
Lecture 5

Symmetries

We have discussed a single scalar field φ and its quantization in Lecture 3. We have
seen that excitations of the field can be interpreted as scalar, spin-less particles with a
particular mass. One of the things that we can do to extend our theory is to add more
fields. For example, we can write

L =
1

2
∂µφ1∂

µφ1 −
m2

1

2
φ21 +

1

2
∂µφ2∂

µφ2 −
m2

2

2
φ22 − V (φ1, φ2) (1)

If m1 6= m2 and V is an arbitrary function of the two fields, then there is not much
to say beyond the fact that our theory describes the physics of two (self-) interacting
particles.

However, let us consider a special case when m1 = m2 and V (φ1, φ2) = V (φ21 + φ22).
Let us also imagine that we do not want to use φ1 and φ2 as our “fields” and that we
would prefer to employ φ′1, φ

′
2 instead. The relations between φ1,2 and φ′1,2 read

φ1 = cos θ φ′1 + sin θ φ′2,

φ2 = − sin θ φ′1 + cos θ φ′2.
(2)

The parameter θ is arbitrary. Since

φ21 + φ22 = φ′
2
1 + φ′

2
2, (3)

we find that

L =
1

2
∂µφ

′
1∂

µφ′1 −
m2

1

2
φ′

2
1 +

1

2
∂µφ

′
2∂

µφ′2 −
m2

2

2
φ′

2
2 − V (φ′1, φ

′
2) (4)

Comparing Eqs. (1) and Eq. (4), we find that the two Lagrangians are the same. We
then say that the theory is symmetric under rotations in the field space, Eq. (2).

To make this more transparent, we introduce a new notation. We will combine φ1
and φ2 into a field vector

~φ =

(
φ1
φ2

)
, (5)

and write the Lagrangian as

L =
1

2
∂µ~φ · ∂µ~φ−

m2

2
~φ · ~φ− V (~φ · ~φ). (6)

The symmetry transformation in Eq. (2) is represented as a matrix

~φ =

(
cos θ sin θ
− sin θ cos θ

)
~φ′ = Ô(θ)~φ′. (7)
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The matrix Ô(θ) is an orthogonal matrix,

OT (θ)O(θ) = 1, (8)

which implies
~φ · ~φ = ~φ′ · ~φ′, (9)

and, obviously, L(φ′) = L(φ).
There is yet another way to write the same theory. Indeed, we introduce

φ =
1√
2

(φ1 + iφ2) , φ† =
1√
2

(φ1 − iφ2) . (10)

Then since

φφ† =
1

2

(
φ21 + φ22

)
, (11)

and

∂µφ ∂
µφ† =

1

2
(∂µφ1∂

µφ1 + ∂µφ2∂
µφ2) , (12)

we obtain
L = ∂µφ ∂

µφ† −m2φφ† − V (2φφ†). (13)

The rotation in Eq. (7) is now represented by a phase transformation

φ = eiθφ′. (14)

Clearly, this transformation does not change the Lagrangian Eq. (13).
As it is known from classical mechanics, symmetries imply the existence of time-

independent quantities (integrals of motion). The corresponding proof is provided by
the Noether theorem. For our purposes, the proof goes as follows. Consider a field trans-
formation φ→ φ+ ∆φ that leaves the Lagrangian invariant

L(φ) = L(φ+ ∆φ). (15)

We expand the right hand side of Eq. (15) to O(∆φ), neglect further terms in the
expansion and we find

L(φ) = L(φ) +
δL
δφ

∆φ+
δL
δ ∂µφ

∂µ∆φ. (16)

We use the equations of motion

δL
δφ

= ∂µ

[
δL
δ ∂µφ

]
, (17)

to show that the two last terms on the r.h.s. of Eq. (16) read

L(φ) = L(φ) + ∂µ

[
δL
δ ∂µφ

∆φ

]
. (18)
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It follows from Eq. (18) that
∂µJ

µ = 0, (19)

where

Jµ =
δL
δ ∂µφ

∆φ. (20)

is the Noether current. Note that the ∆φ that appears in the above equation is a particu-
lar change in the field induced by a symmetry transformation, rather than an arbitrary
variation of the field.

A direct consequence of the current conservation Eq. (19) is the time-independence
of the following quantity

Q(t) =

∫
d3~x J0(t, ~x). (21)

To prove this, we compute the time derivative and find

∂

∂t
Q(t) =

∫
d3~x ∂0J

0(t, ~x) = −
∫

d3~x ~∇ · ~J(t, ~x) = −
∫

|~x|=∞

d2~S · ~J = 0. (22)

The last steps follow from Gauss’ theorem and the flux absence at spatial infinity.
For our example with two fields, it is straightforward to find the conserved current

Jµ. For small θ, we find from Eq. (2)

δφ1 = θ φ2, δφ2 = −θ φ1, (23)

so that (upon setting θ → −1)

Jµ = −
2∑

a=1

δL
δ∂µφa

δφa = − (∂µφ1) φ2 + (∂µφ2) φ1 (24)

In case we use the complex field representation, we have

δφ = iθφ, δφ† = −iθφ†. (25)

We then compute (we set again θ → −1)

Jµ =
δL
δ∂µφ

δφ+
δL

δ∂µφ†
δφ† = −i

[(
∂µφ†

)
φ− φ† ∂µφ

]
. (26)

To understand better what the time-independence of Q implies, we quantize the
theory. Since we have two fields, we quantize them using the following field decomposition

φi=1,2 =

∫
d3~k

(2π)3
√

2ωk

(
a
i,~k
e−ikµx

µ
+ a†

i,~k
eikµx

µ
)
, (27)

where
[a
i,~k
, a†i,~q] = δij(2π)3δ(3)(~k − ~q). (28)
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We now use the formula Eq. (10) to write the complex field φ as

φ =

∫
d3~k

(2π)3
√

2ωk

a1,~k + ia
2,~k√

2
e−ikµx

µ
+
a†
1,~k

+ ia†
2,~k√

2
eikµx

µ

 . (29)

We will call the two combinations of creation and annihilation operators in the above
formula as

a~k =
a
1,~k

+ ia
2,~k√

2
, and b†~k

=
a†
1,~k

+ ia†
2,~k√

2
. (30)

Note that a†~k
6= b†~k

; this implies that a~k and b~k should be considered as independent. It

is straightforward to compute the commutation relations between a, a†, b, b† using the
known commutation relations for a1,2, a

†
1,2. The result reads

[a~k, a
†
~q] = [b~k, b

†
~q] = (2π)3δ(3)(~k − ~q), [a~k, b~q] = [a†~k

, b†~q] = 0. (31)

The formula for the quantized complex fields reads then

φ =

∫
d3~k

(2π)3
√

2ωk

(
a~k e

−ikµxµ + b†~k
eikµx

µ
)
,

φ† =

∫
d3~k

(2π)3
√

2ωk

(
a†~k
eikµx

µ
+ b~k e

−ikµxµ
)
,

(32)

The Hamiltonian for the complex field is then1

H =

∫
d3~k

(2π)3
ωk

[
a†~k
a~k + b†~k

b~k

]
. (33)

The Hilbert space is again constructed by acting with the creation operators on the
vacuum state

|~k〉a =
√

2ωka
†
~k
|0〉, |~k〉b =

√
2ωkb

†
~k
|0〉, (34)

etc. We see that there are two types of particles.
To understand the difference between them, we will express the time-independent

quantity Q through creation and annihilation operators. We use Eq. (26) and write

Q = −i
∫

d3~x
[
φ(t, ~x)∂0φ

†(t, ~x)− φ†(t, ~x)∂0φ(t, ~x)
]
. (35)

We substitute expressions for fields φ and φ† in terms of creation and annihilation ope-
rators, integrate over ~x and find

Q =

∫
d3~k

(2π)3

[
a†~k
a~k − b

†
~k
b~k

]
. (36)

1We discarded the vacuum energy density contribution.
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Eq. (36) implies
Q|~k〉a = |~k〉a, Q|~k〉b = −|~k〉b. (37)

Hence, the two types of particles are eigenstates of the operator Q with different quantum
numbers. We refer to these quantum numbers as charges. For example, we can associate
the electric charge with the quantity Q, so that a-particles have positive and b-particle
negative electric charges. Since Q is time-independent, it commutes with the Hamiltonian
H

[H,Q] = 0. (38)

This implies that one can choose quantum states in such a way that they diagonalize
both H and Q simultaneously.

The idea of symmetry transformations is not restricted to the two field case. In fact,
we can consider a theory with N fields φ1, .., φN , and treat the N fields as a vector
~φ = (φ1, ..., φN ). We take the Lagrangian to be

L =
1

2
∂µ~φ · ∂µ~φ−

m2

2
~φ · ~φ− V (~φ · ~φ). (39)

The symmetry then consists of rotating the field vector ~φ in all possible ways; the Lag-
rangian density in Eq. (39) is invariant under these transformations. Such rotations are
described by an SO(N) group; the total number of “independent rotations” isN(N−1)/2
and they can be represented by N ×N special orthogonal matrices. The transformation
reads

~φ = ON ~φ′. (40)

It is now easy to find independent charges. To this end, we have to consider infinite-
simal transformations as given by Eq. (40). In full generality, they read

∆~φ =

N(N−1)/2∑
a=1

εaT
a~φ. (41)

The quantities T a are generators of the Lie Algebra of the SO(N) group and εa are
independent parameters of the symmetry transformation. It follows that there are N(N−
1)/2 conserved currents

Jaµ = ∂µ~φT
a~φ, (42)

and the same number of conserved charges

Qa(t) =

∫
d3xJa0 (t, ~x). (43)

It is easy to check using canonical commutation relations between fields φi and the
respective canonical momenta that charges satisfy the following commutation relations

[Qa, Qb] = ifabcQc. (44)
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The constants fabc are the structure constants of the SO(N) Lie algebra. Hence, con-
served charges provide a representation of a Lie algebra on the Hilbert space of the
theory.

We discussed the extended symmetry transformations in the context of SO(N) sym-
metry group. However, it should be clear from the context that this discussion is generic
and, in principle, applies to arbitrary symmetry groups.
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