

Introduction to Theoretical Particle Physics

Lecture: Prof. Dr. K. Melnikov Exercises: Dr. C. Brønnum-Hansen, Dr. M. Jaquier

Exercise Sheet 5

Issue: 08.11. – Submission: 15.11. @ 12:00 Uhr – Discussion: 19.11. and 20.11

Exercise 10: Matrix identity

Let **M** be an arbitrary $n \times n$ matrix of complex numbers with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$.

- (a) Show that the determinant of the exponential of \mathbf{M} can be expressed in terms of the exponential of its trace, i.e. $det(exp(\mathbf{M})) = exp(Tr(\mathbf{M}))$.
- (b) Using the above identity, prove the identity you have used in the lecture to derive the Noether theorem,

$$\det(\mathbf{1} + \epsilon \mathbf{M}) = 1 + \epsilon \operatorname{Tr}(\mathbf{M}) + \mathcal{O}(\epsilon^2), \qquad (10.1)$$

where ϵ is a small parameter.

Exercise 11: Relativistic normalisation

Under a boost of velocity v in the z-direction we have

$$p'_{z} = \gamma(p_{z} + \beta E)$$
$$E' = \gamma(E + \beta p_{z}),$$

where $\beta = \frac{v}{c}$ and $\gamma = \frac{1}{\sqrt{1-\beta^2}}$.

(a) Using the delta function identity

$$\delta(f(x) - f(x_0)) = \frac{1}{\left|\frac{df}{dx}(x_0)\right|} \delta(x - x_0), \tag{11.1}$$

show that

$$E\,\delta^{(3)}(\vec{p}-\vec{q}) = E'\,\delta^{(3)}(\vec{p}'-\vec{q}').$$
(11.2)

Hint: Outside the delta function you can set $E_{\vec{p}} = E_{\vec{q}} = E$.

(b) Use the result above to argue that by defining momentum states as

$$|\vec{p}\rangle = \sqrt{2E_{\vec{p}}} a^{\dagger}_{\vec{p}} |0\rangle, \qquad (11.3)$$

we obtain a relativistically invariant normalisation of $\langle \vec{p} | \vec{q} \rangle$.

https://www.ttp.kit.edu/courses/ws2019/ettp/start

3 points

2 points

Exercise 12: Multiparticle states

You have seen in the lecture how excited states of the Hamiltonian for a scalar field can be obtained by repeated action of the creation operator on the vacuum:

$$|\vec{k}_1, \dots, \vec{k}_N\rangle = \left(\prod_i \sqrt{2\omega_{k_i}}\right) a^{\dagger}_{\vec{k}_1} \dots a^{\dagger}_{\vec{k}_N}|0\rangle, \qquad (12.1)$$

and that the energy of those states is given by

$$H|\vec{k}_1,\ldots,\vec{k}_N\rangle = \left(\sum_i \omega_i\right)|\vec{k}_1,\ldots,\vec{k}_N\rangle . \qquad (12.2)$$

In this exercise we will investigate the action of two more operators on such states.

(a) It has been shown in the lecture that the three-momentum operator for a scalar field φ can be determined as

$$P^{i} = \int \mathrm{d}^{3}\vec{x} \ T^{0i} = \int \mathrm{d}^{3}\vec{x}\pi(t,\vec{x})\partial^{i}\varphi(t,\vec{x}) \ , \qquad (12.3)$$

where $T^{\mu\nu}$ is the energy-momentum tensor for a scalar field. Use the representation of φ and π in terms of creation and annihilation operators and show that the momentum operator can be written as

$$\vec{P} = \int \frac{\mathrm{d}^3 \vec{k}}{(2\pi)^3} \vec{k} a_{\vec{k}}^{\dagger} a_{\vec{k}} . \qquad (12.4)$$

(b) Show that by acting with the momentum operator on the state $|\vec{k}_1, \ldots, \vec{k}_N\rangle$ as defined above you obtain the sum over the momenta \vec{k}_i ,

$$\vec{P}|\vec{k}_1,\ldots,\vec{k}_N\rangle = \left(\sum_i \vec{k}_i\right)|\vec{k}_1,\ldots,\vec{k}_N\rangle$$
 (12.5)

(c) In analogy to the harmonic oscillator one can also define a particle number operator,

$$\hat{N} = \int \frac{\mathrm{d}^3 \vec{k}}{(2\pi)^3} a_{\vec{k}}^{\dagger} a_{\vec{k}} \,. \tag{12.6}$$

Use the calculation from the previous subquestion to argue that

$$\hat{N}|\vec{k}_1,\dots,\vec{k}_N\rangle = N|\vec{k}_1,\dots,\vec{k}_N\rangle .$$
(12.7)

(you don't have to repeat the full calculation).

With this you have shown that the state $|\vec{k}_1, \ldots, \vec{k}_N\rangle$ is an eigenstate of the energy, momentum and number operators with eigenvalues

$$\sum_{i} \omega_i , \quad \sum_{i} \vec{k}_i , \quad N .$$
 (12.8)

One can thus identify this state as a multiparticle state containing N particles with relativistic energy $\omega_i = \sqrt{\vec{k}_i^2 + m^2}$ and momentum \vec{k}_i , respectively.

https://www.ttp.kit.edu/courses/ws2019/ettp/start page 2 of 3

5 points

Exercise 13: Vacuum energy density

3 points

In the lecture, we have encountered the energy density of the vacuum

$$\rho_{\rm vac} = \frac{E_{\rm vac}}{V} = \int \frac{\mathrm{d}^3 \vec{k}}{(2\pi)^3} \frac{\omega_k}{2} \,, \tag{13.1}$$

where $\omega_k = \sqrt{\vec{k}^2 + m^2}$. We saw that the integral is divergent in general. We introduced a cut-off, which was motivated by the energy scale at which gravity effects become important and therefore, where we would expect our theory to break down at the latest. This yielded a value for $\rho_{\rm vac}$ which was 122 orders of magnitude larger than the value expected from measurements of the cosmological constant $\Lambda_{\rm CC}$. Here, we would like to get an idea of how large the contribution to $\rho_{\rm vac}$ from, for example, the electron is.

- (a) As in the lecture, switch to spherical coordinates and regulate the integral by replacing the upper integration limit of the radial integral by a cutoff Λ . Solve the integral for $0 < m \leq \Lambda < \infty$.
- (b) We expect the theory to hold at least up to scales of the electron mass m_e . Calculate numerical values for $\rho_{\rm vac}$ for $m = m_e$ and $\Lambda = 2m_e$. Compare those numbers to the vacuum energy density expected from the cosmological constant, $\frac{\Lambda_{\rm CC}}{8\pi G}$. Use $\Lambda_{\rm CC} = 4.30 \cdot 10^{-66} \, {\rm eV}^2$ for the cosmological constant and $G = 6.71 \cdot 10^{-39} \, {\rm GeV}^{-2}$ for Newton's gravitational constant. Think about what you can learn from this comparison.