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Exercise 19: Spontaneous symmetry breaking

Consider a theory with N real scalar fields governed by a Lagrangian
1
L= 5(8M<I>)T(8“<I>) —V(eTe), (19.1)

where ® is a vector, & = (¢1,...,¢n). Let the potential be

V(eTe) = — “;(@T@) + 2(@%)2, (19.2)

where 1 and A are positive constants. This potential is manifestly symmetric under
the SO(N) group.

(a) Let R = (®T®). Find the minimum, R,,., of the potential in Eq. (19.2)).

Consider a possible pattern of symmetry breaking where one of the scalar fields
obtains a non-zero expectation value. In this case one can write

1 =v+Xx1, ¢i=x; forie{2,...,N}. (19.3)
where v is a constant and y; describe small excitations around the minimum of the
potential.

(b) Express v in terms of R,.

(¢) Rewrite the Lagrangian in terms of the fields x;. What is the symmetry of
the Lagrangian after the symmetry breaking? How many Goldstone bosons
do you expect? How many massive scalar fields are present?

Now think of a different pattern of symmetry breaking, where two fields obtain a
non-zero expectation value. In this case one can write

¢1,2 =V12+ X1,25 ¢; = x; for i € {3> cee N} (194)

where v; and vy are constants and, again, y; describe small excitations around the
minimum of the potential.

(d) Express vy and vq in terms of Ry, and a mixing angle 6.

(e) Explain why, despite the fact that two fields obtain a non-zero expectation
value, the above symmetry breaking pattern is equivalent to the previous
one. Confirm this by rewriting the Lagrangian in terms of the fields y; and
by diagonalising the mass matrix.
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Exercise 20: Non-abelian gauge transformation

In lecture 7 it was discussed why the gauge field flﬂ belongs to the Lie algebra for
the case of an SU(2) gauge theory. This will be generalised in this exercise.

Consider a non-abelian gauge theory with a gauge group G. Under a non-abelian
gauge transformation, the gauge field transforms as

Auw) = Ayla) = U@ A @)U (@) + 00 @)U (). (20.1)

~

Recall that the gauge field is defined as A, (z) = >, Aj(z)t?, where the ¢* are the
generators of the Lie algebra g associated to the gauge group. In particular, this
means that the gauge field belongs to the algebra, fl“ € g. Now one has to show
that also the gauge transformed field belongs to the algebra, /Al; €g.

The matrices t¢ fulfil the commutation relations [t?, t°] = F2t¢ for some structure
constants F'*¢. Thus, the commutator of tw,o generators is again a linear combi-
nation of generators, i.e. [t%,t*] € g. The gauge transformations can be written
as U(x) = exp(i ), 0%(x)t*). To make the notation more compact, we define the
following shorthands for nested commutators:

Ao(X, V)=V, AoV, X) =Y, (20.2)
AL(X,Y)=[X,A,_1(X,Y)], ALY, X) = [A, (Y, X), X]. (20.3)

(a) It will be shown in the next subquestions that

“ A (X,)Y
BXYG_X:Z n( ) )

n!
n=0
1 1
:Y+[X,Y]+5[X,[X,Y]]—i—g[X,[X,[X,Y]]]—l—... (20.4)
and that
iex(t):eX(t) iA”<%’X)
dt —~ (n+1)!
1 1
:eX(t)(%Jri[%,)(]+§[[%,X],X}+...). (205

For now, use Eqgs. (20.4)) and (20.5) to show that fl; €g.

(b) Prove Eq. (20.4). To that end, it is useful to define an auxiliary function
F(z) = e#XYe %, For z = 1 this becomes the left-hand side of Eq. (20.4)).
Make a power series ansatz for F'(z),

=1
F(z) =) —F." (20.6)
n=0

. . dF . . .
and use the derivative # to derive a recurrence relation for the coefficients

F,,. Use this to show Eq.z (20.4)).
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Now, prove Eq. (20.5). Use the following steps:
(c) Show that the left-hand side of Eq. (20.5) can be written as

%ex(t) => = i ] ;X”‘k(t) (%t(t)) X" (). (20.7)

n=0

(d) Show that

Y, X"] = (Z) X* A, (Y, X), (20.8)

3
—

i

and conclude from it that

YX" = i (Z) X* AL (Y, X). (20.9)

k=0

Proceed by induction over n. You may find the identity (Zﬁ) =)+ (lcil)
to be useful.

(e) Use the previous result to further reexpress Eq. (20.7) as

n k

%exu) -2 i 2= 2 (I;) X A (B, X (1), (20.10)

" k=0 j=0

(f) Show that the right-hand side of Eq. (20.5)) can be transformed into

i o= AL (LX) e 1 " /n+1 e ax
e ()(;W>_gmjo <j+1>X (1) A;(E,X).
(20.11)

Use for this the Cauchy product of two series,

(2 an) : (; bm> = iiakbnk. (20.12)

n=0 k=0

(g) |Optional| Prove that for arbitrary coefficients ¢, ;
n k k n n4+1
S (e =S (" s 20.13
G =2 (G 0) 204

k=0 j=0 Jj=0

Change the order of summation on the left-hand side and use the “hockey-
stick identity” >} (’;) = (;‘Ill)

(h) Use this result to show that the right-hand sides of Egs. (20.10)) and (20.11])
are equal and, therefore, that Eq. (20.5) holds.
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