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Exercise 23: Representations of the Lorentz group

The (proper orthochronous) Lorentz group is generated by boosts and rotations.
There are different representations — one of which is the vector representation that
you encounter when first learning about Special Relativity. In the lectures you
have now also seen spinors, which transform in a different representation.

(a) Given the matrix R*(6) for a rotation around the z-axis by an angle 6 and
the matrix A*(n) for a boost along the x-axis in the vector representation,
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(23.1)

calculate the infinitesimal generators of rotations (J*) and boosts (K*). The
infinitesimal generators are related to the finite transformations via

R™(0) = " A*(n) = K7 (23.2)

Similar expressions can be derived for the generators of boosts and rotations around
the other axes. Those can then be used to verify the commutation relations of the
generators

[J8 ) =ik gh [T K =detP KR K KT = —idR gk (23.3)

This is the algebra of the generators of the Lorentz group and it is valid for all
representations.

Note that the algebra of the J¢ alone closes and corresponds to the Lie algebra
50(3) = su(2), as expected for rotations in three-dimensional space. However, the
commutator of two boost generators is proportional to a rotation generator, i.e.
the algebra of the boosts alone does not close.

(b) Consider the linear combinations of generators

_ St gl (23.4)
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Show that the J* and K* can be written in terms of the J.. Use the
commutation relations in Eq. (23.3)) to show that the algebra of the J. is
given by

(i, ) =gk [T ) =aedk gk [T 0 =0, (23.5)

In this form it is obvious that the algebra of the generators of the Lorentz
group is isomorphic to the direct product of two su(2) algebras — one
generated by the J” and one generated by the J*.

The representations of SU(2) were discussed in the Quantum Mechanics lecture in
the context of angular momentum and spin. Recall that these representations can be
classified according to their spin 7 = 0, %, 1, %, .... Representations of the Lorentz
group can now be classified according to their decompositions into representations
of the two SU(2). The trivial case is the (0,0) representation which is a Lorentz
scalar and transforms as a singlet under both SU(2). The first non-trivial cases are

the (3,0) and (0, ) representations.

(c¢) Recall that the spin—% representation consists of two-component spinors and

is generated by 7 = Z-, where the o' are the Pauli matrices. Thus, for the
(3,0) representation use

Jo=71", Ji=0. (23.6)

What are the generators J* and K? Work out the explicit form of the
matrices R and A” in this representation. Repeat the same for the (0, %)
representation, where

J. =0, Jo=7. (23.7)

Show that Rffo)(Q) = Rfo’_ll) (#) and Affo) (n) = A(m(’)_;)(n). Note that these
27 ’2 2 i)

two-component representations correspond to the left- and right-handed

spinors that you encountered in the lecture. We will return to this point in

the next problem.

(d) Consider a two-component spinor ¢ = (t1,1)2) transforming in the (3,0)
representation. Apply a rotation around the z-axis by an angle of § = 27
and by an angle of § = 4. Compare the results to the original spinor.

Exercise 24: Solutions of the Dirac equation

In the lecture, you saw the Dirac matrices v* in the Dirac representation. Other
representations are possible. One useful representation is the Weyl representation,
which is defined by

i (Um ot ) (24.1)
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where ot = (1942,) and 6* = (142, —0) and & are the Pauli matrices. Since the
Pauli matrices fulfil the anticommutation relation o#c" 4 o"6# = 29" 1549, the
Dirac matrices also fulfil the Dirac algebra

(a)

{97} = 2¢". (24.2)
Calculate the fifth Dirac matrix 75 = i7°y'~v%9? in the Weyl representation.
Work out the left- and right-handed projectors P, = (1 —v5) and P =
%(]l + 75). Given a four-component spinor ¢ = (11,19, 1¥3,14), apply the
projectors to calculate vy, = Py and ¥ = Pgy. Verify that ¢ = ¢ + ¢g.
In the Weyl representation it is manifest that 1, transforms in the (%, 0)
representation of the Lorentz group, while 1r transforms according to the
(0, ) representation.

Solve the Dirac equation in momentum space,

A

(B —mulp),  (B+mv(p), (24.3)

for a massive fermion with mass m at rest in its rest frame, i.e. with
momentum p* = (m,0,0,0).

As mentioned above, the left- and right-handed spinors in the Weyl repre-
sentation are in one-to-one correspondence to the two-component spinors
whose Lorentz transformations you calculated in the previous problem. In
particular, the boost in z-direction is

cosh(n/2)  —sinh(n/2)
(%70)(77) N (— sinh(n/2)  cosh(n/2) ) '
and AZ";O)(U) = A1) (n).
Apply a boost along the x-axis to the solution of the Dirac equation from
the previous subproblem to obtain the solution of the Dirac equation for
a fermion moving along the z-axis. Verify that the boosted solution still
fulfils the Dirac equation.

(24.4)
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