Introduction to Theoretical Particle Physics

Lecture: Prof. Dr. K. Melnikov
Exercises: Dr. C. Brønnum-Hansen, Dr. M. Jaquier

Exercise Sheet 13
Issue: 17.01. - Submission: 24.01. @ 12:00 Uhr - Discussion: 28.01. and 29.01

Exercise 26: Massless propagator

In the lecture the Feynman propagator for a scalar particle has been introduced:

$$
\begin{equation*}
D_{F}(x)=\int \frac{\mathrm{d}^{4} p}{(2 \pi)^{4}} \frac{i e^{-i p_{\mu} x^{\mu}}}{p^{2}-m^{2}+i \epsilon} \tag{26.1}
\end{equation*}
$$

where m is the mass of the particle. In this exercise we will consider the simpler propagator with zero mass,

$$
\begin{equation*}
D_{F}(x)=\int \frac{\mathrm{d}^{4} p}{(2 \pi)^{4}} \frac{i e^{-i p_{\mu} x^{\mu}}}{p^{2}+i \epsilon}, \tag{26.2}
\end{equation*}
$$

and evaluate it explicitly. You can do this by taking the following steps.
(a) Write the time and space components in Eq. (26.2) explicitly, and perform the integration over p_{0}. The computation is very similar to exercise 7 f on sheet 3:

- Factorise the denominator in Eq. (26.2) to determine its single poles. Remember that you can neglect $\mathcal{O}\left(\epsilon^{2}\right)$ terms, and that you are free to rescale ϵ as long as you do not change its sign. Draw the location of the poles on the complex p_{0} plane.
- Consider a closed integration contour which contains the real axis. Distinguish the cases $x^{0}>0$ and $x^{0}<0$, and close the contour appropriately in the upper or lower complex half-plane to ensure the convergence of the integral.
- Compute the integral using the residue theorem. The integral over p_{0} should be proportional to

$$
\begin{equation*}
\frac{i e^{-i(|p|-i \epsilon)\left|x^{0}\right|}}{2(|p|-i \epsilon)} . \tag{26.3}
\end{equation*}
$$

At this point you may drop the $i \epsilon$. How would this result change if the the sign of $i \epsilon$ in eq. 26.2 changes?
(b) Use spherical coordinates to perform the remaining integral over the spatial components \vec{p}. The final integral over $p=|\vec{p}|$ needs to be regularised by adding a small imaginary part:

$$
\begin{equation*}
\int_{0}^{\infty} \mathrm{d} p e^{-i p a} \rightarrow \int_{0}^{\infty} \mathrm{d} p e^{-i p(a-i \delta)} \tag{26.4}
\end{equation*}
$$

where δ is an infinitesimal quantity. If you haven't dropped the $i \epsilon$ from the previous subquestion, you can verify that it cannot be used to regulate this integral. Evaluate the integral and show that

$$
\begin{equation*}
\int \frac{\mathrm{d}^{4} p}{(2 \pi)^{4}} \frac{i e^{-i p_{\mu} x^{\mu}}}{p^{2}+i \epsilon} \propto \frac{1}{x_{\mu} x^{\mu}-i \delta} . \tag{26.5}
\end{equation*}
$$

Exercise 27: Green's function

A function $G(x-y)$ is a Green's function for the Klein-Gordon equation if it satisfies the following equation

$$
\begin{equation*}
\left(\partial^{2}+m^{2}\right) G(x-y)=-i \delta^{(4)}(x-y) . \tag{27.1}
\end{equation*}
$$

(a) Show that the Feynman propagator

$$
\begin{align*}
D_{F}(x) & =\langle 0| T\{\varphi(x) \varphi(0)\}|0\rangle \\
& =\Theta(+t)\langle 0| \varphi(x) \varphi(0)|0\rangle+\Theta(-t)\langle 0| \varphi(0) \varphi(x)|0\rangle \tag{27.2}
\end{align*}
$$

satisfies Eq. 27.1).
One of the ingredients used in this exercise is the correlation function $D(x-y)=$ $\langle 0| \varphi(x) \varphi(y)|0\rangle$. Note that the time-ordering operator was dropped in this case, contrary to the Feynman propagator.
(b) Show that

$$
\begin{equation*}
D(x-y)=\int \frac{d^{3} \vec{k}}{(2 \pi)^{3}} \frac{1}{2 \omega_{k}} e^{-i \omega_{k}\left(x^{0}-y^{0}\right)+i \vec{k}(\vec{x}-\vec{y})} \tag{27.3}
\end{equation*}
$$

with $\omega_{k}=\sqrt{\vec{k}^{2}+m^{2}}$.
During the lecture we defined the Fourier transform of the Feynman propagator,

$$
\begin{equation*}
D_{F}(x-y)=\int \frac{d^{4} p}{(2 \pi)^{4}} \tilde{D}_{F}(p) e^{-i p_{\mu}\left(x^{\mu}-y^{\mu}\right)} \tag{27.4}
\end{equation*}
$$

with

$$
\begin{equation*}
\tilde{D}_{F}(p)=\frac{i}{p^{2}-m^{2}+i \epsilon} . \tag{27.5}
\end{equation*}
$$

Let us now consider two other choices for Green's functions, which differ from the above by the small imaginary part in the denominator.
(c) Consider the function

$$
\begin{equation*}
D_{R}(x-y)=\int \frac{d^{4} p}{(2 \pi)^{4}} \tilde{D}_{R}(p) e^{-i p_{\mu}\left(x^{\mu}-y^{\mu}\right)} \tag{27.6}
\end{equation*}
$$

https://www.ttp.kit.edu/courses/ws2019/ettp/start
with

$$
\begin{equation*}
\tilde{D}_{R}(p)=\frac{i}{p^{2}-m^{2}+2 p_{0} i \epsilon} . \tag{27.7}
\end{equation*}
$$

Using the momentum representation defined in Eqs. (27.6) and (27.7), show that it is a Green's function of the Klein-Gordon equation, i.e. it satisfies Eq. (27.1).
Show that in contrast to $\tilde{D}_{F}(p), \tilde{D}_{R}(p)$ as a function of p_{0} has two poles in the lower complex p_{0} plane. Perform the p_{0} integral using the residue theorem and show that

$$
\begin{equation*}
D_{R}(x-y)=\Theta\left(x^{0}-y^{0}\right)(D(x-y)-D(y-x)) . \tag{27.8}
\end{equation*}
$$

Note that the function vanishes for $x^{0}<y^{0}$, hence it is called a retarded Green's function.
(d) Consider the function

$$
\begin{equation*}
D_{A}(x-y)=\int \frac{d^{4} p}{(2 \pi)^{4}} \tilde{D}_{A}(p) e^{-i p_{\mu}\left(x^{\mu}-y^{\mu}\right)} \tag{27.9}
\end{equation*}
$$

with

$$
\begin{equation*}
\tilde{D}_{A}(p)=\frac{i}{p^{2}-m^{2}-2 p_{0} i \epsilon} . \tag{27.10}
\end{equation*}
$$

Similarly to the previous question, show that it is a Green's function of the Klein-Gordon equation and that

$$
\begin{equation*}
D_{A}(x-y)=\Theta\left(y^{0}-x^{0}\right)(D(y-x)-D(x-y)) . \tag{27.11}
\end{equation*}
$$

In doing so, show that $\tilde{D}_{A}(p)$ has two poles in the upper complex p_{0} plane. Note that the function vanishes for $x^{0}<y^{0}$, hence it is called an advanced Green's function.

