
Lecture 4

The Casimir force

We have seen that the energy of a scalar field contains infinite contributions of “zero
modes”. According to our construction, the vacuum energy density reads

ρvac =
Evac

V
=

∫
d3~k

(2π)3

ωk
2
, (1)

where ωk =
√
~k2 +m2.

Let us calculate it. We integrate over directions of the vector ~k and find

ρvac =
1

4π2

∞∫
0

dk k2
√
k2 +m2. (2)

The resulting integral over k diverges at large k. To give it some meaning nevertheless,
we cut it off at kmax = Λ� m. We obtain

ρvac =
1

4π2

Λ∫
0

dk k2
√
k2 +m2 ≈ Λ4

16π2

(
1 +O(m2/Λ2)

)
. (3)

What value of Λ can be expected on physical grounds? We can argue in the following
way. Our theory clearly ignores gravity. At which values of k do gravity effects become
important? The wavelength of a particle with momentum k is λ ∼ k−1. The self-
interaction gravitational energy that a particle of this “size” will have is Egrav ∼ Gω2

k/λ,
where G is Newton’s constant. Gravity effects can’t be neglected anymore if the gravita-
tional energy is comparable to the “total” energy of a particle computed ignoring gravity
altogether. Hence only if

Gω2
k

λ
� ωk (4)

are we allowed to ignore gravity. By taking λ ∼ k−1 ∼ ω−1
k , the above equation simplifies

to

Gk2 � 1 → k � 1√
G
. (5)

Hence, the maximal value of the cut-off Λ should be G−1/2. We therefore estimate

ρvac ≈
G−2

16π2
. (6)

A constant vacuum energy density plays the role of a “cosmological constant” which
contributes to the right hand side of Einstein’s equations forcing the Universe to expand
with an acceleration. However, the value of the cosmological constant that we observe
is, roughly, one hundred orders of magnitude smaller than what our theory predicts

ΛCC ∼ 10−122ρvac. (7)
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This cosmological constant problem is a remarkable, dramatic and not-at-all-understood
failure of the current theory of Nature!

However, if we are not completely devastated by this failure, we can still ask if there
are other ways to probe the vacuum energy and, if there are, how does quantum field
theory stack up against observations in those cases? It turns out that there is at least
one case where we can probe the vacuum energy and get satisfactory results.

Imagine that we put two plates into an empty space. The plates are infinitely large;
they are placed in such a way that they are parallel to the (x− y)-plane and the z-axis
is orthogonal to them. The distance between the plates is a. We assume that the plates
force particular boundary conditions on the field, i.e. that the scalar field satisfies

ϕ(x, y, z = 0) = ϕ(x, y, z = a) = 0, (8)

where we assumed that one plate intersects the z-axis at z = 0 and the other at z = a.1

We now need to repeat the quantization procedure in such a way that the boundary
conditions are satisfied.

Recall that without plates the field is written as

ϕ =

∫
d3~k

(2π)3
√

2ωk

[
a~ke
−iωkt+i~k~x + a†~k

eiωkt−i
~k~x
]
. (9)

Once the plates are introduced, the integral over kz becomes a sum over all discrete
modes that satisfy boundary conditions. We can easily arrange for that if we do the
following replacements in Eq. (9)

eikz → Ψn(z), Ψn(z) =

√
2

a
sin

πnz

a
,

∫
dkz
2π
→

∞∑
n=0

. (10)

Moreover, the following formulas are useful

∞∑
n=0

Ψn(z)Ψn(z′) = δ(z − z′),
a∫

0

dzΨn(z)Ψn′(z) = δnn′ . (11)

We write expressions for the field operator that is valid in case there are plates

ϕ =
∞∑
n=0

∫
d2~k⊥

(2π)2
√

2ωk,n

[
a~k⊥,n

e−iωkt+i
~k⊥~x⊥Ψn(z) + a†~k⊥,n

eiωkt−i
~k⊥~x⊥Ψn(z)

]
, (12)

where ~k⊥ = kx~ex + ky~ey and ωk,n =
√
k2
⊥ + (πn/a)2 +m2.

It is instructive to check that ϕ and the canonical momentum π = ∂tϕ satisfy canon-
ical commutation relations. We find

π =

∞∑
n=0

∫
d2~l⊥

(2π)
√

2ωl,n
(−iωl,n)

{
a~l⊥,n

e−iωl,nt+i
~l⊥~x⊥ − a†~l⊥,ne

iωl,nt−i~l⊥~x⊥
}

Ψn(z) (13)

1In a realistic case of electromagnetism, we would impose boundary conditions on the (vacuum)
electric and magnetic fields, as usual.
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We then compute

[π(t, x1), ϕ(t, x2)] =

∞∑
n1,n2=0

∫
d2~k1,⊥

(2π)2
√

2ω1

d2~k2,⊥

(2π)2
√

2ω2
(−iω1) Ψn1(z1)Ψn2(z2)

×
[
[a~k1,⊥,n1

, a†~k2,⊥,n2
]e−i(ω1−ω2)t+i~k1,⊥~x⊥,1−i~k2,⊥~x⊥,2 − h.c.

]
.

(14)

We choose
[a~k1,⊥,n1

, a†~k2,⊥,n2
] = (2π)2δ(2)(~k1,⊥ − ~k2,⊥)δn1n2 (15)

and obtain

[π(t, ~r1), ϕ(t, ~r2)] = −i
∞∑
n=0

∫ ∫
d2~k1,⊥
(2π)2

1

2

[
ei
~k1,⊥(~x1,⊥−~x2,⊥) + h.c.

]
Ψn(z1)Ψn(z2)

= −iδ(2) (~x1,⊥ − ~x2,⊥) δ(z1 − z2) = −iδ(3)(~r1 − ~r2).

(16)

It is now easy to see that if we re-write the Hamiltonian in terms of creation and
annihilation operators, we will obtain the following result for the vacuum energy

Evac = L2
∞∑
n=0

∫
d2~k⊥
(2π)2

ωn
2
, (17)

where ωn reads

ωn =

√
k2
⊥ +

(πn
a

)2
+m2. (18)

We will start analyzing this formula by considering a toy one-dimensional model (A.
Zee). That is, we set L→ 1 and remove integration over k⊥ in Eq. (17) and set k⊥ → 0
and m→ 0 in Eq. (18). We obtain the vacuum energy

Etoy
vac =

π

2a

∞∑
n=0

n. (19)

The result is peculiar and is in line with our earlier discussion of the fact that the vacuum
energy that we obtain in quantum field theory is infinite and that this infinity comes from
vacuum fluctuations with very large energies.2 However, for fluctuations with extremely
high energies the plates should be invisible so that the high-frequency modes should leak
through the plates. Their contribution to the vacuum energy should not depend on the
plates and should rather match the continuum result.

To account for this, we introduce a cut-off in Eq. (19) and write

Etoy
vac =

π

2a

∞∑
n=0

ne−ωn/ωcut , (20)

2The sum in Eq. (19) diverges because we extend the sum up to infinity.
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L

a

Figure 1: Three plates

where ωn = πn/a. To compute this sum, we write

Etoy
vac = − π

2a

a

π

∂

∂
[

1
ωcut

] ∞∑
n=0

e
− nπ
aωcut . (21)

The sum in Eq. (21) is a geometric progression. We obtain

Etoy
vac = − π

2a

a

π

∂

∂
[

1
ωcut

] 1

1− e−
π

aωcut

=
π

2a

e
− π
aωcut(

1− e−
π

aωcut

)2 . (22)

Since ωcut � π/a, we can expand the exponents and find

Etoy
vac =

aω2
cut

2π
− π

24a
+ ... (23)

The two terms in Eq. (23) have different properties: the first one is proportional to the
distance between the plates a. This contribution matches the vacuum energy without
plates. To see that it plays no role, consider a system of three plates, separated by
distances a and L − a with L � a, see Fig. 1. Computing the total vacuum energy of
the system, we obtain

Etoy
vac(L, a) =

(L− a)ω2
cut

2π
− π

24a
+
aω2

cut

2π
− π

24(L− a)
... =

Lω2
cut

2π
− π

24a
+ ... (24)

Note how terms proportional to a and L− a combined to produce a term proportional
to the total volume of the system ∼ L. For this contribution the presence of the plate
in the middle is immaterial as should be the case for the vacuum energy without plates.
The residual dependence of the total energy on a is present nevertheless; this means that
there is a force that acts on the intermediate plate. It is given by

f = −∂E
toy
vac(L, a)

∂a
= − π

24a2
. (25)
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The force is attractive: plates placed into an absolutely empty space get attracted to
each other. Note that this conclusion was verified experimentally with decent precision
so there seems to be no doubt that certain properties of the vacuum energy do follow
from a quantum field theory.

We will now go back to Eq. (18) and show how to compute the force in the three-
dimensional case. This will look like a miracle and that’s why I want to show it to you.
It is definitely quite technical so if you don’t feel like doing miracles, and especially the
technical ones, just skip this part.

The problem with Eq. (17) is that it is poorly defined. At large k⊥ the integral
diverges as k3

⊥ and the sum over n diverges as n2. We need to “regularize” the integral,
i.e. do something to make it “finite” and calculable. Once this happens, we can compute
it and check what happens if we try to remove the regulator.

There is no unique way to regularize the integral Eq. (17). We will do it by changing
the number of “transverse” dimensions,

d2~k⊥
(2π)2

→ dd~k⊥
(2π)d

, (26)

where d = 2 − 2ε and ε is a continuous parameter. We will call this “dimensional
regularization”.

We will now compute the integral over k⊥ in Eq. (18) choosing (mentally) ε as if the
integrals converge. Then (setting m→ 0, for simplicity), we find

In =

∫
dd~k⊥
(2π)d

√
~k2
⊥ +

(πn
a

)2
. (27)

The integral depends on the absolute value of k⊥ only. We introduce spherical coordi-
nates in d-dimensional space and write

In =
Ωd

2(2π)d

∞∫
0

(
k2
⊥
) d−2

2 dk2
⊥

√
k2
⊥ +

(πn
a

)2
. (28)

We now change variables

k2
⊥ =

(πn
a

)2 x

1− x
, (29)

and obtain

In =
Ωd

2(2π)d

(πn
a

)3−2ε
1∫

0

dx x−ε(1− x)−5/2+ε. (30)

The last integral is evaluated using the following formula

1∫
0

dx xa−1(1− x)b−1 =
Γ(a)Γ(b)

Γ(a+ b)
, (31)
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where on the right hand side we have the so-called Γ-functions. These functions are
generalizations of factorials; for integer n, Γ(n+ 1) = n!. You need to know that Γ(z) is
an analytic function in the complex plane with simple poles at z = 0,−1,−2, ... We use
Eq. (31) to find

In =
Ωd

2(2π)d

(πn
a

)3−2ε Γ(−3/2 + ε)Γ(1− ε)
Γ(−1/2)

. (32)

It remains to compute the sum over n

Evac = L2
∞∑
n=0

In = L2 Ωd

2(2π)d
Γ(−3/2 + ε)Γ(1− ε)

Γ(−1/2)

∞∑
n=0

(πn
a

)3−2ε

= L2 Ωd

2(2π)d
Γ(−3/2 + ε)Γ(1− ε)

Γ(−1/2)

(π
a

)3−2ε
ζ(−3 + 2ε),

(33)

where we have used another special function (Riemann zeta function) to re-write the
sum over n

ζ(s) =
∞∑
n=1

1

ns
. (34)

Finally, I comment on how to compute the solid angle in d-dimensions Ωd. This is
done by considering a product of d Gaussian integrals

πd/2 =
d∏
i=1

∞∫
−∞

dxie
−x2i =

∞∫
−∞

...

∞∫
−∞

dx1...dxd e
−

d∑
i=1

x2i
=

∫
dd~xe−~x

2
= Ωd

∞∫
0

rd−1 dre−r
2

=
Ωd

2

∞∫
0

[
r2
]d/2−1

dr2 e−r
2

=
Ωd

2
Γ

(
d

2

)
,

(35)

where we used an integral representation of the Γ-function

Γ(z) =

∞∫
0

d x xz−1 e−x. (36)

We finally find

Ωd =
2πd/2

Γ(d/2)
. (37)

Using this result in Eq. (33) and expanding in ε,3 we find

Evac =
L2πd/2

Γ(1− ε)(2π)d
Γ(−3/2 + ε)Γ(1− ε)

Γ(−1/2)

(π
a

)3−2ε
ζ(−3 + 2ε) = − L

2π2

720a3
. (38)

3This expansion is not trivial and requires knowing properties of Γ and Zeta-function. This can,
however, be done using Mathematica.
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The attractive force between the plates is then

F = −∂Evac

∂a
= − π

2L2

240a4
. (39)

The strange aspect of this computation is that the result Eq. (38) comes out finite
in d = 2 although the starting point Eq. (18) is a divergent integral. The reason the
divergence has disappeared is the use of “dimensional regularization” that separates
“scale-less” infinities from “scale-dependent” quantities in a very efficient way. To give
an example, let us compute the vacuum energy in a volume L2a in an empty space
without plates using dimensional regularization. We find

Evac = L2a

∫
dd+1~k⊥
(2π)d+1

ωk
2
, (40)

where ωk = |k| and d = 2− 2ε. Then

Evac = L2a

∫
dd+1~k⊥
(2π)d+1

ωk
2

=
L2a

2

Ωd+1

(2π)d+1

∞∫
0

kd+1dk (41)

To compute the integral over k, we write

∞∫
0

kd+1dk =

1∫
0

kd+1dk +

∞∫
1

kd+1dk (42)

and define the two integrals as analytic continuations from values of d where each of
them is well-defined. We then find

∞∫
0

kd+1dk =
1

d+ 2
− 1

d+ 2
= 0. (43)

Hence, we observe that, if we use dimensional regularization, the vacuum energy of an
empty space in the massless theory vanishes identically. This explain why Eq. (38) only
contains finite O(L2/a3) terms and no O(L2a) term that will correspond to the vacuum
energy of an empty space without plates.
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