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Exercise 21: Relations of gamma matrices 4 points

In this exercise we are going to prove some relations regarding gamma matrices,
γµ, without referring to a specific representation. Recall from the lecture that we
have the following relation

γµγν + γνγµ = 2gµν11 , (21.1)

where 11 is the 4× 4 identity matrix. We also introduce the matrix γ5 = iγ0γ1γ2γ3.

(a) Using the relation in Eq. (21.1), verify that γ5 anti-commutes with γµ for
any index µ = 0, 1, 2, 3, i.e. show that

γµγ5 + γ5γ
µ = 0. (21.2)

(b) Show that γ5 can also be written as

γ5 = − i

4!
εµνρσγ

µγνγργσ , (21.3)

where εµνρσ is a totally anti-symmetric tensor with ε0123 = −1. Hint: Think
about what values µ, ν, ρ and σ can take, and how you can capture this in
a single term.

(c) Products of multiple gamma matrices can often be simplified to a shorter
form. Using symmetry we can write the following relations

(i). γµγµ = A 11,

(ii). γµγ5γµ = Bγ5,

(iii). γµγνγµ = Cγν .

Find the values of the proportionality constants A, B, and C. Hint: Re-
member that gµνgµν = 4.

(d) Simplify

(i). γµγνγργµ,

(ii). γµγνγργσγµ.
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Exercise 22: Majorana Fermions 7 points

You have seen in the lecture how fermions are described in terms of four component
spinors ψ which satisfy the Dirac equation

(i∂µγ
µ −m)ψ(x) = 0 , (22.1)

for a particular representation of the Dirac matrices γµ. Let us introduce the
so-called Weyl representation:

γ0 =

(
0 1

1 0

)
, γi =

(
0 σi

−σi 0

)
, (22.2)

where σi are the Pauli sigma matrices. These are given by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (22.3)

and they satisfy the relation

{σi, σj} = 2δij1 , (22.4)

where {., .} denotes the anti-commutator. We further introduce the four-vector of
matrices σµ = (1, σi) and σ̄µ = (1,−σi). Then we can write the compact form:

γµ =

(
0 σµ

σ̄µ 0

)
. (22.5)

In this representation, solutions of the Dirac equation take the form

ψ(x) =

(
ψL(x)
ψR(x)

)
, (22.6)

where ψL(x) and ψR(x) are two-component left- and right-handed spinors. They
distinguish themselves through their different transformation behaviour under
Lorentz transformations. One can then show that the object −iσ2ψ∗

L(x) transforms
as a right-handed spinor, such that the four-component spinor

ψM(x) =

(
ψL(x)
−iσ2ψ∗

L(x)

)
(22.7)

is a valid spinor in the sense that it transforms in the correct way under Lorentz
transformations.
It can be shown that if a four-component spinor ψ satisfies the Dirac equation in
the presence of the electromagnetic field, then the spinor iγ2ψ∗ satisfies the Dirac
equation with the opposite charge.

(a) Show that
iγ2ψ∗

M = ψM . (22.8)

In this sense, ψM describes a neutral fermion which is its own antiparticle. We call
ψM a Majorana spinor. In this exercise you will construct an explicit representation
of the Majorana spinor using plane wave solutions.
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(b) Show that σµσ2 = σ2σ̄∗µ. Use this to show that the Dirac equation for
ψM(x) is equivalent to the equation

σ̄µ∂µψL(x) +mσ2ψ∗
L(x) = 0 (22.9)

for the left-handed spinor ψL(x).

(c) Since every solution of the Dirac equation is also a solution of the Klein-
Gordon equation, we can write the spinor ψL(x) as a linear combination of
plane waves eipµx

µ
. To start, show the relation

σ̄µ∂µe
±ipµxµ = ±i(E + ~σ · ~p)e±ipµxµ . (22.10)

(d) Another property of spinors is their helicity, which is the projection of the
spin of the fermion along its momentum. Helicity eigenvectors are defined
as

~σ · ~p
|~p|

ξ±(p) = ±ξ±(p) . (22.11)

For massless fermions the spinors ψL and ψR defined above are eigenstates
of helicity. However, for massive fermions, which we consider here, helicity
is not Lorentz invariant. We thus write the Majorana spinor ψL in terms of
eigenstates ζr(p) and ηr(p) of both helicities,

ψL(x) =
∑
r=1,2

∫
d3p

(2π)3
(
ar(p)ζr(p)e

−ipµxµ + a∗r(p)ηr(p)e
ipµxµ

)
. (22.12)

Use this in Eq. (22.9) to derive the relations

ηr(p) =
E − ~σ · ~p

m
iσ2ζ∗r (p) , (22.13)

ζr(p) = −E − ~σ · ~p
m

iσ2η∗r(p) , (22.14)

by comparing the coefficients of ar(p) and a∗r(p). You will find the relation
(~σ · ~p)(~σ · ~q) = (~p · ~q)1 + i(~p× ~q) · ~σ useful. Be aware that ζr, ηr and σi are
vectors respectively a matrix in the two-dimensional spin space.

(e) From here, any linear independent choice of the ζr’s is a solution of the
two-component Majorana equation. As an example, use,

ζ1 = ξ− , η2 = ξ− , (22.15)

where ξ± are helicity eigenvectors satisfying Eq. (22.11), and fulfil the relation

ξ− = iσ2ξ∗+ , (22.16)

to show that the Fourier expansion of ψL(x) can be written as

ψL(x) =

∫
d3p

(2π)3

(
a−(p)ξ−(p)e−ipµx

µ

+
m

E + |p|
a+(p)ξ+(p)e−ipµx

µ

+ a∗+(p)ξ−(p)eipµx
µ − m

E + |p|
a∗−(p)ξ+(p)eipµx

µ

)
. (22.17)
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