Introduction to Theoretical Particle Physics

Lecture: Prof. Dr. K. Melnikov
Exercises: Dr. C. Brønnum-Hansen, Dr. M. Jaquier

Exercise Sheet 3

Issue: 25.10. - Submission: 31.10. @ 18:00 Uhr - Discussion: 05.11/06.11

Exercise 6: Two-point correlation function

3 points

In the lecture you have seen how the matrix element $\left\langle x_{f}, t_{f}\right| q\left(t_{1}\right)\left|x_{i}, t_{i}\right\rangle$, where $q\left(t_{1}\right)$ is the position operator in the Heisenberg representation, can be written as a path integral with an additional factor $x\left(t_{1}\right)$ in the integrand:

$$
\begin{equation*}
\left\langle x_{f}, t_{f}\right| q\left(t_{1}\right)\left|x_{i}, t_{i}\right\rangle=\left.\int[\mathcal{D} x(t)] x\left(t_{1}\right) e^{\frac{\hbar}{i} S}\right|_{x\left(t_{f}\right)=x_{f}, x\left(t_{i}\right)=x_{i}} \tag{6.1}
\end{equation*}
$$

Show that a similar identity holds for the matrix element of two position operators at times t_{1} and t_{2},

$$
\begin{equation*}
\left\langle x_{f}, t_{f}\right| T q\left(t_{1}\right) q\left(t_{2}\right)\left|x_{i}, t_{i}\right\rangle=\left.\int[\mathcal{D} x(t)] x\left(t_{1}\right) x\left(t_{2}\right) e^{\frac{i}{\hbar} S}\right|_{x\left(t_{f}\right)=x_{f}, x\left(t_{i}\right)=x_{i}} \tag{6.2}
\end{equation*}
$$

Where T is the time-ordering operator,

$$
\begin{equation*}
T q\left(t_{1}\right) q\left(t_{2}\right)=\theta\left(t_{1}-t_{2}\right) q\left(t_{1}\right) q\left(t_{2}\right)+\theta\left(t_{2}-t_{1}\right) q\left(t_{2}\right) q\left(t_{1}\right) . \tag{6.3}
\end{equation*}
$$

Explain why the time-ordering operator has to be introduced.

Exercise 7: Harmonic oscillator with external force

Consider a free harmonic oscillator with the Lagrangian

$$
\begin{equation*}
L_{\mathrm{H.O} .}(\dot{q}, q)=\frac{1}{2} m \dot{q}(t)^{2}-\frac{1}{2} m \omega^{2} q(t)^{2} \tag{7.1}
\end{equation*}
$$

where m is the mass parameter and ω is the frequency. The action of an external force $m f(t)$ on the oscillator is modelled by an additional term in the Lagrangian

$$
\begin{equation*}
\delta L_{\mathrm{ext}}=m f(t) q(t) \tag{7.2}
\end{equation*}
$$

In the lectures it was shown that taking $H \rightarrow(1-i \epsilon) H$, where ϵ is infinitesimal and positive, the transition amplitude from the ground state in the remote past $(t=-\infty)$ to the ground state in the remote future $(t=+\infty)$ is given by

$$
\begin{equation*}
\langle 0 \mid 0\rangle=\int[\mathcal{D} q] \exp \{i S\}, \tag{7.3}
\end{equation*}
$$

where $[\mathcal{D} q]$ denotes the usual path integral. In this exercise we study the path integral in the presence of an external force where the full Lagrangian is given by $L_{\text {full }}=\left(L_{\text {H.O. }}+\delta L_{\text {ext }}\right)$.
(a) What is the Hamiltonian H of the free harmonic oscillator? Show that the limit, $H \rightarrow(1-i \epsilon) H$, is equivalent to the replacements

$$
\begin{equation*}
m \rightarrow m(1+i \epsilon), \quad \quad m \omega^{2} \rightarrow m \omega^{2}(1-i \epsilon) \tag{7.4}
\end{equation*}
$$

Since ϵ is infinitesimally small, keep only linear terms and neglect all terms of $\mathcal{O}\left(\epsilon^{2}\right)$.
(b) Perform the shift of Eq. (7.4) on the H.O. Lagrangian (7.1) and write it in terms of the Fourier transformed variables

$$
\begin{equation*}
\tilde{q}(E)=\int_{-\infty}^{+\infty} d t e^{i E t} q(t), \quad q(t)=\int_{-\infty}^{+\infty} \frac{d E}{2 \pi} e^{-i E t} \tilde{q}(E) . \tag{7.5}
\end{equation*}
$$

Show that the action, $S=\int_{-\infty}^{+\infty} d t L_{\text {full }}$, can be written in terms of an integral over one Fourier parameter, E,

$$
\begin{equation*}
S=\frac{m}{2} \int_{-\infty}^{\infty} \frac{\mathrm{d} E}{2 \pi}\left[\left(E^{2}-\omega^{2}+i \epsilon\right) \tilde{q}(E) \tilde{q}(-E)+\tilde{f}(E) \tilde{q}(-E)+\tilde{f}(-E) \tilde{q}(E)\right] . \tag{7.6}
\end{equation*}
$$

Hints:
\star Use a separate Fourier parameter for each power of $q(t)$ and perform the integral over time

$$
\begin{equation*}
\int_{-\infty}^{+\infty} d t e^{i\left(E+E^{\prime}\right) t}=(2 \pi) \delta\left(E+E^{\prime}\right) \tag{7.7}
\end{equation*}
$$

\star Since the $i \epsilon$ prescription is considered in the $\epsilon \rightarrow 0$ limit, you can rescale $i\left(E^{2}+\omega^{2}\right) \epsilon \rightarrow i \epsilon$.
(c) Perform a shift of the variable \tilde{q},

$$
\begin{equation*}
\tilde{q}(E) \longrightarrow \tilde{x}(E)=\tilde{q}(E)+\frac{\tilde{f}(E)}{E^{2}-\omega^{2}+i \epsilon} . \tag{7.8}
\end{equation*}
$$

Argue that the path integral measure does not change under this transformation, i.e. $[\mathcal{D} q]=[\mathcal{D} x]$. Verify that the action splits into two pieces, one that is quadratic in \tilde{x} and another which is independent of \tilde{x}. Show that

$$
\begin{equation*}
\langle 0 \mid 0\rangle_{f}=\exp \left\{-\frac{i}{2} m \int_{-\infty}^{+\infty} \frac{d E}{2 \pi} \frac{\tilde{f}(E) \tilde{f}(-E)}{E^{2}-\omega^{2}+i \epsilon}\right\} \cdot\langle 0 \mid 0\rangle_{f=0} \tag{7.9}
\end{equation*}
$$

(d) The second factor on the right-hand-side of Eq. (7.9) is the transition amplitude in the absence of an external force and hence $\langle 0 \mid 0\rangle_{f=0}=1$. Perform an inverse Fourier transform and show that the transition amplitude can be written as

$$
\begin{equation*}
\langle 0 \mid 0\rangle_{f}=\exp \left\{\frac{i}{2} m \int_{-\infty}^{+\infty} d t d t^{\prime} f(t) G\left(t-t^{\prime}\right) f\left(t^{\prime}\right)\right\} \tag{7.10}
\end{equation*}
$$

where

$$
\begin{equation*}
G\left(t-t^{\prime}\right)=-\int_{-\infty}^{+\infty} \frac{d E}{2 \pi} \frac{e^{i E\left(t-t^{\prime}\right)}}{E^{2}-\omega^{2}+i \epsilon} \tag{7.11}
\end{equation*}
$$

https://www.ttp.kit.edu/courses/ws2019/ettp/start
(e) Verify that the function $G\left(t-t^{\prime}\right)$ of Eq. (7.11) is a Green's function for the harmonic oscillator, i.e. check that after taking $\epsilon \rightarrow 0$ limit the following equation holds

$$
\begin{equation*}
\left(\partial_{t}^{2}+\omega^{2}\right) G\left(t-t^{\prime}\right)=\delta\left(t-t^{\prime}\right) . \tag{7.12}
\end{equation*}
$$

(f) Using the residue theorem, show that the Green's function of Eq. (7.11) can be written explicitly as

$$
\begin{equation*}
G\left(t-t^{\prime}\right)=\frac{i}{2 \omega} e^{-i \omega\left|t-t^{\prime}\right|} . \tag{7.13}
\end{equation*}
$$

Hint: See the discussion in Sec. 2.4 of Peskin \& Schroeder.

