Introduction to Theoretical Particle Physics

Lecture: Prof. Dr. K. Melnikov
Exercises: Dr. C. Brønnum-Hansen, Dr. M. Jaquier

Exercise Sheet 9

Issue: 06.12. - Submission: 13.12. @ 12:00 Uhr - Discussion: 17.12. and 18.12

Exercise 21: Relations of gamma matrices

4 points

In this exercise we are going to prove some relations regarding gamma matrices, γ^{μ}, without referring to a specific representation. Recall from the lecture that we have the following relation

$$
\begin{equation*}
\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu} \mathbb{1} \tag{21.1}
\end{equation*}
$$

where $\mathbb{1}$ is the 4×4 identity matrix. We also introduce the matrix $\gamma_{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$.
(a) Using the relation in Eq. 21.1), verify that γ_{5} anti-commutes with γ^{μ} for any index $\mu=0,1,2,3$, i.e. show that

$$
\begin{equation*}
\gamma^{\mu} \gamma_{5}+\gamma_{5} \gamma^{\mu}=0 \tag{21.2}
\end{equation*}
$$

(b) Show that γ_{5} can also be written as

$$
\begin{equation*}
\gamma_{5}=-\frac{i}{4!} \epsilon_{\mu \nu \rho \sigma} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}, \tag{21.3}
\end{equation*}
$$

where $\epsilon_{\mu \nu \rho \sigma}$ is a totally anti-symmetric tensor with $\epsilon_{0123}=-1$. Hint: Think about what values μ, ν, ρ and σ can take, and how you can capture this in a single term.
(c) Products of multiple gamma matrices can often be simplified to a shorter form. Using symmetry we can write the following relations
(i). $\gamma^{\mu} \gamma_{\mu}=A \mathbb{1}$,
(ii). $\quad \gamma^{\mu} \gamma_{5} \gamma_{\mu}=B \gamma_{5}$,
(iii). $\gamma^{\mu} \gamma^{\nu} \gamma_{\mu}=C \gamma^{\nu}$.

Find the values of the proportionality constants A, B, and C. Hint: Remember that $g^{\mu \nu} g_{\mu \nu}=4$.
(d) Simplify
(i). $\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma_{\mu}$,
(ii). $\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \gamma_{\mu}$.

Exercise 22: Majorana Fermions

7 points

You have seen in the lecture how fermions are described in terms of four component spinors ψ which satisfy the Dirac equation

$$
\begin{equation*}
\left(i \partial_{\mu} \gamma^{\mu}-m\right) \psi(x)=0, \tag{22.1}
\end{equation*}
$$

for a particular representation of the Dirac matrices γ^{μ}. Let us introduce the so-called Weyl representation:

$$
\gamma^{0}=\left(\begin{array}{ll}
0 & \mathbb{1} \tag{22.2}\\
\mathbb{1} & 0
\end{array}\right), \quad \gamma^{i}=\left(\begin{array}{ll}
0 & \sigma^{i} \\
-\sigma^{i} & 0
\end{array}\right),
$$

where σ^{i} are the Pauli sigma matrices. These are given by

$$
\sigma^{1}=\left(\begin{array}{ll}
0 & 1 \tag{22.3}\\
1 & 0
\end{array}\right), \quad \sigma^{2}=\left(\begin{array}{cl}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma^{3}=\left(\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right),
$$

and they satisfy the relation

$$
\begin{equation*}
\left\{\sigma^{i}, \sigma^{j}\right\}=2 \delta^{i j} \mathbb{1}, \tag{22.4}
\end{equation*}
$$

where $\{.,$.$\} denotes the anti-commutator. We further introduce the four-vector of$ matrices $\sigma^{\mu}=\left(\mathbb{1}, \sigma^{i}\right)$ and $\bar{\sigma}^{\mu}=\left(\mathbb{1},-\sigma^{i}\right)$. Then we can write the compact form:

$$
\gamma^{\mu}=\left(\begin{array}{ll}
0 & \sigma^{\mu} \tag{22.5}\\
\bar{\sigma}^{\mu} & 0
\end{array}\right) .
$$

In this representation, solutions of the Dirac equation take the form

$$
\begin{equation*}
\psi(x)=\binom{\psi_{L}(x)}{\psi_{R}(x)}, \tag{22.6}
\end{equation*}
$$

where $\psi_{L}(x)$ and $\psi_{R}(x)$ are two-component left- and right-handed spinors. They distinguish themselves through their different transformation behaviour under Lorentz transformations. One can then show that the object $-i \sigma^{2} \psi_{L}^{*}(x)$ transforms as a right-handed spinor, such that the four-component spinor

$$
\begin{equation*}
\psi_{M}(x)=\binom{\psi_{L}(x)}{-i \sigma^{2} \psi_{L}^{*}(x)} \tag{22.7}
\end{equation*}
$$

is a valid spinor in the sense that it transforms in the correct way under Lorentz transformations.
It can be shown that if a four-component spinor ψ satisfies the Dirac equation in the presence of the electromagnetic field, then the spinor $i \gamma^{2} \psi^{*}$ satisfies the Dirac equation with the opposite charge.
(a) Show that

$$
\begin{equation*}
i \gamma^{2} \psi_{M}^{*}=\psi_{M} . \tag{22.8}
\end{equation*}
$$

In this sense, ψ_{M} describes a neutral fermion which is its own antiparticle. We call ψ_{M} a Majorana spinor. In this exercise you will construct an explicit representation of the Majorana spinor using plane wave solutions.
(b) Show that $\sigma^{\mu} \sigma^{2}=\sigma^{2} \bar{\sigma}^{* \mu}$. Use this to show that the Dirac equation for $\psi_{M}(x)$ is equivalent to the equation

$$
\begin{equation*}
\bar{\sigma}^{\mu} \partial_{\mu} \psi_{L}(x)+m \sigma^{2} \psi_{L}^{*}(x)=0 \tag{22.9}
\end{equation*}
$$

for the left-handed spinor $\psi_{L}(x)$.
(c) Since every solution of the Dirac equation is also a solution of the KleinGordon equation, we can write the spinor $\psi_{L}(x)$ as a linear combination of plane waves $e^{i p_{\mu} x^{\mu}}$. To start, show the relation

$$
\begin{equation*}
\bar{\sigma}^{\mu} \partial_{\mu} e^{ \pm i p_{\mu} x^{\mu}}= \pm i(E+\vec{\sigma} \cdot \vec{p}) e^{ \pm i p_{\mu} x^{\mu}} . \tag{22.10}
\end{equation*}
$$

(d) Another property of spinors is their helicity, which is the projection of the spin of the fermion along its momentum. Helicity eigenvectors are defined as

$$
\begin{equation*}
\frac{\vec{\sigma} \cdot \vec{p}}{|\vec{p}|} \xi_{ \pm}(p)= \pm \xi_{ \pm}(p) . \tag{22.11}
\end{equation*}
$$

For massless fermions the spinors ψ_{L} and ψ_{R} defined above are eigenstates of helicity. However, for massive fermions, which we consider here, helicity is not Lorentz invariant. We thus write the Majorana spinor ψ_{L} in terms of eigenstates $\zeta_{r}(p)$ and $\eta_{r}(p)$ of both helicities,

$$
\begin{equation*}
\psi_{L}(x)=\sum_{r=1,2} \int \frac{\mathrm{~d}^{3} p}{(2 \pi)^{3}}\left(a_{r}(p) \zeta_{r}(p) e^{-i p_{\mu} x^{\mu}}+a_{r}^{*}(p) \eta_{r}(p) e^{i p_{\mu} x^{\mu}}\right) . \tag{22.12}
\end{equation*}
$$

Use this in Eq. 22.9) to derive the relations

$$
\begin{align*}
& \eta_{r}(p)=\frac{E-\vec{\sigma} \cdot \vec{p}}{m} i \sigma^{2} \zeta_{r}^{*}(p), \tag{22.13}\\
& \zeta_{r}(p)=-\frac{E-\vec{\sigma} \cdot \vec{p}}{m} i \sigma^{2} \eta_{r}^{*}(p), \tag{22.14}
\end{align*}
$$

by comparing the coefficients of $a_{r}(p)$ and $a_{r}^{*}(p)$. You will find the relation $(\vec{\sigma} \cdot \vec{p})(\vec{\sigma} \cdot \vec{q})=(\vec{p} \cdot \vec{q}) \mathbb{1}+i(\vec{p} \times \vec{q}) \cdot \vec{\sigma}$ useful. Be aware that ζ_{r}, η_{r} and σ^{i} are vectors respectively a matrix in the two-dimensional spin space.
(e) From here, any linear independent choice of the ζ_{r} 's is a solution of the two-component Majorana equation. As an example, use,

$$
\begin{equation*}
\zeta_{1}=\xi_{-}, \quad \eta_{2}=\xi_{-}, \tag{22.15}
\end{equation*}
$$

where $\xi_{ \pm}$are helicity eigenvectors satisfying Eq. 22.11), and fulfil the relation

$$
\begin{equation*}
\xi_{-}=i \sigma^{2} \xi_{+}^{*}, \tag{22.16}
\end{equation*}
$$

to show that the Fourier expansion of $\psi_{L}(x)$ can be written as

$$
\begin{align*}
\psi_{L}(x)=\int \frac{\mathrm{d}^{3} p}{(2 \pi)^{3}}\left(a_{-}(p) \xi_{-}(p) e^{-i p_{\mu} x^{\mu}}+\frac{m}{E+|p|} a_{+}(p) \xi_{+}(p) e^{-i p_{\mu} x^{\mu}}\right. \\
\left.+a_{+}^{*}(p) \xi_{-}(p) e^{i p_{\mu} x^{\mu}}-\frac{m}{E+|p|} a_{-}^{*}(p) \xi_{+}(p) e^{i p_{\mu} x^{\mu}}\right) \tag{22.17}
\end{align*}
$$

