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Exercise 28: Polarisation sum 4 points

The outer product of the polarisation states of vector particles is a quantity which
appears in many calculations. For a massive on-shell vector particle, the polarisation
vectors εµi (p) span the space transverse to the momentum of the particle (pµε

µ
i = 0)

and are conventionally normalised as ε2i = −1. For a particle in its rest frame, a
simple choice is

εµ1 = (0, 1, 0, 0)

εµ2 = (0, 0, 1, 0)

εµ3 = (0, 0, 0, 1) . (28.1)

(a) Verify that the polarisation vectors given above satisfy the identity

3∑
λ=1

εµλε
ν
λ = −gµν +

pµpν

m2
, (28.2)

where pµ = (m, 0, 0, 0).

(b) Argue from the general properties of a Lorentz boost that the form of the
polarisation sum, Eq. (28.2), should be the same in all reference frames. Do
the polarisation vectors satisfy all required properties in a boosted frame?

(c) Verify the statement of the previous subquestion explicitly by considering
the vector particle of subquestion a) boosted in the z-direction, such that its
momentum is given by pµ = (E, 0, 0, pz). Write down suitable polarisation
vectors and verify Eq. (28.2) again.

Exercise 29: Generating functional 8 points

In the lecture you have seen how Green’s functions for a scalar field ϕ(x) can be
obtained in terms of functional derivatives of a functional Z[J ], defined as

Z[J ] =

∫
DϕeiS[ϕ,J ]∫
DϕeiS[ϕ,0]

, (29.1)
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where S[ϕ, J ] is the action including a coupling to some external source J(x),

S[ϕ, J ] =

∫
d4x

[
1

2
(∂µϕ)2 − m2

2
ϕ2 − V (ϕ) + Jϕ

]
. (29.2)

You have also seen how the field ϕ(x) can be integrated out such that a functional
of the sources only remains:

Z[J ] = eiW [J ] = ei
1
2

∫
d4xd4yJ(x)D(x,y)J(y), (29.3)

where D(x, y) is such that

(∂2x +m2)D(x, y) = δ(4)(x− y) , (29.4)

and is being identified with the Feynman propagator, D(x, y) = iDF (x− y).

In this exercise, you will repeat the steps in the lecture to obtain a similar expression
for the generating functional of a vector field Aµ(x). The action in the presence of
an external current Jµ(x) is given as:

S[A, J ] =

∫
d4x

[
−1

4
FµνF

µν +
m2

2
AµA

µ + JµA
µ

]
. (29.5)

We assume that the current Jµ is conserved, ∂µJ
µ=0. Proceed along the following

steps. Remember that the field Aµ and its derivatives are assumed to vanish at
infinite space and time, such that boundary terms can be dropped when performing
integration-by-parts.

(a) Show that the action S[A, J ] can be written as

S[A, J ] =

∫
d4x [AµOµνAν + JµA

µ] , (29.6)

and determine the operator Oµν .
(b) We now shift the field,

Aµ(x) = Āµ(x) + χµ(x) , (29.7)

in order to make the action quadratic in the field. Perform the shift,
Eq. (29.7) in the action S[A, J ]. Collect all terms linear in the field Āµ and
write down a condition for χµ such that those terms vanish.

(c) Perform a Fourier transform and solve the condition you obtained in the
previous subquestion in momentum space. You can do so by writing an
ansatz

χ̃µ(p) = (A(p)gµν +B(p)pµpν)J̃
ν(p) , (29.8)

and determining the coefficients A and B. Fourier transform back into
position space and write the solution as

χµ(x) =

∫
d4yDµν(x, y)Jν(y) . (29.9)
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The pole in Dµν(x, y) can be regularised in a similar fashion to the Feynman
propagator. Show that

Dµν(x, y) = i(−gµν)DF (x− y) , (29.10)

where the Feynman propagator is given by

DF (x− y) =

∫
d4p

(2π)4
ieip(x−y)

p2 −m2 + i0
. (29.11)

(d) We define the generating functional

Z[J ] =

∫
DAµeiS[A,J ]∫
DAµeiS[A,0]

. (29.12)

Use the invariance of the measure DAµ under the shift, Eq. (29.7), and the
properties of the solution χµ(x) to show that the generating functional can
be written as

Z[J ] = e
1
2

∫
d4xd4yJµ(x)DF (x−y)Jµ(y) . (29.13)

Note the different sign with respect to Eq. (29.3), which as explained in the
lecture leads to a repulsive force between same charges.

In the lecture we saw how we could obtain time-ordered n-point functions in a
scalar theory as functional derivatives of the generating functional with respect to
the source, J(x). In the vector field case the source carries a Lorentz index and
hence the formula becomes

δ

iδJµ1(x1)

δ

iδJµ2(x2)
. . .

δZ[J ]

iδJµn(xn)

∣∣∣∣
J=0

= 〈0|TAµ1(x1)Aµ2(x2)....Aµn(xn)|0〉 .

(29.14)
The functional derivative is defined by

δJµ(x)

δJν(y)
= δµν δ

(4)(x− y). (29.15)

(e) By explicit calculation, show that for n = 2 the functional derivative in
Eq. (29.14) yields the two-point function, −gµ1µ2DF (x1 − x2), when applied
to the generating functional in Eq. (29.13).
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