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Exercise 3: Path integral in quantum mechanics 4 points

We saw in the lecture that the transition amplitude U(xf , xi; tf , ti) = 〈xf |e−
i
~H(tf−ti)|xi〉

can be expressed using the path integral as

U(xf , xi; tf , ti) =

∫
[Dx(t)] exp

 i

~

tf∫
ti

dτL[x, ẋ]

 , (3.1)

where L[x, ẋ] is the Lagrange function, which is a functional of the trajectory
x(t) and its derivative, and

∫
[Dx(t)] is the path integral which integrates over all

possible trajectories. It can be explicitly constructed by discretising the integration
over time into n+ 1 steps of length δt =

tf−ti
n+1

, integrating over the values xk of the
trajectory at each time step and then taking the continuum limit n→∞,

U(xf , xi; tf , ti) = lim
n→∞

( m

2πi~δt

)n+1
2

 n∏
k=1

∞∫
−∞

dxk

 exp

(
i

~

n+1∑
j=1

L(xj,
xj−xj−1

δt
)δt

)
.

(3.2)

Given the Lagrange function of a free, non-relativistic particle

L =
m

2
ẋ2, (3.3)

calculate the transition amplitude U(xf , xi; tf , ti) explicitly via the path integral, i.e.
by starting with Eq. (3.2), performing the integrals over all generalised coordinates
and finally taking the continuum limit.
Hint: Rewrite each integral over dxj as a Gaussian integral and use the result
recursively.

Exercise 4: Coupled harmonic oscillators 8 points

Quantum Field Theory is essentially Quantum Mechanics with infinitely many
degrees of freedom. In this exercise we investigate a quantum mechanical system
with N degrees of freedom and at the end take the N →∞ limit.
Consider a chain of N coupled quantum mechanical harmonic oscillators with mass
m and frequency Ω0. The distance between the equilibrium position of one oscillator
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to the next one is a. The deviation of the n-th oscillator from its equilibrium
position is denoted as qn, such that its position with respect to the equilibrium
position of the zeroth oscillator is given by xn = an + qn, with an = a · n. The
coupling between two neighbouring oscillators is given by a harmonic potential as
well with frequency Ω, such that the Hamiltonian of the system is given by

H =
N∑
n=1

p2n
2m

+
mΩ2

2
(qn − qn−1)2 +

mΩ2
0

2
q2n , (4.1)

where we used natural units, ~ = 1. The chain has periodic boundary conditions
such that q0 = qN .

(a) The canonical commutation relations are given by [xn, pm] = iδnm. What
are the commutation relations

[qn, pm] , [qn, qm] , [pn, pm] ? (4.2)

(b) Determine from the Hamiltonian the equations of motion in the Heisenberg
picture. Show that they can be combined into a second order differential
equation for qn(t),

q̈n(t) = Ω2 (qn+1(t) + qn−1(t)− 2qn(t))− Ω2
0qn(t) . (4.3)

(c) In order to diagonalise the Hamiltonian it is convenient to decompose the
motion into individual Fourier modes:

qn =
1√
mN

∑
j

eikjanQj ⇔ Qj =

√
m

N

∑
n

e−ikjanqn

pn =

√
m

N

∑
j

e−ikjanPj ⇔ Pj =
1√
mN

∑
n

eikjanpn. (4.4)

Here kj = 2πj
Na

and j takes integer values −N
2
< j ≤ N

2
for even N respectively

−N−1
2
≤ j ≤ N−1

2
for odd N due to the periodic boundary conditions. The

Fourier coefficients satisfy orthogonality and completeness relations:

1

N

∑
n

eikjane−iklan = δjl ,
1

N

∑
j

eikjane−ikjam = δnm (4.5)

Show that in terms of the new coordinates Qn and Pn the Hamiltonian
becomes

H =
1

2

∑
j

(
PjP

†
j + ω2

jQjQ
†
j

)
, (4.6)

where

ω2
j = Ω2

(
2 sin

(
kja

2

))2

+ Ω2
0. (4.7)

Use the fact that due to the hermeticity of qn and pn, one has Q†j = Q−j

and P †j = P−j.
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(d) In the Hamiltonian of the previous subquestion, modes with positive and
negative j are still coupled. In order to deal with this one introduces the
operators

aj = 1√
2ωj

(
ωjQj + iP †j

)
a†j = 1√

2ωj

(
ωjQ

†
j − iPj

) ⇔
Qj = 1√

2ωj
(aj + a†−j)

Pj = −i
√

ωj

2
(a−j − a†j).

(4.8)

Calculate the commutators

[aj, al] , [a†j, a
†
l ] , [aj, a

†
l ] (4.9)

and find the Hamiltonian in terms of those new operators.

(e) Consider now the limit a→ 0, N →∞, while the length L = aN , density
ρ = m

a
and tension v2 = (Ωa)2 stay constant. This limit describes for

instance an oscillating string. Let

q(x) = qn

√
m

a
, p(x) = pn

√
1

ma
, (4.10)

where x = an. Rewrite the equation of motion from subquestion b) in this
limit. Replace further

v → c ,
Ω2

0

c2
→ m2 (4.11)

in the equation. What equation have you recovered?
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