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Exercise 21: Relations of gamma matrices

In this exercise we are going to prove some relations regarding gamma matrices,
~#, without referring to a specific representation. Recall from the lecture that we
have the following relation

YA 4 A =2¢"1, (21.1)

where 1 is the 4 x 4 identity matrix. We also introduce the matrix ~v5 = 17923,

(a) Using the relation in Eq. (21.1]), verify that ~; anti-commutes with # for
any index pu = 0,1, 2,3, i.e. show that

Y5 + 57" = 0. (21.2)

(b) Show that ;5 can also be written as

¢ v g
V= = w7 (21.3)
where €,,,, is a totally anti-symmetric tensor with €193 = —1. Hint: Think

about what values i, v, p and o can take, and how you can capture this in
a single term.

(¢) Products of multiple gamma matrices can often be simplified to a shorter
form. Using symmetry we can write the following relations

1). .= AT,
(ii). Y1579 = B,
(il). Y97y = Cy".
Find the values of the proportionality constants A, B, and C. Hint: Re-
member that ¢"g,, = 4.

(d) Simplify
1. Y'YV
(i1). YY"V
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Exercise 22: Majorana Fermions

You have seen in the lecture how fermions are described in terms of four component
spinors ¥ which satisfy the Dirac equation

(107" — m)() = 0 | (22.1)

for a particular representation of the Dirac matrices 4#. Let us introduce the
so-called Weyl representation:

0 1 - 0 ot
0 i
~ <]lO)’ 7_< i0>, (22.2)

where o' are the Pauli sigma matrices. These are given by

L (01 s [0 —i s (10
0—(10 , =1, , =1y -1 ) (22.3)

and they satisfy the relation
{o",07} = 2571, (22.4)

where {.,.} denotes the anti-commutator. We further introduce the four-vector of
matrices o# = (1,0") and * = (1, —0"). Then we can write the compact form:

P = ( gu g“ ) . (22.5)

In this representation, solutions of the Dirac equation take the form

() = ( 528 ) , (22.6)

where ¥, () and ¥r(z) are two-component left- and right-handed spinors. They
distinguish themselves through their different transformation behaviour under
Lorentz transformations. One can then show that the object —io?y% (z) transforms
as a right-handed spinor, such that the four-component spinor

Yu(x) = ( %féfw) ) (22.7)

is a valid spinor in the sense that it transforms in the correct way under Lorentz
transformations.

It can be shown that if a four-component spinor ) satisfies the Dirac equation in
the presence of the electromagnetic field, then the spinor i72¢* satisfies the Dirac
equation with the opposite charge.

(a) Show that
ARUTES UV (22.8)
In this sense, 1, describes a neutral fermion which is its own antiparticle. We call

¥y a Majorana spinor. In this exercise you will construct an explicit representation
of the Majorana spinor using plane wave solutions.
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(b) Show that o*0? = o25**. Use this to show that the Dirac equation for
() is equivalent to the equation

0,0 (z) + ma*i (z) = 0 (22.9)
for the left-handed spinor ¢ (z).

(c) Since every solution of the Dirac equation is also a solution of the Klein-
Gordon equation, we can write the spinor ¢ (z) as a linear combination of
plane waves e®+*" . To start, show the relation

o"0,eTP" = £i(E + & - p)eT " (22.10)

(d) Another property of spinors is their helicity, which is the projection of the
spin of the fermion along its momentum. Helicity eigenvectors are defined
as

- =

g-p B
Wfi(p) =+£:(p) - (22.11)

For massless fermions the spinors ¢, and ¥ defined above are eigenstates
of helicity. However, for massive fermions, which we consider here, helicity
is not Lorentz invariant. We thus write the Majorana spinor v in terms of
eigenstates (,.(p) and 7,(p) of both helicities,

Yule) =) / (ST];?’ (a:(P)C (P)e ™" + ai(p)ne(p)e™") . (22.12)

r=1,2

Use this in Eq. (22.9) to derive the relations

E—-¢-p
n(p) = =——Lio*¢(p) , (22.13)
E—-G-p
Gp) = ——— Lo (p) (22.14)

by comparing the coefficients of a,(p) and a’(p). You will find the relation
(@-p)(d-q) =P Q1+ i(pxq) -7 useful. Be aware that (., 7, and o are
vectors respectively a matrix in the two-dimensional spin space.

(e) From here, any linear independent choice of the (.’s is a solution of the
two-component Majorana equation. As an example, use,

=&, m=&, (22.15)
where & are helicity eigenvectors satisfying Eq. (22.11]), and fulfil the relation

£ =io’E) (22.16)
to show that the Fourier expansion of ¢1(z) can be written as
d3p - m -
— —ipu —ipux
010) = [ 2 (e e 4 0 e
i I m i 7
+a (p)é_(p)eP™ — a* (p)&y(p)e* ) . (2217
(P)E-(p) E+ (P)&+(p) (22.17)
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