
Lecture 8

Spontaneous symmetry breaking, Goldstone effect

Consider a theory of a single scalar field

L =
1

2
(∂µϕ)2 − 1

2
m2ϕ2 − λ

4
ϕ4. (1)

As we know, the parameter m is the mass of particle-like excitations of the field ϕ and
λ is the self-coupling. The equation of motion reads(

∂µ∂
µ +m2

)
ϕ = −λϕ3. (2)

For small values of λ, we can neglect the right hand side in Eq. (2) and describe excita-
tions of the field ϕ as plane waves

ϕ ∼ e−iωkt+i~k~x, with ω~k =

√
~k2 +m2. (3)

This discussion corresponds to particles that propagate around and, if we put back the
r.h.s. in Eq. (2) back into action, interact with each other. It assumes, of course, that
m2 > 0. The minimal energy that can be stored in the field in this case can be found
from the Hamiltonian

E =

∫
d3~x

[
1

2
(∂tϕ)2 +

1

2

(
~∇ϕ
)2

+
m2ϕ2

2
+
λ

4
ϕ4

]
. (4)

The minimum value of E corresponds to ϕ = 0.
What happens if we change the sign of m2, i.e. we take

m2 = −µ2, (5)

with µ2 > 0? If we do that, the Lagrangian becomes

L =
1

2
(∂µϕ)2 − V (ϕ), (6)

with

V (ϕ) = −µ
2

2
ϕ2 +

λ

4
ϕ4. (7)

The minimal energy in this case corresponds to the minimum of

E =

∫
d3~x

[
1

2
(∂tϕ)2 +

1

2

(
~∇ϕ
)2
− µ2ϕ2

2
+
λ

4
ϕ4

]
. (8)

In this case, the time- and space-independent field ϕ still minimizes the energy but the
value of ϕ is different from zero. In fact, it corresponds to the minimum of the potential
V (ϕ). We find it by computing

∂V (ϕ)

∂ϕ
= 0 → ϕmin = ±ϕvac, ϕvac =

√
µ2

λ
. (9)

1



The energy of the vacuum is then

Evac = Ω

[
−µ

2

2

µ2

λ
+
λ

4

µ4

λ2

]
= −Ωµ4

4λ
, (10)

where Ω =
∫

d3~x is the space volume.
The important point is that if we want to describe small excitations of the field ϕ,

we cannot construct such an expansion around ϕ = 0. This is because, even for small λ,
the equations of motion of the field ϕ around ϕ = 0 is(

∂µ∂
µ − µ2

)
ϕ = 0. (11)

The solutions to this equation are ϕ ∼ e±µt, so that there is an exponentially growing
field that “moves away” from ϕ = 0 rather than it oscillates around this value. To have
“small oscillations”, we need to consider values of the field that are close to ϕ = ±ϕvac.

An important question is which of the two minima should be considered. If this
were quantum mechanics, the answer to this question is “neither” since the ground state
of a quantum-mechanical system with two minima is a symmetric wave function with
maxima both at the left and at the right minimum. The reason is the tunneling through
a potential barrier; it connects the two minima and forces us to choose a symmetric wave
function as the true ground state.

It is very important to understand that in quantum field theory we can choose one
of the two ground states and we do not need to care about tunneling. To see why this is
so, let us map the quantum field theory problem on a quantum-mechanical problem by
considering fields that are ~x-independent. Then, the action reads

S =

∫
dt

[
Ω

2
(∂tϕ)2 − ΩV (ϕ)

]
, (12)

where Ω =
∫

d3~x is the space volume on which the field ϕ has a non-vanishing support.
If we identify ϕ(t) with x(t), we can view Eq. (12) as the action of a particle with the
mass Ω and and the potential energy ΩV (ϕ).

We can now compute the tunneling amplitude from one vacuum to the other vacuum
using the quantum mechanical formulas

Atunnel ∼ e−
∫
pdx, (13)

where p ∼
√
m|U | → Ω

√
|V (ϕ)| and dx→ dϕ. Hence, in the quantum field theory, the

tunneling amplitude reads

Atunnel ∼ e
−Ω

ϕvac∫
−ϕvac

√
|V (ϕ)| dϕ

. (14)

Therefore, if we consider quantum field theory in an infinitely large volume Ω→∞ the
tunneling amplitude vanishes. For this reason, at variance with quantum mechanics, we
must choose one vacuum in quantum field theory; which one it is – the “left” ϕ = −ϕvac
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or the “right” ϕ = +ϕvac, we cannot predict. For this reason, the phenomenon of a
system choosing the (left or right) vacuum is called spontaneous symmetry breaking.

Let us imagine that the system has chosen the “right” vacuum where

〈0|ϕ|0〉 = ϕvac. (15)

We then re-write the Lagrangian Eq. (6) using a new field χ that is defined as ϕ(x) =
ϕvac + χ(x). Since ∂µϕvac = 0, we obtain the new Lagrangian

L =
1

2
∂µχ∂

µχ− V (ϕvac) +
1

2

(
µ2 − 3λϕ2

vac

)
χ2 − λϕvacχ

3 − λ

4
χ4. (16)

We use the explicit expression for ϕvac to simplify Eq. (16) and find

L =
1

2
∂µχ∂

µχ− 1

2
m2
χχ

2 − λϕvacχ
3 − λ

4
χ4 − V (ϕvac), (17)

where m2
χ = 2µ2. Note that Eq. (17) describes a theory of a scalar self-interacting field

with the mass m2
χ. In contrast to the original theory, there is nothing strange about the

theory described by Eq. (17) anymore. In particular, the mass of the field χ is positive.
As the next step, we extend the original theory by considering a larger number of

fields that appear in the Lagrangian in a symmetric way. We consider two real fields
ϕ1, ϕ2 and write them as a two-component vector

~ϕ =

(
ϕ1

ϕ2

)
. (18)

The Lagrangian reads

L =
1

2
∂µ~ϕ · ∂µ~ϕ− V (~ϕ · ~ϕ), (19)

where

V (~ϕ · ~ϕ) = −µ
2

2
~ϕ · ~ϕ+

λ

4
(~ϕ · ~ϕ)2 . (20)

The Lagrangian has an O(2) symmetry; if we rotate ~ϕ with a 2×2 orthogonal matrix

~ϕ = R̂~ϕ′, R̂TR = 1, (21)

we find
L(~ϕ) = L(~ϕ′). (22)

Since the potential energy V (ϕ) depends on the “length” of the vector ~ϕ, we can read
off the value of the field that minimizes V (~ϕ · ~ϕ) from the calculation at the beginning
of this lecture. We find

~ϕvac · ~ϕvac = ϕ2
1,vac + ϕ2

2,vac =
µ2

λ
. (23)
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It follows from Eq. (23) that the “vacuum manifold” is a circle with the radius rϕ =√
µ2/λ. In contrast to the single-field case, we parameterize the vacuum in that we write

~ϕvac = ϕvac~evac, (24)

where

~evac =

(
cos θ
sin θ

)
. (25)

Eqs. (24,25) describe a particular choice of the vacuum. To construct an expansion
around the vacuum field, we write

~ϕ = ~ϕvac + ~χ. (26)

Since ~ϕvac is a constant field, it follows

∂µ~ϕ = ∂µ~χ. (27)

We would like to express the Lagrangian Eq. (19) through the field ~χ. To do that,
we note that it is convenient to write ~ϕ as a sum of two vectors

~χ = h~evac + χ⊥~e⊥, (28)

where ~evac · ~e⊥ = 0. Then

V (~ϕ · ~ϕ) = V ((ϕvac + h)2 + χ2
⊥). (29)

Using the explicit form of the potential Eq. (20), we find

V (~ϕ · ~ϕ) = −µ
2

2

[
(ϕvac + h)2 + χ2

⊥
]

+
λ

4

(
(ϕvac + h)2 + χ2

⊥
)2
. (30)

It is easy to analyze this potential energy to arrive at the following conclusions:

• there are two fields h and χ⊥ in the Lagrangian after the symmetry breaking;

• the mass of the field h is 2µ2, similar to the single-field case;

• the mass of the field χ⊥ is zero;

• there are interactions between h and χ⊥.

• nothing depends on the chosen vacuum state that is characterized by the vector
~evac. The dependence on that vector disappeared completely.

Particle excitations of the massless field χ⊥ that appeared in the theory after the
spontaneous symmetry breaking are known as Nambu-Goldstone bosons.
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We will now do the same calculation using a different field parameterization. This
is important since choosing a different parameterization offers a different perspective on
the Nambu-Goldstone mechanism. We write the field as

~ϕ(x) = ρ(x)

(
cosα(x)
sinα(x)

)
, (31)

which means that we have chosen “spherical” coordinates in field space. The potential
energy is then

V (~ϕ · ~ϕ) = V (ρ2). (32)

However, to compute the kinetic energy stored in the field ϕ we calculate the derivative

∂µ~ϕ = (∂µρ)

(
cosα
sinα

)
+ ρ(∂µα)

(
− sinα
cosα

)
, (33)

and find
1

2
∂µ~ϕ · ∂µ~ϕ =

1

2
∂µρ∂

µρ+
ρ2

2
∂µα∂

µα. (34)

Again, to account for the spontaneous symmetry breaking, we write

ρ = ϕvac + r. (35)

The Lagrangian becomes

L =
1

2
∂µr∂

µr +
ϕ2

vac

2
∂µα∂

µα− (2µ2)

2
r2 + . . . , (36)

where the ellipsis describes the interactions between different fields. We observe from
Eq. (36) that the “angular” variable α describes a massless field (whose excitations are
Goldstone bosons) and the “radial variable” r describes a massive field with the mass
2µ2. We note that all the terms in the Lagrangian that involve the field α are proportional
to ∂µα. Since ∂µα ∼

∑
pµα, this feature implies that interactions of Goldstone bosons

become weak at small energies.
We generalize the construction to three fields and a Lagrangian that is symmetric

under SO(3) transformations. We again use Eq. (19) but this time the field ~ϕ is a triplet

~ϕ =

 ϕ1

ϕ2

ϕ3

 . (37)

Similar to the discussion of the two-component vector, we write

~ϕ = (ϕvac + h)~evac + ~χ⊥, (38)

where

~evac =

 sin θ0 cosϕ0

sin θ0 sinϕ0

cos θ0

 , (39)
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and ~χ⊥ · ~evac = 0, so that ~χ⊥ is a two-component field. If we use this representation in
the formula for the potential energy, we obtain

V (~ϕ · ~ϕ) = −µ
2

2

[
(ϕvac + h)2 + ~χ2

⊥
]

+
λ

4

(
(ϕvac + h)2 + ~χ2

⊥
)2
. (40)

As we already remarked after Eq. (30), this form of the potential energy implies that ~χ⊥
describes two massless fields (Goldstone bosons), whereas h is a massive field with the
mass squared being equal to 2µ2. It should be now obvious that if we consider a theory
of N fields that is invariant under SO(N) transformations, we will get N − 1 Goldstone
bosons after the symmetry breaking.

To understand how many Goldstone bosons arise in the theory after the symmetry
breaking, consider the field ~ϕ that describes N fields. After the symmetry breaking, we
write it as

~ϕ = (ϕvac + h)~evac + ~χ⊥, (41)

where the field ~χ⊥ describes N − 1 fields that span the (N − 1)-dimensional space Dvac

that is orthogonal to ~evac. Since the potential energy only depends on ~χ2
⊥, the theory is

still invariant under (N −1)-rotations in Dvac. We then say that the symmetry is broken
from SO(N) to SO(N − 1). We now note that the group SO(N) has GN = N(N − 1)/2
“symmetry generators”, i.e. “independent rotations”. After the symmetry breaking, the
symmetry group becomes SO(N −1), so some of the original symmetry transformations
are not symmetry transformations anymore. The number of such “broken” symmetry
transformations reads

GN −GN−1 = N − 1. (42)

This is exactly the number of massless particles that we have been finding in our ex-
amples.

We will now explain why this is not a coincidence and that, indeed, the number of
Goldstone bosons equals the number of broken symmetries in any theory. To this end,
consider a theory with the interaction potential V (~ϕ). The theory is invariant under a
symmetry that is described by generators T a, a = 1, . . . , Na. Hence, if we consider an
infinitesimal transformation

~ϕ′ = ~ϕ+ εaT
a~ϕ, (43)

the potential energy computed for ~ϕ′ and ~ϕ should be the same

V (~ϕ+ εaT
a~ϕ) = V (~ϕ). (44)

Expanding the left hand side to first order in ε, we find

0 = εa
∂V

∂ϕi
T aikϕk. (45)

Since different εa’s parameterize independent symmetry transformations, Eq. (45), in
fact, splits into Na independent equations

0 =
∂V

∂ϕi
T aikϕk, (46)
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one for every symmetry generator.
We now take the derivative of Eq. (46) with respect to ϕm. We obtain

0 =
∂2V

∂ϕi∂ϕm
T aikϕk +

∂V

∂ϕi
T aim. (47)

Eq. (47) holds for any ~ϕ. However, it is instructive to apply it at ~ϕ = ~ϕvac. Since ~ϕvac

minimizes the potential, the last term in Eq. (47) vanishes and we obtain

0 =
∂V

∂ϕi∂ϕm
|~ϕ=~ϕvac T

a
ik ϕvac,k. (48)

To understand the meaning of this equation, consider a generic Lagrange function

L =
1

2
∂µ~ϕ∂

µ~ϕ− V (~ϕ), (49)

and assume that spontaneous symmetry breaking occurs. We then write ~ϕ = ~ϕvac + ~χ
and expand around ~χ = 0. We find

L =
1

2
∂µ~χ∂

µ~χ− V (~ϕvac)−
∂V

∂ϕi
|~ϕ=~ϕvac χi −

1

2

∂V

∂ϕi∂ϕj
|~ϕ=~ϕvac χiχj + ... (50)

Since the potential V (~ϕ) has a minimum at ~ϕ = ~ϕvac, the right hand side of Eq. (50)
simplifies. We write

L =
1

2
∂µ~χ∂

µ~χ− V (~ϕvac)−
1

2
m2
ij χiχj + ..., (51)

where

m2
ij =

∂V

∂ϕi∂ϕj
|~ϕ=~ϕvac (52)

is the mass matrix. The name comes from the fact that, upon diagonalising it, we get
the information about masses of particles that our theory describes.

We note that this matrix also appears in Eq. (48) that we write in the following way

0 = mijξ
(a)
j , (53)

where ~ξ(a) = T a~ϕvac. Clearly, ~ξ(a) is what you get if you act on a vacuum field by a
generator of a symmetry transformation T (a).

According to Eq. (53) when the mass matrix multiplies any ~ξ(a), the result should be
zero, however, this can be realized in two ways. If, for a particular a, ~ξ(a) = 0, Eq. (53)
does not provide any useful information. However, if ~ξ(a) 6= 0, Eq. (53) implies that the
mass matrix has a non-trivial eigenvector with zero eigenvalue, i.e. zero mass squared.
The number of such eigenvectors is equivalent to the number of symmetries (number of
generators) that do not leave the vacuum ~ϕvac unchanged, since T a~ϕvac 6= 0. Hence, for
each broken symmetry, there is a massless mode that is a Nambu-Goldstone boson.
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