Introduction to Theoretical Particle Physics

Lecture: Prof. Dr. K. Melnikov
Exercises: Dr. C. Brønnum-Hansen, Dr. M. Jaquier

Exercise Sheet 2

Issue: 18.10. - Submission: 25.10. @ 12:00 Uhr - Discussion: 29.10 / 30.10

Exercise 3: Path integral in quantum mechanics

4 points

We saw in the lecture that the transition amplitude $U\left(x_{f}, x_{i} ; t_{f}, t_{i}\right)=\left\langle x_{f}\right| \mathrm{e}^{-\frac{i}{\hbar} H\left(t_{f}-t_{i}\right)}\left|x_{i}\right\rangle$ can be expressed using the path integral as

$$
\begin{equation*}
U\left(x_{f}, x_{i} ; t_{f}, t_{i}\right)=\int[\mathcal{D} x(t)] \exp \left(\frac{i}{\hbar} \int_{t_{i}}^{t_{f}} \mathrm{~d} \tau L[x, \dot{x}]\right) \tag{3.1}
\end{equation*}
$$

where $L[x, \dot{x}]$ is the Lagrange function, which is a functional of the trajectory $x(t)$ and its derivative, and $\int[\mathcal{D} x(t)]$ is the path integral which integrates over all possible trajectories. It can be explicitly constructed by discretising the integration over time into $n+1$ steps of length $\delta t=\frac{t_{f}-t_{i}}{n+1}$, integrating over the values x_{k} of the trajectory at each time step and then taking the continuum limit $n \rightarrow \infty$,

$$
\begin{equation*}
U\left(x_{f}, x_{i} ; t_{f}, t_{i}\right)=\lim _{n \rightarrow \infty}\left(\frac{m}{2 \pi i \hbar \delta t}\right)^{\frac{n+1}{2}}\left(\prod_{k=1}^{n} \int_{-\infty}^{\infty} \mathrm{d} x_{k}\right) \exp \left(\frac{i}{\hbar} \sum_{j=1}^{n+1} L\left(x_{j}, \frac{x_{j}-x_{j-1}}{\delta t}\right) \delta t\right) . \tag{3.2}
\end{equation*}
$$

Given the Lagrange function of a free, non-relativistic particle

$$
\begin{equation*}
L=\frac{m}{2} \dot{x}^{2}, \tag{3.3}
\end{equation*}
$$

calculate the transition amplitude $U\left(x_{f}, x_{i} ; t_{f}, t_{i}\right)$ explicitly via the path integral, i.e. by starting with Eq. (3.2), performing the integrals over all generalised coordinates and finally taking the continuum limit.
Hint: Rewrite each integral over $\mathrm{d} x_{j}$ as a Gaussian integral and use the result recursively.

Exercise 4: Coupled harmonic oscillators

8 points

Quantum Field Theory is essentially Quantum Mechanics with infinitely many degrees of freedom. In this exercise we investigate a quantum mechanical system with N degrees of freedom and at the end take the $N \rightarrow \infty$ limit.
Consider a chain of N coupled quantum mechanical harmonic oscillators with mass m and frequency Ω_{0}. The distance between the equilibrium position of one oscillator
to the next one is a. The deviation of the n-th oscillator from its equilibrium position is denoted as q_{n}, such that its position with respect to the equilibrium position of the zeroth oscillator is given by $x_{n}=a_{n}+q_{n}$, with $a_{n}=a \cdot n$. The coupling between two neighbouring oscillators is given by a harmonic potential as well with frequency Ω, such that the Hamiltonian of the system is given by

$$
\begin{equation*}
H=\sum_{n=1}^{N} \frac{p_{n}^{2}}{2 m}+\frac{m \Omega^{2}}{2}\left(q_{n}-q_{n-1}\right)^{2}+\frac{m \Omega_{0}^{2}}{2} q_{n}^{2}, \tag{4.1}
\end{equation*}
$$

where we used natural units, $\hbar=1$. The chain has periodic boundary conditions such that $q_{0}=q_{N}$.
(a) The canonical commutation relations are given by $\left[x_{n}, p_{m}\right]=i \delta_{n m}$. What are the commutation relations

$$
\begin{equation*}
\left[q_{n}, p_{m}\right], \quad\left[q_{n}, q_{m}\right], \quad\left[p_{n}, p_{m}\right] ? \tag{4.2}
\end{equation*}
$$

(b) Determine from the Hamiltonian the equations of motion in the Heisenberg picture. Show that they can be combined into a second order differential equation for $q_{n}(t)$,

$$
\begin{equation*}
\ddot{q}_{n}(t)=\Omega^{2}\left(q_{n+1}(t)+q_{n-1}(t)-2 q_{n}(t)\right)-\Omega_{0}^{2} q_{n}(t) . \tag{4.3}
\end{equation*}
$$

(c) In order to diagonalise the Hamiltonian it is convenient to decompose the motion into individual Fourier modes:

$$
\begin{align*}
q_{n} & =\frac{1}{\sqrt{m N}} \sum_{j} e^{i k_{j} a_{n}} Q_{j} \quad \Leftrightarrow \quad Q_{j}=\sqrt{\frac{m}{N}} \sum_{n} e^{-i k_{j} a_{n}} q_{n} \\
p_{n} & =\sqrt{\frac{m}{N}} \sum_{j} e^{-i k_{j} a_{n}} P_{j} \quad \Leftrightarrow \quad P_{j}=\frac{1}{\sqrt{m N}} \sum_{n} e^{i k_{j} a_{n}} p_{n} \tag{4.4}
\end{align*}
$$

Here $k_{j}=\frac{2 \pi j}{N a}$ and j takes integer values $-\frac{N}{2}<j \leq \frac{N}{2}$ for even N respectively $-\frac{N-1}{2} \leq j \leq \frac{N-1}{2}$ for odd N due to the periodic boundary conditions. The Fourier coefficients satisfy orthogonality and completeness relations:

$$
\begin{equation*}
\frac{1}{N} \sum_{n} e^{i k_{j} a_{n}} e^{-i k_{l} a_{n}}=\delta_{j l} \quad, \quad \frac{1}{N} \sum_{j} e^{i k_{j} a_{n}} e^{-i k_{j} a_{m}}=\delta_{n m} \tag{4.5}
\end{equation*}
$$

Show that in terms of the new coordinates Q_{n} and P_{n} the Hamiltonian becomes

$$
\begin{equation*}
H=\frac{1}{2} \sum_{j}\left(P_{j} P_{j}^{\dagger}+\omega_{j}^{2} Q_{j} Q_{j}^{\dagger}\right) \tag{4.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega_{j}^{2}=\Omega^{2}\left(2 \sin \left(\frac{k_{j} a}{2}\right)\right)^{2}+\Omega_{0}^{2} \tag{4.7}
\end{equation*}
$$

Use the fact that due to the hermeticity of q_{n} and p_{n}, one has $Q_{j}^{\dagger}=Q_{-j}$ and $P_{j}^{\dagger}=P_{-j}$.
(d) In the Hamiltonian of the previous subquestion, modes with positive and negative j are still coupled. In order to deal with this one introduces the operators

$$
\begin{align*}
a_{j} & =\frac{1}{\sqrt{2 \omega_{j}}}\left(\omega_{j} Q_{j}+i P_{j}^{\dagger}\right) \quad \Leftrightarrow \tag{4.8}\\
a_{j}^{\dagger} & =\frac{1}{\sqrt{2 \omega_{j}}}\left(\omega_{j} Q_{j}^{\dagger}-i P_{j}\right)
\end{aligned} \Leftrightarrow \quad \begin{aligned}
& Q_{j}=\frac{1}{\sqrt{2 \omega_{j}}}\left(a_{j}+a_{-j}^{\dagger}\right) \\
& P_{j}=-i \sqrt{\frac{\omega_{j}}{2}}\left(a_{-j}-a_{j}^{\dagger}\right) .
\end{align*}
$$

Calculate the commutators

$$
\begin{equation*}
\left[a_{j}, a_{l}\right], \quad\left[a_{j}^{\dagger}, a_{l}^{\dagger}\right], \quad\left[a_{j}, a_{l}^{\dagger}\right] \tag{4.9}
\end{equation*}
$$

and find the Hamiltonian in terms of those new operators.
(e) Consider now the limit $a \rightarrow 0, N \rightarrow \infty$, while the length $L=a N$, density $\rho=\frac{m}{a}$ and tension $v^{2}=(\Omega a)^{2}$ stay constant. This limit describes for instance an oscillating string. Let

$$
\begin{equation*}
q(x)=q_{n} \sqrt{\frac{m}{a}} \quad, \quad p(x)=p_{n} \sqrt{\frac{1}{m a}} \tag{4.10}
\end{equation*}
$$

where $x=a_{n}$. Rewrite the equation of motion from subquestion b) in this limit. Replace further

$$
\begin{equation*}
v \rightarrow c \quad, \quad \frac{\Omega_{0}^{2}}{c^{2}} \rightarrow m^{2} \tag{4.11}
\end{equation*}
$$

in the equation. What equation have you recovered?

