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Exercise 16: Source free electromagnetism 5 points

Consider the Lagrangian for source free electromagnetism:

LEM(A, ∂A) = −1

4
FµνF

µν , (16.1)

where Fµν = ∂µAν − ∂νAµ.

(a) Show that the Euler-Lagrange equations are ∂µF
µν = 0. In order to perform

the variation, treat each component of Aµ as an independent scalar field:

δ

δ(∂αAβ(y))
∂µAν(x) = δαµδ

β
ν δ

(4)(x− y). (16.2)

(b) Rewrite the Euler-Lagrange equations in terms of the electric and magnetic
fields: Ei = −F 0i and Bi = −(1/2)εijkF jk. Show that by doing this, you
recover two of Maxwell’s equations in the vacuum:

~∇ · ~E = 0 , ∂t ~E = ~∇× ~B . (16.3)

Hint: Remember that εijkεilm = δjlδkm − δjmδkl.

(c) Rewrite LEM in terms of ~E and ~B. Hint: Remember also that εijkεijl = 2δkl.

The energy-momentum tensor T µν is given by

T µν =
δL

δ(∂µAρ)
∂νAρ − gµνL = −F µρ∂νAρ + gµν

(
1

4
FρσF

ρσ

)
. (16.4)

It is conserved, i.e. ∂µT
µν = 0. Note that it is not a symmetric tensor, T µν 6= T νµ.

Define now a new energy-momentum tensor

T̂ µν = T µν + ∂λK
λµν (16.5)

where the tensor K is antisymmetric on its first two indices: Kλµν = −Kµλν .

(d) Show that T̂ µν is also conserved (∂µT̂
µν = 0). Show furthermore that for

the choice Kλµν = F µλAν , T̂ µν is a symmetric tensor (you can use the
Euler-Lagrange equations to do so).
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(e) For the choice of T̂ µν in the previous subquestion, show that the energy and
momentum of the field are the familiar expressions:

P 0 =

∫
d3~x

1

2
(| ~E|2 + | ~B|2)

~P =

∫
d3~x ( ~E × ~B). (16.6)

Exercise 17: Gauge invariance and geometry 3 points

In a recent lecture local gauge invariance was discussed. We considered a local
U(1) gauge transformation of the complex scalar field

φ(x)→ eiα(x)φ(x), (17.1)

where α(x) is a real scalar function. The Lagrangian for a free scalar field of mass
m exhibits invariance under this transformation only after replacing the ordinary
derivative with the covariant derivative

Dµ = ∂µ − igAµ, (17.2)

where Aµ = Aµ(x) is a vector field with the gauge transformation rule,

Aµ(x)→ Aµ(x) +
1

g
∂µα(x). (17.3)

Unlike the transformation of the scalar (17.1) the transformation of the gauge
field (17.3) is inhomogeneous. One might worry that this new vector field can be
transformed to zero everywhere and is therefore without physical relevance.

(a) To show that the gauge field has physical relevance, we consider transporting
the scalar field around a closed loop in space-time using the covariant
derivative. We perform the transportation by considering an infinitesimal
displacement (parametrised by ε� 1) of the scalar field in a direction, ηµ,

φ(x+ εη) = φ(x) + εηµDµφ(x) +
1

2
ε2ηµηνDµDνφ(x) +O(ε3). (17.4)

Show that transporting the scalar field around the closed loop in the illu-
stration below, we obtain

φ�(x) = (1− ε2ηµκν [Dµ, Dν ])φ(x). (17.5)

κ

η

https://www.ttp.kit.edu/courses/ws2019/ettp/start page 2 of 4

https://www.ttp.kit.edu/courses/ws2019/ettp/start


(b) Verify that the change in the field after transportation, i.e. the commutator,
is gauge-invariant and proportional to the field strength tensor,

Fµν = ∂µAν − ∂νAµ. (17.6)

Knowing that the change in the scalar field under transportation around a
closed loop is gauge-invariant and non-zero, what can you conclude about
the physical significance of the gauge field, Aµ?

Exercise 18: Charge conjugation 5 points

In this exercise we consider a transformation known as charge conjugation. For the
complex scalar field encountered in a lecture this transformation is defined through
a unitary operator, ζ,

φ(x)→ ζφ(x)ζ = ηcφ
†(x), (18.1)

where ηc is a phase factor. Note that ζ = ζ−1.

(a) Show that the Lagrangian for a complex field (suppressing space-time de-
pendence)

L = (∂µφ
†)(∂µφ)−m2φ†φ− V (φ†φ), (18.2)

is invariant under charge conjugation. How does the conserved charge,

Q = −i
∫
d3~x

[
φ∂0φ

† − φ†∂0φ
]
, (18.3)

transform?

(b) Invert the field expansions

φ(t, ~x) =

∫
d3~k

(2π)3
√

2ωk

(
a~ke
−iωkt+i~k·~x + b†~ke

iωkt−i~k·~x
)
, (18.4)

φ†(t, ~x) =

∫
d3~k

(2π)3
√

2ωk

(
a†~ke

iωkt−i~k·~x + b~ke
−iωkt+i~k·~x

)
, (18.5)

to obtain expressions for the creation and annihilation operators in terms of
linear combinations of the fields and their time derivatives.

(c) Derive

ζa~kζ = ηcb~k, ζb~kζ = η∗ca~k, (18.6)

and show that

ζ|~k〉a = η∗c |~k〉b, ζ|~k〉b = ηc|~k〉a. (18.7)

Note that charge conjugation leaves the vacuum invariant. You can either
use the result of b) or directly consider the transformation properties of
Eqs. (18.4) and (18.5).
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(d) In a recent lecture we encountered the photon. Its interaction with the
complex scalar field is given by the gauge-invariant Lagrangian

L = −1

4
FµνF

µν + (Dµφ)†(Dµφ)−m2φ†φ− V (φ†φ), (18.8)

where Dµ = ∂µ− igAµ(x). Assuming that the Lagrangian is invariant under
charge conjugation, show that

ζAµ(x)ζ = −Aµ(x). (18.9)
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