
Lecture 9

Higgs mechanism and mass generation

We have seen two interesting aspects of our theories in the previous lectures:

• the gauge principle forces gauge bosons to be massless. Massless gauge bosons
induce long-range interactions (similar to photons). Except for electromagnetism
(and gravity, but this is another story), there are no other (known) long-range
interactions in Nature. So, if Nature is to be described by gauge interactions, we
need a mechanism to give gauge boson masses in a way that does not break gauge
invariance;

• spontaneous symmetry breaking leads to the appearance of massless scalar particles
– Goldstone bosons. Again, we do not really need massless scalar particles; we do
not have many of them in Nature.

The Higgs mechanism solves these two problems in a spectacular and unexpected
fashion: it cleans the spectrum of massless scalars by giving masses to gauge bosons in
a way that is consistent with gauge invariance.

To show how this works, we consider a theory of a complex scalar field and an U(1)
gauge field. The Lagrangian reads

L = −1

4
FµνF

µν + (Dµϕ)∗(Dµϕ)− V (ϕ), (1)

where Dµ = ∂µ − igAµ and

V (ϕ) = −µ
2

2
|ϕ|2 +

λ

4
|ϕ|4. (2)

As we have seen in the previous lectures, the minimum of the potential is reached at

|ϕ|2 = ϕ2
vac =

µ2

λ
. (3)

We need to understand which configuration of fields minimizes the total energy of
the system. The energy functional reads

E[A,ϕ] =

∫
d3~x

[
1

2
(F0i)

2 +
1

4
F 2
ij + (D0ϕ)∗(D0ϕ) + (Diϕ)∗(Diϕ) + V (ϕ)

]
. (4)

Since all terms with derivatives in Eq. (4) are positive definite, we need to minimize each
of them. Both, the Lagrangian Eq. (1) and the energy functional Eq. (4) are invariant
under gauge transformations

Aµ → Aµ +
1

g
∂µθ, ϕ→ eiθ(x)ϕ. (5)
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We will have to keep this in mind when discussing field configurations that minimize
E[A,ϕ].

As the first step, we note that the energy stored in the gauge fields depends on F0i ∼
Ei and Fij ∼ εijkHk, where ~E and ~H are electric and magnetic fields. These contributions
are minimized when fields vanish which is equivalent to Fµν = 0. This, in general, implies
that the vector potential is a “pure gauge” configuration, Aµ = 1

g∂µθ0(x), i.e. they are
related to Aµ = 0 via a gauge transformation. We then perform the corresponding gauge
transformation on the scalar field, going from ϕ to eiθ0(x)ϕ, and find

Dµ[eiθ0(x)ϕ] = eiθ0(x) ∂µϕ. (6)

In the context of the energy functional, this implies that it is minimized for constant
values of the field ϕ. For a constant field ϕ the minimum is reached for ϕvac, as we
already know. Hence, in the vacuum, we can always choose

ϕ = ϕvac =

√
µ2

λ
, Aµ = 0. (7)

Our next goal is to consider fluctuations around the vacuum fields. To this end, we
write the complex field using “polar coordinates”

ϕ(x) =

(
ϕvac +

χ√
2

)
eiθ(x). (8)

Then

|ϕ|2 =

∣∣∣∣ϕvac +
χ√
2

∣∣∣∣2 , (9)

so that the phase θ(x) disappears from V (ϕ).
Consider now the term Dµϕ. It reads

Dµϕ = eiθ(x)
[
∂µ − ig

(
Aµ −

∂µθ

g

)](
ϕvac +

χ√
2

)
= eiθ(x) [∂µ − igBµ]

(
ϕvac +

χ√
2

)
,

(10)
where we introduced a new gauge field Bµ = Aµ − g−1∂µθ. Since, obviously, Fµν [A] =
Fµν [B], the new Lagrangian of the theory reads

L =− 1

4
FµνF

µν +

[
(∂µ − igBµ)

(
ϕvac +

χ√
2

)]† [
(∂µ − igBµ)

(
ϕvac +

χ√
2

)]
− V

((
ϕvac +

χ√
2

)2
)
.

(11)

One remarkable thing that can be clearly seen from this Lagrangian is that the phase
θ(x) that used to produce a Goldstone boson has disappeared from the Lagrangian
completely. Moreover, the spectrum of particles describes by L is peculiar. First, by
expanding the potential V (ϕ) around ϕvac, we find that the field χ has the mass µ.
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Second, if we focus on the second term on the right hand side in Eq. (11) and expand
it, we find

1

2
∂µχ∂

µχ+
2g2ϕ2

vac

2
BµB

µ + g2BµB
µ

[√
2ϕvacχ+

χ2

2

]
. (12)

The second term is the mass term for the gauge field Bµ; the mass of this field is

m2
B = 2g2ϕ2

vac =
2g2µ2

λ
. (13)

After the symmetry breaking, the theory describes one massive vector boson and one
massive real field. As we see, the massless Goldstone boson disappeared from the spec-
trum and the longitudinal mode of the gauge field appeared. Hence, the total number of
degrees of freedom has not changed.

To make this last statement more clear, consider the equation of motion for free
massive field Bµ. It reads

∂µF
µν +m2

BB
ν = 0. (14)

We contract Eq. (14) with ∂ν and use Fµν = −Fνµ, to obtain

m2
B ∂νB

ν = 0. (15)

Since m2
B 6= 0, we conclude that

∂νB
ν = 0. (16)

Since we can represent the field Bµ as the sum over Fourier modes, Bµ ∼ εµ(p)e−ipµx
µ
,

and since ∂ν → pν , we find that above equations imply that polarization vectors ε are
transverse

pµε
µ(p) = 0. (17)

For a four-vector p = (Ep, ~p) with E2
p − ~p2 = m2

B, there are three independent vectors
that satisfy Eq. (16). They are

εµ = (0, 1, 0, 0) ,

εµ = (0, 0, 1, 0) ,

εµ =
1

mB
(p, 0, 0, Ep) .

(18)

where we have assumed that pµ = (Ep, 0, 0, p). Note that all polarization vectors are
normalized

εµε
µ = −1. (19)

The above discussion shows that a massive vector boson has three polarizations, two
transversal and one longitudinal. A massless vector boson, e.g. a photon, has only two
transversal polarizations. The longitudinal polarization that, according to Eq. (18) be-
haves strangely in mB → 0 limit, does not appear in case of photons to begin with. This
discussion illustrates the statement about the number of degrees of freedom before and
after the symmetry breaking that was made right after Eq. (13).
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After spontaneous symmetry breaking, the fields in the theory are Bµ and a real
scalar field χ. Lets us check how these fields transform under gauge transformations. In
these cases,

ϕ→ eiθ̃ϕ, Aµ → Aµ +
∂µθ̃

g
. (20)

Since χ is related to the absolute value of ϕ

|ϕ| = ϕvac +
χ√
2
, (21)

the field χ remains unchanged. At the same time since

Bµ = Aµ −
∂µθ

g
, (22)

where θ is the phase of the “original” field ϕ, if θ and Aµ change together, the field B
remains unchanged

Bµ → Aµ +
∂µθ̃

g
− ∂µ(θ + θ̃)

g
= Bµ. (23)

Hence, we conclude that the Lagrangian Eq. (11) is written in terms of physical fields
with physical properties.

We will now consider the generalization of this mechanism to the case of the SU(2)
non-abelian gauge theory. The Lagrangian reads

L = (Dµ~ϕ)†(Dµ~ϕ)− V (~ϕ†~ϕ)− 1

2
Tr [FµνF

µν ] , (24)

where ~ϕ is a two-dimensional complex vector that transforms under the fundamental
representation of SU(2). Moreover,

Dµ = ∂µ − igÂµ, Âµ =
3∑

a=1

Aaµτ
a, (25)

where τa are the generators of the SU(2) Lie algebra and

[τa, τ b] = iεabcτ c. (26)

The Lagrangian is invariant under SU(2) transformations

~ϕ→ U(x)~ϕ, Âµ → UÂµU
−1 +

1

ig
(∂µU)U−1. (27)

To study the symmetry breaking, we again choose the potential V (ϕ) to be

V (ϕ) = −µ
2

2
~ϕ†~ϕ+

λ

4

(
~ϕ†~ϕ

)2
. (28)
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Similar to the abelian case, the energy of the system is minimized for Âµ = 0 and the
vacuum field ~ϕ = ~ϕvac where

~ϕ†vac~ϕvac =
µ2

λ
. (29)

When written in components of the complex vector ϕ, the above equation reads

~ϕ =

(
ϕ1 + iϕ2

ϕ3 + iϕ4

)
⇒

[
ϕ2
1 + ϕ2

2 + ϕ2
3 + ϕ2

4

]
vac

=
µ2

λ
, (30)

so there are infinitely many possibilities to choose the vacuum field. We will choose it as
follows

~ϕvac =

(
0
v

)
, (31)

and we will write the field ϕ(x) in the following way

~ϕ(x) = U(x)~ϕR, (32)

where

ϕR =

(
0

v + χ√
2

)
, (33)

and U(x) ∈ SU(2). It is important to emphasize that the representation of the field ϕ
as in Eq. (32) is exact. To see this, write

U(x) = cos
θ(x)

2
+ i sin

θ(x)

2
~n(x) · ~σ, (34)

where ~n(x) is an x-dependent unit vector and check that the number of parameters
θ(x), ~n(x) is sufficient to express ϕ1,2, ϕ3,4 through them and the field χ(x). Indeed, if
we write

ϕ =

(
ϕ1 + iϕ2

ϕ3 + iϕ4

)
, (35)

then

ϕ1 = n2 r sin
θ

2
, ϕ2 = n1 r sin

θ

2
, ϕ3 = r cos

θ

2
, ϕ4 = −n3 r sin

θ

2
, (36)

where r = v + χ/
√

2. It follows that

r2 = ϕ2
1 + ϕ2

2 + ϕ2
3 + ϕ2

4, ctg
θ

2
=

ϕ3√
ϕ2
1 + ϕ2

2 + ϕ2
4

(37)

Once we know r and θ from the above equations, we reconstruct n1,2,3 from Eq. (36).
Having proved the existence of the representation Eq. (32), it is easy to see that it

allows us to express the Lagrangian of the theory in terms of physical degrees of freedom.
Indeed, using Eq. (32), we find

V (~ϕ) = −µ
2

2

(
v +

χ√
2

)2

+
λ

4

(
v +

χ√
2

)4

,

Dµ~ϕ = U

(
∂µ − ig

[
U−1ÂµU −

1

ig
U−1∂µU

])
~ϕR.

(38)
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We now define a new gauge field

B̂µ = U−1ÂµU −
1

ig
U−1∂µU, (39)

so that the covariant derivative in Eq. (38) only depends on the field B̂µ. Since Eq. (39)
is a canonical transformation from Âµ to B̂µ, the field-strength tensor does not change.
Hence, the Lagrangian reads

L =− 1

2
Tr
[
F̂µνF̂

µν
]

+
[(
∂µ − igB̂µ

)
~ϕR

]† (
∂µ − igB̂µ

)
~ϕR

+
µ2

2

(
v +

χ√
2

)2

− λ

4

(
v +

χ√
2

)4

.

(40)

Similar to the abelian case, the mass spectrum of gauge bosons follows from the kinetic
term of the field ϕ upon replacing ϕR with ϕvac. We obtain

g2(0 v)B̂µB̂
µ

(
0
v

)
= g2v2Ba

µB
b,µ(0 1)τaτ b

(
0
1

)
=
g2v2

4
Ba
µB

b,µ(0 1) (δab + iεabcσc)

(
0
1

)
=
g2v2

4
Ba
µB

b,µ.

(41)

Hence, our theory contains three massive gauge bosons with identical masses

m2 =
g2v2

2
. (42)

Again, it is instructive to count degrees of freedom. Before the symmetry breaking,
our theory was describing three massless gauge fields, each having two polarizations, and
a complex doublet which is described by four scalar fields; altogether 3 × 2 + 4 = 10
degrees of freedom. After the symmetry breaking we have three massive gauge fields,
each with three polarizations and one real (χ) field; altogether 3× 3 + 1 = 10 degrees of
freedom.
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