Introduction to Theoretical Particle Physics

Lecture: Prof. Dr. K. Melnikov
Exercises: Dr. C. Brønnum-Hansen, Dr. M. Jaquier

Exercise Sheet 10

Issue: 13.12. - Submission: 20.12. @ 12:00 Uhr - Discussion: 07.01. and 08.01

Exercise 23: Representations of the Lorentz group

6 points

The (proper orthochronous) Lorentz group is generated by boosts and rotations. There are different representations - one of which is the vector representation that you encounter when first learning about Special Relativity. In the lectures you have now also seen spinors, which transform in a different representation.
(a) Given the matrix $R^{x}(\theta)$ for a rotation around the x-axis by an angle θ and the matrix $\Lambda^{x}(\eta)$ for a boost along the x-axis in the vector representation,

$$
R^{x}(\theta)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{23.1}\\
0 & 1 & 0 & 0 \\
0 & 0 & \cos \theta & \sin \theta \\
0 & 0 & -\sin \theta & \cos \theta
\end{array}\right), \quad \Lambda^{x}(\eta)=\left(\begin{array}{cccc}
\cosh \eta & \sinh \eta & 0 & 0 \\
\sinh \eta & \cosh \eta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

calculate the infinitesimal generators of rotations $\left(J^{x}\right)$ and boosts $\left(K^{x}\right)$. The infinitesimal generators are related to the finite transformations via

$$
\begin{equation*}
R^{x}(\theta)=e^{i \theta J^{x}}, \quad \quad \Lambda^{x}(\eta)=e^{i \eta K^{x}} \tag{23.2}
\end{equation*}
$$

Similar expressions can be derived for the generators of boosts and rotations around the other axes. Those can then be used to verify the commutation relations of the generators

$$
\begin{equation*}
\left[J^{i}, J^{j}\right]=i \epsilon^{i j k} J^{k}, \quad\left[J^{i}, K^{j}\right]=i \epsilon^{i j k} K^{k}, \quad\left[K^{i}, K^{j}\right]=-i \epsilon^{i j k} J^{k} \tag{23.3}
\end{equation*}
$$

This is the algebra of the generators of the Lorentz group and it is valid for all representations.
Note that the algebra of the J^{i} alone closes and corresponds to the Lie algebra $\mathfrak{s o}(3) \equiv \mathfrak{s u}(2)$, as expected for rotations in three-dimensional space. However, the commutator of two boost generators is proportional to a rotation generator, i.e. the algebra of the boosts alone does not close.
(b) Consider the linear combinations of generators

$$
\begin{equation*}
J_{+}^{i}=\frac{J^{i}+i K^{i}}{2}, \quad \quad J_{-}^{i}=\frac{J^{i}-i K^{i}}{2} \tag{23.4}
\end{equation*}
$$

Show that the J^{i} and K^{i} can be written in terms of the $J_{ \pm}^{i}$. Use the commutation relations in Eq. (23.3) to show that the algebra of the $J_{ \pm}^{i}$ is given by

$$
\begin{equation*}
\left[J_{+}^{i}, J_{+}^{j}\right]=i \epsilon^{i j k} J_{+}^{k}, \quad\left[J_{-}^{i}, J_{-}^{j}\right]=i \epsilon^{i j k} J_{-}^{k}, \quad\left[J_{+}^{i}, J_{-}^{j}\right]=0 \tag{23.5}
\end{equation*}
$$

In this form it is obvious that the algebra of the generators of the Lorentz group is isomorphic to the direct product of two $\mathfrak{s u}(2)$ algebras - one generated by the J_{-}^{i} and one generated by the J_{+}^{i}.
The representations of $\operatorname{SU}(2)$ were discussed in the Quantum Mechanics lecture in the context of angular momentum and spin. Recall that these representations can be classified according to their spin $j=0, \frac{1}{2}, 1, \frac{3}{2}, \ldots$ Representations of the Lorentz group can now be classified according to their decompositions into representations of the two $\mathrm{SU}(2)$. The trivial case is the $(0,0)$ representation which is a Lorentz scalar and transforms as a singlet under both $\mathrm{SU}(2)$. The first non-trivial cases are the $\left(\frac{1}{2}, 0\right)$ and $\left(0, \frac{1}{2}\right)$ representations.
(c) Recall that the spin $-\frac{1}{2}$ representation consists of two-component spinors and is generated by $\tau^{i}=\frac{\sigma^{i}}{2}$, where the σ^{i} are the Pauli matrices. Thus, for the $\left(\frac{1}{2}, 0\right)$ representation use

$$
\begin{equation*}
J_{-}^{i}=\tau^{i}, \quad J_{+}^{i}=0 . \tag{23.6}
\end{equation*}
$$

What are the generators J^{i} and K^{i} ? Work out the explicit form of the matrices R^{x} and Λ^{x} in this representation. Repeat the same for the ($0, \frac{1}{2}$) representation, where

$$
\begin{equation*}
J_{-}^{i}=0, \quad J_{+}^{i}=\tau^{i} \tag{23.7}
\end{equation*}
$$

Show that $R_{\left(\frac{1}{2}, 0\right)}^{x, \dagger}(\theta)=R_{\left(0, \frac{1}{2}\right)}^{x,-1}(\theta)$ and $\Lambda_{\left(\frac{1}{2}, 0\right)}^{x, \dagger}(\eta)=\Lambda_{\left(0, \frac{1}{2}\right)}^{x,-1}(\eta)$. Note that these two-component representations correspond to the left- and right-handed spinors that you encountered in the lecture. We will return to this point in the next problem.
(d) Consider a two-component spinor $\psi=\left(\psi_{1}, \psi_{2}\right)$ transforming in the $\left(\frac{1}{2}, 0\right)$ representation. Apply a rotation around the x-axis by an angle of $\theta=2 \pi$ and by an angle of $\theta=4 \pi$. Compare the results to the original spinor.

Exercise 24: Solutions of the Dirac equation

In the lecture, you saw the Dirac matrices γ^{μ} in the Dirac representation. Other representations are possible. One useful representation is the Weyl representation, which is defined by

$$
\gamma^{\mu}=\left(\begin{array}{cc}
0_{2 \times 2} & \sigma^{\mu} \tag{24.1}\\
\bar{\sigma}^{\mu} & 0_{2 \times 2}
\end{array}\right)
$$

https://www.ttp.kit.edu/courses/ws2019/ettp/start
where $\sigma^{\mu}=\left(\mathbb{1}_{2 \times 2}, \vec{\sigma}\right)$ and $\bar{\sigma}^{\mu}=\left(\mathbb{1}_{2 \times 2},-\vec{\sigma}\right)$ and $\vec{\sigma}$ are the Pauli matrices. Since the Pauli matrices fulfil the anticommutation relation $\left\{\sigma^{\mu}, \bar{\sigma}^{\nu}\right\}=2 g^{\mu \nu}$, the Dirac matrices also fulfil the Dirac algebra

$$
\begin{equation*}
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu} \tag{24.2}
\end{equation*}
$$

(a) Calculate the fifth Dirac matrix $\gamma_{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$ in the Weyl representation. Work out the left- and right-handed projectors $P_{L}=\frac{1}{2}\left(\mathbb{1}-\gamma_{5}\right)$ and $P_{R}=$ $\frac{1}{2}\left(\mathbb{1}+\gamma_{5}\right)$. Given a four-component spinor $\psi=\left(\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}\right)$, apply the projectors to calculate $\psi_{L}=P_{L} \psi$ and $\psi_{R}=P_{R} \psi$. Verify that $\psi=\psi_{L}+\psi_{R}$. In the Weyl representation it is manifest that ψ_{L} transforms in the $\left(\frac{1}{2}, 0\right)$ representation of the Lorentz group, while ψ_{R} transforms according to the ($0, \frac{1}{2}$) representation.
(b) Solve the Dirac equation in momentum space,

$$
\begin{equation*}
(\hat{p}-m) u(p), \quad(\hat{p}+m) v(p), \tag{24.3}
\end{equation*}
$$

for a massive fermion with mass m at rest in its rest frame, i.e. with momentum $p^{\mu}=(m, 0,0,0)$.
(c) As mentioned above, the left- and right-handed spinors in the Weyl representation are in one-to-one correspondence to the two-component spinors whose Lorentz transformations you calculated in the previous problem. In particular, the boost in x-direction is

$$
\Lambda_{\left(\frac{1}{2}, 0\right)}^{x}(\eta)=\left(\begin{array}{cc}
\cosh (\eta / 2) & -\sinh (\eta / 2) \tag{24.4}\\
-\sinh (\eta / 2) & \cosh (\eta / 2)
\end{array}\right) .
$$

and $\Lambda_{\left(\frac{(1}{2}, 0\right)}^{x, \dagger}(\eta)=\Lambda_{\left(0, \frac{1}{2}\right)}^{x,-1}(\eta)$.
Apply a boost along the x-axis to the solution of the Dirac equation from the previous subproblem to obtain the solution of the Dirac equation for a fermion moving along the x-axis. Verify that the boosted solution still fulfils the Dirac equation.

