
Lecture 7

Gauge invariance: the non-abelian case

In the previous lecture we discussed how to ensure that local phase transformations
of a scalar complex field are allowed. If we go back from a single complex field to two
real scalar fields,

ϕ =
ϕ1 + iϕ2√

2
, ϕ† =

ϕ1 − iϕ2√
2

, (1)

the phase transformations become rotations of a vector ~ϕ = (ϕ1, ϕ2). Indeed, a trans-
formation ϕ→ e−iα(x)ϕ is equivalent to

~ϕ→ O(x)~ϕ, (2)

where

O(x) =

(
cosα(x) sinα(x)
− sinα(x) cosα(x)

)
. (3)

As you know, requiring the invariance of the Lagrangian under such a transformation
leads to the appearance of the gauge field that we associated with the electromagnetic
field.

We imagine now that we have a theory that contains two complex fields that we
combine into a complex doublet

~ϕ =

(
ϕ1

ϕ2

)
=

(
ϕ1R+iϕ1I√

2
ϕ2R+iϕ2I√

2

)
. (4)

We write the Lagrangian that contains this doublet as

L = ∂µ~ϕ†∂µ~ϕ−m2~ϕ†~ϕ+ V (~ϕ†~ϕ). (5)

The Lagrangian Eq. (5) is invariant under transformations of the field ~ϕ with 2× 2
special unitary matrices. These matrices can be written as

U(θ) = eiθ~n·~σ/2 = cos
θ

2
1̂ + i sin

θ

2
~n · ~σ, (6)

where

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (7)

are the Pauli matrices. It is clear that σ†i = σi,

U †(θ) = e−iθ~n·~σ/2, (8)

and U †(θ)U(θ) = 1. It is then obvious that, if θ is independent of x, the Lagrangian
Eq. (5) is invariant under the following field transformations

~ϕ→ U(θ)~ϕ. (9)
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Suppose we require that the theory is invariant under local x-dependent transforma-
tions

~ϕ→ U(θ(x))~ϕ. (10)

Similar to the QED case, we replace ordinary derivatives with the covariant ones

∂µ~ϕ→ Dµ~ϕ, Dµ = ∂µ − igÂµ. (11)

The field Âµ is a 2× 2 matrix, so that an expression Âµ~ϕ implies that a two-component
complex field is multiplied with this matrix. To understand how the covariant derivative
transforms, we write

Dµ~ϕ→
[
∂µ − igÂµ

]
U ~ϕ =

[
(∂µU)~ϕ+ U∂µ~ϕ− igÂµU ~ϕ

]
= U

[
∂µ − igU−1ÂµU + U−1∂µU

]
~ϕ.

(12)

Although the formula for the covariant derivative is modified, similar to the Abelian
case, we can absorb the modification by redefining the field

Âµ → UÂµU
−1 +

1

ig
(∂µU)U−1. (13)

Then we find
Dµ~ϕ→ UDµ~ϕ, (14)

so that the covariant derivative transforms in the same way as the field. Note that you
have to be very careful about keeping the correct order of the various matrices because
arbitrary 2× 2 matrices do not commute with each other.

We therefore arrive at the following result. The Lagrangian, Eq. (5) is invariant under
simultaneous transformations of ~ϕ and Â shown in Eqs. (10, 13).

We would like to argue that the gauge field Âµ belongs to the algebra of the respective
gauge group. Concretely, for the SU(2) group, the gauge field can always be written as

Âµ =
3∑

a=1

Aaµτ
a, τa =

σa

2
, (15)

where Aaµ are three real fields.
To show that this is sufficient, we first consider infinitesimal gauge transformations

U ≈ 1̂ + iεaτa. (16)

The field Aµ transforms as

Âµ → Âµ + iεa
[
τa, Âµ

]
+

1

g
(∂µε

a)τa. (17)

Hence, if the original field Âµ belongs to the Lie algebra, the field obtained as the result
of infinitesimal transformations also belongs to the Lie algebra.
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We can extend this computation to cover a generic SU(2) transformation. The key
property of Eq. (15) is that Âµ is traceless, i.e.

Tr[Âµ] = 0. (18)

Since a general 2× 2 matrix can be represented as a linear combination of the identity
matrix and the Pauli matrices, proving the tracelessness in this case is equivalent to
proving that Âµ is part of the SU(2) algebra. Hence, we need to show that if we start
with a traceless field Âµ, the transformation rule Eq. (13) still produces a traceless field.
This is quite obvious for the first term in Eq. (15)

Tr
[
UÂµU

−1
]

= 0. (19)

For the second term the situation is a bit more complex and an explicit computation is
required. A general SU(2) matrix is written as

U = cos
θ

2
1̂ + i sin

θ

2
~n · ~σ, (20)

where ~n2 = 1. Hence,

∂µU =
∂µθ

2

(
− sin

θ

2
1̂ + i cos

θ

2
~n · ~σ

)
+ i sin

θ

2
(∂µ~n) · ~σ. (21)

Then,

Tr
[
U−1∂µU

]
= Tr

[
U †∂µU

]
= Tr

[(
cos

θ

2
1̂− i sin

θ

2
~n · ~σ

)(
∂µθ

2

(
− sin

θ

2
1̂ + i cos

θ

2
~n · ~σ

)
+ i sin

θ

2
(∂µ~n) · ~σ

)]
(22)

We need the following formulas

Tr[σi] = 0, Tr[σiσj ] = 2δij , (~n · ~σ)2 = 1. (23)

We use these formulas to simplify Eq. (22) and find

Tr

[(
cos

θ

2
1̂− i sin

θ

2
~n · ~σ

)(
∂µθ

2

(
− sin

θ

2
1̂ + i cos

θ

2
~n · ~σ

))]
=
∂µθ

2
Tr

[
− cos

θ

2
sin

θ

2
+ sin

θ

2
cos

θ

2
(~n · ~σ)2

]
= 0.

Tr

[(
cos

θ

2
1̂− i sin

θ

2
~n · ~σ

)(
i sin

θ

2
(∂µ~n) · ~σ

)]
∝ 2~n∂µ~n = ∂µ(~n · ~n) = 0,

(24)

since ~n2 = 1.
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Hence, we conclude that
Tr[U−1∂µU ] = 0, (25)

and this implies that if the field Âµ belongs to the Lie algebra of the SU(2) group before
the transformation, then the transformed field also belongs to the Lie algebra. You will
generalize this argument to the case of a more complex gauge group in the homework.

We also need the kinetic term for the field Âµ. We have seen that in the abelian case
the kinetic term can be obtained from a commutator of covariant derivatives

[Dµ, Dν ] = −igF̂µν . (26)

It is easy to check that covariant derivatives transform in the following way under gauge
transformations

Dµ → UDµU
−1. (27)

It follows that
F̂µν → UF̂µνU

−1. (28)

As the result, the kinetic energy is written as

Lkin = −1

2
Tr
[
F̂µνF̂

µν
]
. (29)

We can find an explicit expression for the field-strength tensor by substituting covariant
derivatives with their explicit expressions. We obtain

F̂µν = ∂µÂν − ∂νÂµ − ig[Âµ, Âν ]. (30)

Since Âµ =
∑
Aaµτ

a and [τa, τ b] = ifabcτ c, it follows that F̂µν is in the Lie algebra

F̂µν =
∑

F (a)
µν τ

a. (31)

The complete Lagrangian that describes the scalar field and the gauge field reads

Lkin = −1

2
Tr
[
F̂µνF̂

µν
]
− [Dµ~ϕ]†[Dµ~ϕ]−m2~ϕ†~ϕ− V (~ϕ†~ϕ). (32)

Note that the non-abelian gauge fields interact with each other (in variance with photons,
c.f. last term on the r.h.s. of Eq. (30)); also note that there is just one coupling constant
g that determines the strength of self-interaction of gauge-fields and the strength with
which non-abelian particles interact with complex scalars.
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