Introduction to Theoretical Particle Physics

Lecture: Prof. Dr. K. Melnikov
Exercises: Dr. C. Brønnum-Hansen, Dr. M. Jaquier

Exercise Sheet 8
Issue: 29.11. - Submission: 06.11. @ 12:00 Uhr - Discussion: 10.12. and 11.12

Exercise 19: Spontaneous symmetry breaking

7 points

Consider a theory with N real scalar fields governed by a Lagrangian

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \Phi\right)^{T}\left(\partial^{\mu} \Phi\right)-V\left(\Phi^{T} \Phi\right), \tag{19.1}
\end{equation*}
$$

where Φ is a vector, $\Phi=\left(\phi_{1}, \ldots, \phi_{N}\right)$. Let the potential be

$$
\begin{equation*}
V\left(\Phi^{T} \Phi\right)=-\frac{\mu^{2}}{2}\left(\Phi^{T} \Phi\right)+\frac{\lambda}{4}\left(\Phi^{T} \Phi\right)^{2} \tag{19.2}
\end{equation*}
$$

where μ and λ are positive constants. This potential is manifestly symmetric under the $S O(N)$ group.
(a) Let $R=\left(\Phi^{T} \Phi\right)$. Find the minimum, $R_{v a c}$, of the potential in Eq. 19.2.

Consider a possible pattern of symmetry breaking where one of the scalar fields obtains a non-zero expectation value. In this case one can write

$$
\begin{equation*}
\phi_{1}=v+\chi_{1}, \quad \phi_{i}=\chi_{i} \text { for } i \in\{2, \ldots, N\} . \tag{19.3}
\end{equation*}
$$

where v is a constant and χ_{i} describe small excitations around the minimum of the potential.
(b) Express v in terms of $R_{v a c}$.
(c) Rewrite the Lagrangian in terms of the fields χ_{i}. What is the symmetry of the Lagrangian after the symmetry breaking? How many Goldstone bosons do you expect? How many massive scalar fields are present?

Now think of a different pattern of symmetry breaking, where two fields obtain a non-zero expectation value. In this case one can write

$$
\begin{equation*}
\phi_{1,2}=v_{1,2}+\chi_{1,2}, \quad \phi_{i}=\chi_{i} \text { for } i \in\{3, \ldots, N\} \tag{19.4}
\end{equation*}
$$

where v_{1} and v_{2} are constants and, again, χ_{i} describe small excitations around the minimum of the potential.
(d) Express v_{1} and v_{2} in terms of $R_{v a c}$ and a mixing angle θ.
(e) Explain why, despite the fact that two fields obtain a non-zero expectation value, the above symmetry breaking pattern is equivalent to the previous one. Confirm this by rewriting the Lagrangian in terms of the fields χ_{i} and by diagonalising the mass matrix.

In lecture 7 it was discussed why the gauge field \hat{A}_{μ} belongs to the Lie algebra for the case of an $\mathrm{SU}(2)$ gauge theory. This will be generalised in this exercise.
Consider a non-abelian gauge theory with a gauge group G. Under a non-abelian gauge transformation, the gauge field transforms as

$$
\begin{equation*}
\hat{A}_{\mu}(x) \rightarrow \hat{A}_{\mu}^{\prime}(x)=U(x) \hat{A}_{\mu}(x) U^{-1}(x)+\frac{1}{i g}\left(\partial_{\mu} U^{-1}(x)\right) U(x) . \tag{20.1}
\end{equation*}
$$

Recall that the gauge field is defined as $\hat{A}_{\mu}(x)=\sum_{a} A_{\mu}^{a}(x) t^{a}$, where the t^{a} are the generators of the Lie algebra \mathfrak{g} associated to the gauge group. In particular, this means that the gauge field belongs to the algebra, $\hat{A}_{\mu} \in \mathfrak{g}$. Now one has to show that also the gauge transformed field belongs to the algebra, $\hat{A}_{\mu}^{\prime} \in \mathfrak{g}$.
The matrices t^{a} fulfil the commutation relations $\left[t^{a}, t^{b}\right]=F^{a b c} t^{c}$ for some structure constants $F^{a b c}$. Thus, the commutator of tw,o generators is again a linear combination of generators, i.e. $\left[t^{a}, t^{b}\right] \in \mathfrak{g}$. The gauge transformations can be written as $U(x)=\exp \left(i \sum_{a} \theta^{a}(x) t^{a}\right)$. To make the notation more compact, we define the following shorthands for nested commutators:

$$
\begin{array}{ll}
\tilde{\Delta}_{0}(X, Y)=Y, & \Delta_{0}(Y, X)=Y, \\
\tilde{\Delta}_{n}(X, Y)=\left[X, \tilde{\Delta}_{n-1}(X, Y)\right], & \Delta_{n}(Y, X)=\left[\Delta_{n-1}(Y, X), X\right] . \tag{20.3}
\end{array}
$$

(a) It will be shown in the next subquestions that

$$
\begin{align*}
e^{X} Y e^{-X} & =\sum_{n=0}^{\infty} \frac{\tilde{\Delta}_{n}(X, Y)}{n!} \\
& =Y+[X, Y]+\frac{1}{2!}[X,[X, Y]]+\frac{1}{3!}[X,[X,[X, Y]]]+\ldots \tag{20.4}
\end{align*}
$$

and that

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t} e^{X(t)} & =e^{X(t)}\left(\sum_{n=0}^{\infty} \frac{\Delta_{n}\left(\frac{\mathrm{~d} X}{\mathrm{~d} t}, X\right)}{(n+1)!}\right) \\
& =e^{X(t)}\left(\frac{\mathrm{d} X}{\mathrm{~d} t}+\frac{1}{2!}\left[\frac{\mathrm{d} X}{\mathrm{~d} t}, X\right]+\frac{1}{3!}\left[\left[\frac{\mathrm{d} X}{\mathrm{~d} t}, X\right], X\right]+\ldots\right) . \tag{20.5}
\end{align*}
$$

For now, use Eqs. (20.4) and (20.5) to show that $\hat{A}_{\mu}^{\prime} \in \mathfrak{g}$.
(b) Prove Eq. (20.4). To that end, it is useful to define an auxiliary function $F(z)=e^{z X} Y e^{-z X}$. For $z=1$ this becomes the left-hand side of Eq. (20.4). Make a power series ansatz for $F(z)$,

$$
\begin{equation*}
F(z)=\sum_{n=0}^{\infty} \frac{1}{n!} F_{n} z^{n}, \tag{20.6}
\end{equation*}
$$

and use the derivative $\frac{\mathrm{d} F(z)}{\mathrm{d} z}$ to derive a recurrence relation for the coefficients F_{n}. Use this to show Eq. (20.4).

Now, prove Eq. (20.5). Use the following steps:
(c) Show that the left-hand side of Eq. 20.5) can be written as

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} e^{X(t)}=\sum_{n=0}^{\infty} \frac{1}{(n+1)!} \sum_{k=0}^{n} X^{n-k}(t)\left(\frac{\mathrm{d} X(t)}{\mathrm{d} t}\right) X^{k}(t) \tag{20.7}
\end{equation*}
$$

(d) Optional Show that

$$
\begin{equation*}
\left[Y, X^{n}\right]=\sum_{k=0}^{n-1}\binom{n}{k} X^{k} \Delta_{n-k}(Y, X) \tag{20.8}
\end{equation*}
$$

and conclude from it that

$$
\begin{equation*}
Y X^{n}=\sum_{k=0}^{n}\binom{n}{k} X^{k} \Delta_{n-k}(Y, X) \tag{20.9}
\end{equation*}
$$

Proceed by induction over n. You may find the identity $\binom{n+1}{k+1}=\binom{n}{k}+\binom{n}{k+1}$ to be useful.
(e) Use the previous result to further reexpress Eq. 20.7) as

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} e^{X(t)}=\sum_{n=0}^{\infty} \frac{1}{(n+1)!} \sum_{k=0}^{n} \sum_{j=0}^{k}\binom{k}{j} X^{n-j}(t) \Delta_{j}\left(\frac{\mathrm{~d} X(t)}{\mathrm{d} t}, X(t)\right) \tag{20.10}
\end{equation*}
$$

(f) Show that the right-hand side of Eq. (20.5) can be transformed into

$$
\begin{equation*}
e^{X(t)}\left(\sum_{n=0}^{\infty} \frac{\Delta_{n}\left(\frac{\mathrm{~d} X}{\mathrm{~d} t}, X\right)}{(n+1)!}\right)=\sum_{n=0}^{\infty} \frac{1}{(n+1)!} \sum_{j=0}^{n}\binom{n+1}{j+1} X^{n-j}(t) \Delta_{j}\left(\frac{\mathrm{~d} X}{\mathrm{~d} t}, X\right) \tag{20.11}
\end{equation*}
$$

Use for this the Cauchy product of two series,

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} a_{n}\right) \cdot\left(\sum_{m=0}^{\infty} b_{n}\right)=\sum_{n=0}^{\infty} \sum_{k=0}^{n} a_{k} b_{n-k} . \tag{20.12}
\end{equation*}
$$

(g) Optional Prove that for arbitrary coefficients $c_{n, j}$

$$
\begin{equation*}
\sum_{k=0}^{n} \sum_{j=0}^{k}\binom{k}{j} c_{n, j}=\sum_{j=0}^{n}\binom{n+1}{j+1} c_{n, j} . \tag{20.13}
\end{equation*}
$$

Change the order of summation on the left-hand side and use the "hockeystick identity" $\sum_{k=j}^{n}\binom{k}{j}=\binom{n+1}{j+1}$.
(h) Use this result to show that the right-hand sides of Eqs. 20.10) and (20.11) are equal and, therefore, that Eq. (20.5) holds.

