_{i}^{\mu}=0$) and are conventionally normalised as $\epsilon_{i}^{2}=-1$. For a particle in its rest frame, a simple choice is

$$
\begin{align*}
\epsilon_{1}^{\mu} & =(0,1,0,0) \\
\epsilon_{2}^{\mu} & =(0,0,1,0) \\
\epsilon_{3}^{\mu} & =(0,0,0,1) . \tag{28.1}
\end{align*}
$$

(a) Verify that the polarisation vectors given above satisfy the identity

$$
\begin{equation*}
\sum_{\lambda=1}^{3} \epsilon_{\lambda}^{\mu} \epsilon_{\lambda}^{\nu}=-g^{\mu \nu}+\frac{p^{\mu} p^{\nu}}{m^{2}} \tag{28.2}
\end{equation*}
$$

where $p^{\mu}=(m, 0,0,0)$.
(b) Argue from the general properties of a Lorentz boost that the form of the polarisation sum, Eq. (28.2), should be the same in all reference frames. Do the polarisation vectors satisfy all required properties in a boosted frame?
(c) Verify the statement of the previous subquestion explicitly by considering the vector particle of subquestion a) boosted in the z-direction, such that its momentum is given by $p^{\mu}=\left(E, 0,0, p_{z}\right)$. Write down suitable polarisation vectors and verify Eq. (28.2) again.

Exercise 29: Generating functional

In the lecture you have seen how Green's functions for a scalar field $\varphi(x)$ can be obtained in terms of functional derivatives of a functional $Z[J]$, defined as

$$
\begin{equation*}
Z[J]=\frac{\int \mathcal{D} \varphi e^{i S[\varphi, J]}}{\int \mathcal{D} \varphi e^{i S[\varphi, 0]}}, \tag{29.1}
\end{equation*}
$$

where $S[\varphi, J]$ is the action including a coupling to some external source $J(x)$,

$$
\begin{equation*}
S[\varphi, J]=\int \mathrm{d}^{4} x\left[\frac{1}{2}\left(\partial_{\mu} \varphi\right)^{2}-\frac{m^{2}}{2} \varphi^{2}-V(\varphi)+J \varphi\right] \tag{29.2}
\end{equation*}
$$

You have also seen how the field $\varphi(x)$ can be integrated out such that a functional of the sources only remains:

$$
\begin{equation*}
Z[J]=e^{i W[J]}=e^{i \frac{1}{2} \int \mathrm{~d}^{4} x \mathrm{~d}^{4} y J(x) D(x, y) J(y)}, \tag{29.3}
\end{equation*}
$$

where $D(x, y)$ is such that

$$
\begin{equation*}
\left(\partial_{x}^{2}+m^{2}\right) D(x, y)=\delta^{(4)}(x-y), \tag{29.4}
\end{equation*}
$$

and is being identified with the Feynman propagator, $D(x, y)=i D_{F}(x-y)$.
In this exercise, you will repeat the steps in the lecture to obtain a similar expression for the generating functional of a vector field $A_{\mu}(x)$. The action in the presence of an external current $J^{\mu}(x)$ is given as:

$$
\begin{equation*}
S[A, J]=\int \mathrm{d}^{4} x\left[-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{m^{2}}{2} A_{\mu} A^{\mu}+J_{\mu} A^{\mu}\right] \tag{29.5}
\end{equation*}
$$

We assume that the current J^{μ} is conserved, $\partial_{\mu} J^{\mu}=0$. Proceed along the following steps. Remember that the field A_{μ} and its derivatives are assumed to vanish at infinite space and time, such that boundary terms can be dropped when performing integration-by-parts.
(a) Show that the action $S[A, J]$ can be written as

$$
\begin{equation*}
S[A, J]=\int \mathrm{d}^{4} x\left[A_{\mu} \mathcal{O}^{\mu \nu} A_{\nu}+J_{\mu} A^{\mu}\right] \tag{29.6}
\end{equation*}
$$

and determine the operator $\mathcal{O}^{\mu \nu}$.
(b) We now shift the field,

$$
\begin{equation*}
A_{\mu}(x)=\bar{A}_{\mu}(x)+\chi_{\mu}(x), \tag{29.7}
\end{equation*}
$$

in order to make the action quadratic in the field. Perform the shift, Eq. (29.7) in the action $S[A, J]$. Collect all terms linear in the field \bar{A}_{μ} and write down a condition for χ_{μ} such that those terms vanish.
(c) Perform a Fourier transform and solve the condition you obtained in the previous subquestion in momentum space. You can do so by writing an ansatz

$$
\begin{equation*}
\tilde{\chi}_{\mu}(p)=\left(A(p) g_{\mu \nu}+B(p) p_{\mu} p_{\nu}\right) \tilde{J}^{\nu}(p), \tag{29.8}
\end{equation*}
$$

and determining the coefficients A and B. Fourier transform back into position space and write the solution as

$$
\begin{equation*}
\chi_{\mu}(x)=\int \mathrm{d}^{4} y D_{\mu \nu}(x, y) J^{\nu}(y) . \tag{29.9}
\end{equation*}
$$

https://www.ttp.kit.edu/courses/ws2019/ettp/start

The pole in $D_{\mu \nu}(x, y)$ can be regularised in a similar fashion to the Feynman propagator. Show that

$$
\begin{equation*}
D^{\mu \nu}(x, y)=i\left(-g^{\mu \nu}\right) D_{F}(x-y) \tag{29.10}
\end{equation*}
$$

where the Feynman propagator is given by

$$
\begin{equation*}
D_{F}(x-y)=\int \frac{\mathrm{d}^{4} p}{(2 \pi)^{4}} \frac{i e^{i p(x-y)}}{p^{2}-m^{2}+i 0} \tag{29.11}
\end{equation*}
$$

(d) We define the generating functional

$$
\begin{equation*}
Z[J]=\frac{\int \mathcal{D} A_{\mu} e^{i S[A, J]}}{\int \mathcal{D} A_{\mu} e^{i S[A, 0]}} \tag{29.12}
\end{equation*}
$$

Use the invariance of the measure $\mathcal{D} A_{\mu}$ under the shift, Eq. (29.7), and the properties of the solution $\chi_{\mu}(x)$ to show that the generating functional can be written as

$$
\begin{equation*}
Z[J]=e^{\frac{1}{2} \int \mathrm{~d}^{4} x \mathrm{~d}^{4} y J_{\mu}(x) D_{F}(x-y) J^{\mu}(y)} \tag{29.13}
\end{equation*}
$$

Note the different sign with respect to Eq. (29.3), which as explained in the lecture leads to a repulsive force between same charges.
In the lecture we saw how we could obtain time-ordered n-point functions in a scalar theory as functional derivatives of the generating functional with respect to the source, $J(x)$. In the vector field case the source carries a Lorentz index and hence the formula becomes

$$
\begin{equation*}
\left.\frac{\delta}{i \delta J_{\mu_{1}}\left(x_{1}\right)} \frac{\delta}{i \delta J_{\mu_{2}}\left(x_{2}\right)} \cdots \frac{\delta Z[J]}{i \delta J_{\mu_{n}}\left(x_{n}\right)}\right|_{J=0}=\langle 0| T A^{\mu_{1}}\left(x_{1}\right) A^{\mu_{2}}\left(x_{2}\right) \ldots . A^{\mu_{n}}\left(x_{n}\right)|0\rangle . \tag{29.14}
\end{equation*}
$$

The functional derivative is defined by

$$
\begin{equation*}
\frac{\delta J^{\mu}(x)}{\delta J^{\nu}(y)}=\delta_{\nu}^{\mu} \delta^{(4)}(x-y) \tag{29.15}
\end{equation*}
$$

(e) By explicit calculation, show that for $n=2$ the functional derivative in Eq. (29.14) yields the two-point function, $-g^{\mu_{1} \mu_{2}} D_{F}\left(x_{1}-x_{2}\right)$, when applied to the generating functional in Eq. (29.13).

