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Exercise 26: Massless propagator 5 points

In the lecture the Feynman propagator for a scalar particle has been introduced:

DF (x) =

∫
d4p

(2π)4
ie−ipµx

µ

p2 −m2 + iε
, (26.1)

where m is the mass of the particle. In this exercise we will consider the simpler
propagator with zero mass,

DF (x) =

∫
d4p

(2π)4
ie−ipµx

µ

p2 + iε
, (26.2)

and evaluate it explicitly. You can do this by taking the following steps.

(a) Write the time and space components in Eq. (26.2) explicitly, and perform
the integration over p0. The computation is very similar to exercise 7f on
sheet 3:

• Factorise the denominator in Eq. (26.2) to determine its single poles.
Remember that you can neglect O(ε2) terms, and that you are free to
rescale ε as long as you do not change its sign. Draw the location of
the poles on the complex p0 plane.

• Consider a closed integration contour which contains the real axis.
Distinguish the cases x0 > 0 and x0 < 0, and close the contour ap-
propriately in the upper or lower complex half-plane to ensure the
convergence of the integral.

• Compute the integral using the residue theorem. The integral over p0
should be proportional to

ie−i(|p|−iε)|x
0|

2(|p| − iε)
. (26.3)

At this point you may drop the iε. How would this result change if the
the sign of iε in eq. 26.2 changes?

(b) Use spherical coordinates to perform the remaining integral over the spatial
components ~p. The final integral over p = |~p| needs to be regularised by
adding a small imaginary part:∫ ∞

0

dpe−ipa →
∫ ∞
0

dpe−ip(a−iδ) (26.4)
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where δ is an infinitesimal quantity. If you haven’t dropped the iε from the
previous subquestion, you can verify that it cannot be used to regulate this
integral. Evaluate the integral and show that∫

d4p

(2π)4
ie−ipµx

µ

p2 + iε
∝ 1

xµxµ − iδ
. (26.5)

Exercise 27: Green’s function 6 points

A function G(x − y) is a Green’s function for the Klein-Gordon equation if it
satisfies the following equation

(∂2 +m2)G(x− y) = − iδ(4)(x− y) . (27.1)

(a) Show that the Feynman propagator

DF (x) = 〈0|T{ϕ(x)ϕ(0)}|0〉
= Θ(+t)〈0|ϕ(x)ϕ(0)|0〉+ Θ(−t)〈0|ϕ(0)ϕ(x)|0〉 (27.2)

satisfies Eq. (27.1).

One of the ingredients used in this exercise is the correlation function D(x− y) =
〈0|ϕ(x)ϕ(y)|0〉. Note that the time-ordering operator was dropped in this case,
contrary to the Feynman propagator.

(b) Show that

D(x− y) =

∫
d3~k

(2π)3
1

2ωk
e−iωk(x

0−y0)+i~k(~x−~y) , (27.3)

with ωk =
√
~k2 +m2.

During the lecture we defined the Fourier transform of the Feynman propagator,

DF (x− y) =

∫
d4p

(2π)4
D̃F (p)e−ipµ(x

µ−yµ) , (27.4)

with

D̃F (p) =
i

p2 −m2 + iε
. (27.5)

Let us now consider two other choices for Green’s functions, which differ from the
above by the small imaginary part in the denominator.

(c) Consider the function

DR(x− y) =

∫
d4p

(2π)4
D̃R(p)e−ipµ(x

µ−yµ) , (27.6)
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with

D̃R(p) =
i

p2 −m2 + 2p0iε
. (27.7)

Using the momentum representation defined in Eqs. (27.6) and (27.7), show
that it is a Green’s function of the Klein-Gordon equation, i.e. it satisfies
Eq. (27.1).
Show that in contrast to D̃F (p), D̃R(p) as a function of p0 has two poles
in the lower complex p0 plane. Perform the p0 integral using the residue
theorem and show that

DR(x− y) = Θ(x0 − y0)
(
D(x− y)−D(y − x)

)
. (27.8)

Note that the function vanishes for x0 < y0, hence it is called a retarded
Green’s function.

(d) Consider the function

DA(x− y) =

∫
d4p

(2π)4
D̃A(p)e−ipµ(x

µ−yµ) , (27.9)

with

D̃A(p) =
i

p2 −m2 − 2p0iε
. (27.10)

Similarly to the previous question, show that it is a Green’s function of the
Klein-Gordon equation and that

DA(x− y) = Θ(y0 − x0)
(
D(y − x)−D(x− y)

)
. (27.11)

In doing so, show that D̃A(p) has two poles in the upper complex p0 plane.
Note that the function vanishes for x0 < y0, hence it is called an advanced
Green’s function.
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