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Exercise 19: Spontaneous symmetry breaking 7 points

Consider a theory with N real scalar fields governed by a Lagrangian

L =
1

2
(∂µΦ)T (∂µΦ)− V (ΦTΦ) , (19.1)

where Φ is a vector, Φ = (φ1, . . . , φN). Let the potential be

V (ΦTΦ) = − µ2

2
(ΦTΦ) +

λ

4
(ΦTΦ)2 , (19.2)

where µ and λ are positive constants. This potential is manifestly symmetric under
the SO(N) group.

(a) Let R = (ΦTΦ). Find the minimum, Rvac, of the potential in Eq. (19.2).

Consider a possible pattern of symmetry breaking where one of the scalar fields
obtains a non-zero expectation value. In this case one can write

φ1 = v + χ1 , φi = χi for i ∈ {2, . . . , N} . (19.3)

where v is a constant and χi describe small excitations around the minimum of the
potential.

(b) Express v in terms of Rvac.

(c) Rewrite the Lagrangian in terms of the fields χi. What is the symmetry of
the Lagrangian after the symmetry breaking? How many Goldstone bosons
do you expect? How many massive scalar fields are present?

Now think of a different pattern of symmetry breaking, where two fields obtain a
non-zero expectation value. In this case one can write

φ1,2 = v1,2 + χ1,2 , φi = χi for i ∈ {3, . . . , N} (19.4)

where v1 and v2 are constants and, again, χi describe small excitations around the
minimum of the potential.

(d) Express v1 and v2 in terms of Rvac and a mixing angle θ.

(e) Explain why, despite the fact that two fields obtain a non-zero expectation
value, the above symmetry breaking pattern is equivalent to the previous
one. Confirm this by rewriting the Lagrangian in terms of the fields χi and
by diagonalising the mass matrix.
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Exercise 20: Non-abelian gauge transformation 6 points

In lecture 7 it was discussed why the gauge field Âµ belongs to the Lie algebra for
the case of an SU(2) gauge theory. This will be generalised in this exercise.

Consider a non-abelian gauge theory with a gauge group G. Under a non-abelian
gauge transformation, the gauge field transforms as

Âµ(x)→ Â′µ(x) = U(x)Âµ(x)U−1(x) +
1

ig
(∂µU

−1(x))U(x) . (20.1)

Recall that the gauge field is defined as Âµ(x) =
∑

aA
a
µ(x)ta, where the ta are the

generators of the Lie algebra g associated to the gauge group. In particular, this
means that the gauge field belongs to the algebra, Âµ ∈ g. Now one has to show

that also the gauge transformed field belongs to the algebra, Â′µ ∈ g.

The matrices ta fulfil the commutation relations [ta, tb] = F abctc for some structure
constants F abc. Thus, the commutator of tw,o generators is again a linear combi-
nation of generators, i.e. [ta, tb] ∈ g. The gauge transformations can be written
as U(x) = exp(i

∑
a θ

a(x)ta). To make the notation more compact, we define the
following shorthands for nested commutators:

∆̃0(X, Y ) = Y , ∆0(Y,X) = Y , (20.2)

∆̃n(X, Y ) = [X, ∆̃n−1(X, Y )] , ∆n(Y,X) = [∆n−1(Y,X), X] . (20.3)

(a) It will be shown in the next subquestions that

eXY e−X =
∞∑
n=0

∆̃n(X, Y )

n!

= Y + [X, Y ] +
1

2!
[X, [X, Y ]] +

1

3!
[X, [X, [X, Y ]]] + . . . (20.4)

and that

d

dt
eX(t) = eX(t)

(
∞∑
n=0

∆n(dX
dt
, X)

(n+ 1)!

)

= eX(t)

(
dX
dt

+
1

2!

[
dX
dt
, X
]

+
1

3!

[[
dX
dt
, X
]
, X
]

+ . . .

)
. (20.5)

For now, use Eqs. (20.4) and (20.5) to show that Â′µ ∈ g.

(b) Prove Eq. (20.4). To that end, it is useful to define an auxiliary function
F (z) = ezXY e−zX . For z = 1 this becomes the left-hand side of Eq. (20.4).
Make a power series ansatz for F (z),

F (z) =
∞∑
n=0

1

n!
Fnz

n , (20.6)

and use the derivative dF (z)
dz

to derive a recurrence relation for the coefficients
Fn. Use this to show Eq. (20.4).
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Now, prove Eq. (20.5). Use the following steps:

(c) Show that the left-hand side of Eq. (20.5) can be written as

d

dt
eX(t) =

∞∑
n=0

1

(n+ 1)!

n∑
k=0

Xn−k(t)

(
dX(t)

dt

)
Xk(t) . (20.7)

(d) Optional Show that

[Y,Xn] =
n−1∑
k=0

(
n

k

)
Xk ∆n−k(Y,X) , (20.8)

and conclude from it that

Y Xn =
n∑
k=0

(
n

k

)
Xk ∆n−k(Y,X). (20.9)

Proceed by induction over n. You may find the identity
(
n+1
k+1

)
=
(
n
k

)
+
(
n
k+1

)
to be useful.

(e) Use the previous result to further reexpress Eq. (20.7) as

d

dt
eX(t) =

∞∑
n=0

1

(n+ 1)!

n∑
k=0

k∑
j=0

(
k

j

)
Xn−j(t) ∆j(

dX(t)
dt

, X(t)) . (20.10)

(f) Show that the right-hand side of Eq. (20.5) can be transformed into

eX(t)

(
∞∑
n=0

∆n(dX
dt
, X)

(n+ 1)!

)
=
∞∑
n=0

1

(n+ 1)!

n∑
j=0

(
n+ 1

j + 1

)
Xn−j(t) ∆j(

dX
dt
, X) .

(20.11)

Use for this the Cauchy product of two series,(
∞∑
n=0

an

)
·

(
∞∑
m=0

bn

)
=
∞∑
n=0

n∑
k=0

akbn−k . (20.12)

(g) Optional Prove that for arbitrary coefficients cn,j

n∑
k=0

k∑
j=0

(
k

j

)
cn,j =

n∑
j=0

(
n+ 1

j + 1

)
cn,j . (20.13)

Change the order of summation on the left-hand side and use the “hockey-
stick identity”

∑n
k=j

(
k
j

)
=
(
n+1
j+1

)
.

(h) Use this result to show that the right-hand sides of Eqs. (20.10) and (20.11)
are equal and, therefore, that Eq. (20.5) holds.
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