## Lecture 3

## Canonical quantization, particles

One of the things that we did in the previous lecture was the computation of the energy stored in the scalar field

$$
\begin{equation*}
E=\int \mathrm{d}^{3} \vec{x}\left[\frac{1}{2}\left(\frac{\partial \varphi}{\partial t}\right)^{2}+\frac{1}{2}(\vec{\nabla} \varphi)^{2}+\frac{m^{2} \varphi^{2}}{2}+V(\varphi)\right] . \tag{1}
\end{equation*}
$$

We will identify this quantity with the Hamiltonian of the system.
The Hamiltonian should be a function of canonical momenta and canonical coordinates. The canonical momentum is computed in a standard way

$$
\begin{equation*}
\frac{\delta L}{\delta \partial_{t} \varphi(t, \vec{x})}=\partial_{t} \varphi(t, \vec{x})=\pi(t, \vec{x}) . \tag{2}
\end{equation*}
$$

We then obtain

$$
\begin{equation*}
E=H=\int \mathrm{d}^{3} \vec{x}\left[\frac{1}{2} \pi^{2}+\frac{1}{2}(\vec{\nabla} \varphi)^{2}+\frac{m^{2} \varphi^{2}}{2}+V(\varphi)\right] \tag{3}
\end{equation*}
$$

The quantization procedure amounts to the choice of the equal-time commutator of operators $\varphi$ and $\pi$

$$
\begin{equation*}
[\pi(t, \vec{x}), \varphi(t, \vec{y})]=-i \delta^{(3)}(\vec{x}-\vec{y}) . \tag{4}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
[\pi(t, \vec{x}), \pi(t, \vec{y})]=0, \quad[\varphi(t, \vec{x}), \varphi(t, \vec{y})]=0 . \tag{5}
\end{equation*}
$$

We will now consider a free theory $(V(\varphi)=0)$ and derive equations that $\varphi$ and $\pi$ satisfy. We will use the fact that the commutator of any operator with $H$ gives a time derivative of this operator. For example

$$
\begin{equation*}
i \partial_{t} \pi(t, \vec{x})=[\pi(t, \vec{x}), H] . \tag{6}
\end{equation*}
$$

It is important that the Hamiltonian is time-independent (energy is conserved). This observation simplifies the computation of the commutator since we can take operators $\pi$ and $\varphi$ in the integrand of $H$ at any time. It is this possibility that allows us to use Eq. (3) to compute the commutator of $H$ with $\pi$ and $\varphi$.

Indeed, we write

$$
\begin{equation*}
[\pi(t, \vec{x}), H]=\int \mathrm{d}^{3} \vec{y}\left[\frac{1}{2}\left[\pi(t, \vec{x}), \pi(t, \vec{y})^{2}\right]+\frac{1}{2}\left[\pi(t, \vec{x}),(\vec{\nabla} \varphi(t, \vec{y}))^{2}\right]+\frac{m^{2}}{2}\left[\pi(t, \vec{x}), \varphi(t, \vec{y})^{2}\right]\right] . \tag{7}
\end{equation*}
$$

The first commutator vanishes since $\pi(t, \vec{x})$ commutes with $\pi(t, \vec{y})$. To compute the second and the third terms, we use the following equations

$$
\begin{align*}
& \frac{1}{2}\left[\pi(t, \vec{x}),(\vec{\nabla} \varphi(t, \vec{y}))^{2}\right]=\vec{\nabla}_{y} \varphi(t, \vec{y}) \cdot\left[\pi(t, \vec{x}), \vec{\nabla}_{y} \varphi(t, \vec{y})\right]  \tag{8}\\
& =\vec{\nabla}_{y} \varphi(t, \vec{y}) \cdot \vec{\nabla}_{y}[\pi(t, \vec{x}), \varphi(t, \vec{y})]=-i \vec{\nabla}_{y} \varphi(t, \vec{y}) \cdot \vec{\nabla}_{y} \delta^{(3)}(\vec{x}-\vec{y})
\end{align*}
$$

and

$$
\begin{equation*}
\frac{1}{2}\left[\pi(t, \vec{x}), \varphi(t, \vec{y})^{2}\right]=\varphi(t, \vec{y})[\pi(t, \vec{x}), \varphi(t, \vec{y})]=-i \varphi(t, \vec{y}) \delta^{(3)}(\vec{x}-\vec{y}) \tag{9}
\end{equation*}
$$

We substitute Eqs. $(8,9)$ into Eq. $(7)$, integrate by parts once and obtain

$$
\begin{equation*}
\partial_{t} \pi(t, \vec{x})=\left[\vec{\nabla}^{2}-m^{2}\right] \varphi(t, \vec{x}) \tag{10}
\end{equation*}
$$

Since $\pi=\partial_{t} \varphi$, we find

$$
\begin{equation*}
\left[\left(\frac{\partial^{2}}{\partial t^{2}}-\vec{\nabla}^{2}\right)+m^{2}\right] \varphi=\left[\partial_{\mu} \partial^{\mu}+m^{2}\right] \varphi=0 \tag{11}
\end{equation*}
$$

This is the Klein-Gordon equation for the field operator $\varphi$.
Since the operator $\varphi$ satisfies the Klein-Gordon equation, we can write

$$
\begin{equation*}
\varphi(t, \vec{x})=\int \frac{\mathrm{d}^{3} \vec{k}}{(2 \pi)^{3} \sqrt{2 \omega_{k}}}\left[a_{\vec{k}} e^{-i \omega_{k} t+i \vec{k} \vec{x}}+a_{\vec{k}}^{\dagger} e^{i \omega_{k} t-i \vec{k} \vec{x}}\right] \tag{12}
\end{equation*}
$$

where $\omega_{k}=\sqrt{\vec{k}^{2}+m^{2}}$, and the $a_{\vec{k}}$ and $a_{\vec{k}}^{\dagger}$ operators are referred to as "creation" and "annihilation" operators, respectively. ${ }^{1}$ In writing Eq. (12) we have used the fact that the field $\varphi$ is real; the consequence of this for the quantum operator $\varphi$ is that it is hermitian

$$
\begin{equation*}
\varphi^{\dagger}(t, \vec{x})=\varphi(t, \vec{x}) \tag{13}
\end{equation*}
$$

The momentum operator $\pi(t, \vec{x})$ is obtained by computing $\partial_{t} \varphi$. We find

$$
\begin{equation*}
\pi(t, \vec{x})=-i \int \frac{\mathrm{~d}^{3} \vec{k}}{(2 \pi)^{3} \sqrt{2 \omega_{k}}} \omega_{k}\left[a_{\vec{k}} e^{-i \omega_{k} t+i \vec{k} \vec{x}}-a_{\vec{k}}^{\dagger} e^{i \omega_{k} t-i \vec{k} \vec{x}}\right] \tag{14}
\end{equation*}
$$

The momentum operator $\pi$ and the field operator $\varphi$ must satisfy canonical equal-time commutation relations, Eq. (4). To check that they do, we write

$$
\begin{equation*}
\left[a_{\vec{k}}, a_{\vec{q}}^{\dagger}\right]=f_{\vec{k}}(2 \pi)^{3} \delta^{(3)}(\vec{k}-\vec{q}) \tag{15}
\end{equation*}
$$

where the function $f_{\vec{k}}$ at this point is arbitrary. We also assume that $\left[a_{\vec{k}}, a_{\vec{q}}\right]=0$ and $\left[a_{\vec{k}}^{\dagger}, a_{\vec{q}}^{\dagger}\right]=0$.

[^0]To make expressions more compact, we introduce four-vectors $x^{\mu}=(t, \vec{x}), y^{\mu}=(t, \vec{y})$ and $k^{\mu}=\left(\omega_{k}, \vec{k}\right)$ and write

$$
\begin{equation*}
\omega_{k} t-\vec{k} \vec{x}=k x, \quad \omega_{k} t-\vec{k} \vec{y}=k y . \tag{16}
\end{equation*}
$$

We then find

$$
\begin{align*}
& {[\pi(t, \vec{x}), \varphi(t, \vec{y})]=-i \int \frac{\mathrm{~d}^{3} \vec{k}}{(2 \pi)^{3} \sqrt{2 \omega_{k}}} \frac{\mathrm{~d}^{3} \vec{q}}{(2 \pi)^{3} \sqrt{2 \omega_{q}}} \omega_{k}\left\{\left[a_{\vec{k}}, a_{\vec{q}}^{\dagger}\right] e^{-i k x+i q y}+\left[a_{\vec{q}}, a_{\vec{k}}^{\dagger}\right] e^{i k x-i q y}\right\}} \\
& =-i \int \frac{\mathrm{~d}^{3} \vec{k}}{(2 \pi)^{3} 2} f_{\vec{k}}\left\{e^{i \vec{k}(\vec{x}-\vec{y})}+e^{-i \vec{k}(\vec{x}-\vec{y})}\right\}=-i \delta^{3}(\vec{x}-\vec{y}), \tag{17}
\end{align*}
$$

where the last step requires $f_{\vec{k}}=1$. Hence,

$$
\begin{equation*}
\left[a_{\vec{k}}, a_{\vec{q}}^{\dagger}\right]=(2 \pi)^{3} \delta^{(3)}(\vec{k}-\vec{q}) . \tag{18}
\end{equation*}
$$

To understand the meaning of creation and annihilation operators, we need to express the Hamiltonian $H$ through them. We start with the term $m^{2} \varphi^{2}$. Then

$$
\begin{align*}
& \int \mathrm{d}^{3} \vec{x} \varphi^{2}(t, \vec{x}) \\
& =\int \mathrm{d}^{3} \vec{x} \int \frac{\mathrm{~d}^{3} \vec{k}_{1}}{(2 \pi)^{3} \sqrt{2 \omega_{1}}} \frac{\mathrm{~d}^{3} \vec{k}_{2}}{(2 \pi)^{3} \sqrt{2 \omega_{2}}}\left\{a_{\vec{k}_{1}} e^{-i k_{1} x}+a_{\vec{k}_{1}}^{\dagger} e^{i k_{1} x}\right\}\left\{a_{\vec{k}_{2}} e^{-i k_{2} x}+a_{\vec{k}_{2}}^{\dagger} e^{i k_{2} x}\right\}, \tag{19}
\end{align*}
$$

where $k_{i} x=\omega_{i} t-\vec{k}_{i} \vec{x}$. We integrate over $\vec{x}$ and obtain

$$
\begin{align*}
& \int \mathrm{d}^{3} \vec{x} \varphi^{2}(t, \vec{x})=\int \frac{\mathrm{d}^{3} \vec{k}_{1}}{(2 \pi)^{3} \sqrt{2 \omega_{1}}} \frac{\mathrm{~d}^{3} \vec{k}_{2}}{(2 \pi)^{3} \sqrt{2 \omega_{2}}}\left[a_{\vec{k}_{1}} a_{\vec{k}_{2}} e^{-i\left(\omega_{1}+\omega_{2}\right) t}(2 \pi)^{3} \delta^{(3)}\left(\vec{k}_{1}+\vec{k}_{2}\right)\right. \\
& \left.+a_{\vec{k}_{1}}^{\dagger} a_{\vec{k}_{2}}^{\dagger} e^{i\left(\omega_{1}+\omega_{2}\right) t}(2 \pi)^{3} \delta^{(3)}\left(\vec{k}_{1}+\vec{k}_{2}\right)+a_{\vec{k}_{1}}^{\dagger} a_{\vec{k}_{2}} \delta^{(3)}\left(\vec{k}_{1}-\vec{k}_{2}\right)+a_{\vec{k}_{1}} a_{\vec{k}_{2}}^{\dagger}(2 \pi)^{3} \delta^{(3)}\left(\vec{k}_{1}-\vec{k}_{2}\right)\right] . \tag{20}
\end{align*}
$$

As you see, this operator is explicitly time-dependent. As we have argued earlier, the Hamiltonian should be independent of time; therefore, we should expect important cancellation of the time-dependence of $\int \mathrm{d}^{3} x \varphi^{2}$ and the time-dependences of other contributions to $H$.

The next contribution is

$$
\begin{align*}
& \int \mathrm{d}^{3} \vec{x}(\vec{\nabla} \varphi)^{2}(t, \vec{x})=-\int \frac{\mathrm{d}^{3} \vec{k}_{1}}{(2 \pi)^{3} \sqrt{2 \omega_{1}}} \frac{\mathrm{~d}^{3} \vec{k}_{2}}{(2 \pi)^{3} \sqrt{2 \omega_{2}}} \vec{k}_{1} \cdot \vec{k}_{2}\left[a_{\vec{k}_{1}} a_{\vec{k}_{2}} e^{-i\left(\omega_{1}+\omega_{2}\right) t}(2 \pi)^{3} \delta^{(3)}\left(\vec{k}_{1}+\vec{k}_{2}\right)\right. \\
& \left.+a_{\vec{k}_{1}}^{\dagger} a_{\vec{k}_{2}}^{\dagger} e^{i\left(\omega_{1}+\omega_{2}\right) t}(2 \pi)^{3} \delta^{(3)}\left(\vec{k}_{1}+\vec{k}_{2}\right)-a_{\vec{k}_{1}}^{\dagger} a_{\vec{k}_{2}} \delta^{(3)}\left(\vec{k}_{1}-\vec{k}_{2}\right)-a_{\vec{k}_{1}} a_{\vec{k}_{2}}^{\dagger}(2 \pi)^{3} \delta^{(3)}\left(\vec{k}_{1}-\vec{k}_{2}\right)\right] . \tag{21}
\end{align*}
$$

A similar computation for $\int \mathrm{d}^{3} \vec{x} \pi^{2}$ gives

$$
\begin{align*}
& \int \mathrm{d}^{3} x \pi^{2}(t, \vec{x})=-\int \frac{\mathrm{d}^{3} \vec{k}_{1}}{(2 \pi)^{3} \sqrt{2 \omega_{1}}} \frac{\mathrm{~d}^{3} \vec{k}_{2}}{(2 \pi)^{3} \sqrt{2 \omega_{2}}} \omega_{1} \omega_{2}\left[a_{\vec{k}_{1}} a_{\vec{k}_{2}} e^{-i\left(\omega_{1}+\omega_{2}\right) t}(2 \pi)^{3} \delta^{(3)}\left(\vec{k}_{1}+\vec{k}_{2}\right)\right. \\
& \left.+a_{\vec{k}_{1}}^{\dagger} a_{\vec{k}_{2}}^{\dagger} e^{i\left(\omega_{1}+\omega_{2}\right) t}(2 \pi)^{3} \delta^{(3)}\left(\vec{k}_{1}+\vec{k}_{2}\right)-a_{\vec{k}_{1}}^{\dagger} a_{\vec{k}_{2}} \delta^{(3)}\left(\vec{k}_{1}-\vec{k}_{2}\right)-a_{\vec{k}_{1}} a_{\vec{k}_{2}}^{\dagger}(2 \pi)^{3} \delta^{(3)}\left(\vec{k}_{1}-\vec{k}_{2}\right)\right] . \tag{22}
\end{align*}
$$

To obtain the Hamiltonian $H$, we add the relevant contributions together, integrate over $\vec{k}_{2}$ and, using that $\omega_{k}^{2}-m^{2}-\vec{k}^{2}=0$, find that all time-dependent contributions cancel. The result becomes

$$
\begin{equation*}
H=\int \frac{\mathrm{d}^{3} \vec{k}_{1}}{(2 \pi)^{3}} \frac{\omega_{1}}{2}\left[a_{\vec{k}_{1}}^{\dagger} a_{\vec{k}_{1}}+a_{\vec{k}_{1}} a_{\vec{k}_{1}}^{\dagger}\right]=\int \frac{\mathrm{d}^{3} \vec{k}_{1}}{(2 \pi)^{3}}\left[\omega_{1} a_{\vec{k}_{1}}^{\dagger} a_{\vec{k}_{1}}+\frac{\omega_{1}}{2} \delta^{(3)}(\overrightarrow{0})\right] \tag{23}
\end{equation*}
$$

In the last step we used the commutation relation Eq. (18) to re-order creation and annihilation operators; $\delta^{(3)}(\overrightarrow{0})$ is $\delta^{(3)}(\vec{q}-\vec{k})$, for $\vec{q}=\vec{k}$. To interpret $\delta^{(3)}(\overrightarrow{0})$, we write

$$
\begin{equation*}
(2 \pi)^{3} \delta^{(3)}(\overrightarrow{0})=\left.(2 \pi)^{3} \delta^{(3)}\left(\vec{k}_{1}-\vec{k}_{2}\right)\right|_{\vec{k}_{1}=\vec{k}_{2}}=\left.\int \mathrm{d}^{3} \vec{x} e^{i\left(\vec{k}_{1}-\vec{k}_{2}\right) \vec{x}}\right|_{\vec{k}_{1}=\vec{k}_{2}}=\int \mathrm{d}^{3} \vec{x}=V \tag{24}
\end{equation*}
$$

where $V$ is the volume of the region where the field $\varphi$ is defined.
Hence, we write

$$
\begin{equation*}
H=V E_{0}+\int \frac{\mathrm{d}^{3} \vec{k}_{1}}{(2 \pi)^{3}} \omega_{1} a_{\vec{k}_{1}}^{\dagger} a_{\vec{k}_{1}} \tag{25}
\end{equation*}
$$

where

$$
\begin{equation*}
E_{0}=\int \frac{\mathrm{d}^{3} \vec{k}_{1}}{(2 \pi)^{3}} \frac{\omega_{1}}{2} \tag{26}
\end{equation*}
$$

We would like to find eigenstates of the Hamiltonian $H$. To this end, we define a quantum state with the minimal energy (the vacuum state) $|0\rangle$ as a state which is annihilated by all annihilation operators ${ }^{2}$

$$
\begin{equation*}
a_{\vec{k}}|0\rangle=0, \quad \forall \vec{k} \tag{27}
\end{equation*}
$$

The energy of the vacuum state easily follows

$$
\begin{equation*}
H|0\rangle=V E_{0}|0\rangle \tag{28}
\end{equation*}
$$

It is interesting to know how large is the energy of the vacuum state. An unexpected answer to this question is that $E_{0}$ is infinite since the integral over $|\vec{k}|$ in Eq. (26) does not converge. We will discuss this issue in the next lecture. For now just note that the absolute value of the vacuum energy is not important for us; rather, we are interested in

[^1]how much energy is needed to excite the vacuum. Hence, we redefine the Hamiltonian by subtracting the vacuum energy and define
\[

$$
\begin{equation*}
H-E_{0} V \rightarrow H=\int \frac{\mathrm{d}^{3} \vec{k}_{1}}{(2 \pi)^{3}} \omega_{1} a_{\vec{k}_{1}}^{\dagger} a_{\vec{k}_{1}} . \tag{29}
\end{equation*}
$$

\]

The excited states of the new Hamiltonian are constructed by acting with creation operators $a_{\vec{k}}^{\dagger}$ on the vacuum state

$$
\begin{equation*}
\left|\vec{k}_{1}, \ldots . . \vec{k}_{N}\right\rangle=a_{\vec{k}_{1}}^{\dagger} \ldots a_{\vec{k}_{N}}^{\dagger}|0\rangle . \tag{30}
\end{equation*}
$$

It is easy to see that these quantum states are eigenstates of the Hamiltonian

$$
\begin{equation*}
H\left|\vec{k}_{1}, \ldots . \vec{k}_{N}\right\rangle=\left(\sum_{i=1}^{N} \omega_{i}\right)\left|\vec{k}_{1}, \ldots . \vec{k}_{N}\right\rangle \tag{31}
\end{equation*}
$$

For example, a state $a_{\vec{k}_{1}}^{\dagger}|0\rangle$ is an eigenstate of the Hamiltonian with the energy $\omega_{1}=\sqrt{\vec{k}_{1}^{2}+m^{2}}$. If we interpret $\vec{k}_{1}$ as the three-momentum of the state $\left|\vec{k}_{1}\right\rangle$, the above formula shows that the relation between energy and momentum of this state is identical to the relation between energy and momentum of a relativistic particle with the mass $m$. We will show below that $\vec{k}_{1}$ is indeed the three-momentum of the state $\left|\vec{k}_{1}\right\rangle$.

Before we discuss this, it is useful to say a few things about the normalization. If we compute $\left\langle\vec{k}_{1} \mid \vec{k}_{2}\right\rangle$ and use $\langle 0 \mid 0\rangle=1$, we easily find

$$
\begin{equation*}
\left\langle\vec{k}_{1} \mid \vec{k}_{2}\right\rangle=\langle 0| a_{\vec{k}_{1}} a_{\vec{k}_{2}}^{\dagger}|0\rangle=\langle 0|\left[a_{\vec{k}_{1}}, a_{\vec{k}_{2}}^{\dagger}\right]|0\rangle=(2 \pi)^{3} \delta^{(3)}\left(\vec{k}_{1}-\vec{k}_{2}\right) . \tag{32}
\end{equation*}
$$

Unfortunately, this normalization is not Lorentz invariant. We therefore redefine the states

$$
\begin{equation*}
|\vec{k}\rangle=\sqrt{2 \omega_{k}} a_{\vec{k}}^{\dagger}|0\rangle . \tag{33}
\end{equation*}
$$

The relativistic normalization now reads

$$
\begin{equation*}
\left\langle\vec{k}_{1} \mid \vec{k}_{2}\right\rangle=2 \omega_{k_{1}}(2 \pi)^{3} \delta^{(3)}\left(\vec{k}_{1}-\vec{k}_{2}\right) . \tag{34}
\end{equation*}
$$

From now on, we will always use states that are normalized in a Lorentz-invariant way.
Note that with this normalization the following result is valid

$$
\begin{equation*}
\langle 0| \varphi(t, \vec{x})|\vec{k}\rangle=e^{-i \omega_{k} t+i \vec{k} \vec{x}}, \tag{35}
\end{equation*}
$$

which looks like a wave function of a relativistic particle with momentum $\vec{k}$ and energy $\omega_{k}$.

To show that $\vec{k}$ is indeed the three-momentum of a particle described by the state $|\vec{k}\rangle$, we require the operator of the three-momentum. To find it, we will discuss certain properties of the action of a free field. The action reads

$$
\begin{equation*}
S=\int \mathrm{d}^{4} x \mathcal{L}\left(\partial_{\mu} \varphi, \varphi\right) \tag{36}
\end{equation*}
$$

The important point is that the Lagrangian density does not explicitly depend on $x^{\mu}$. We can use this property to find quantities that do not change during the time evolution of the system - integrals of motion.

To this end, consider a general coordinate transformation

$$
\begin{equation*}
x^{\mu}=\tilde{x}^{\mu}+a^{\mu}(\tilde{x}) . \tag{37}
\end{equation*}
$$

We assume that $a^{\mu}$ is small. Then,

$$
\begin{equation*}
\varphi(x)=\varphi(\tilde{x}+a(\tilde{x})) \approx \varphi(\tilde{x})+a^{\mu}(\tilde{x}) \tilde{\partial}_{\mu} \varphi(\tilde{x}) \tag{38}
\end{equation*}
$$

Now, writing

$$
\begin{equation*}
\varphi(\tilde{x}+a(\tilde{x}))=\tilde{\varphi}(\tilde{x})=\varphi(\tilde{x})+\delta \varphi(\tilde{x}) \tag{39}
\end{equation*}
$$

we find

$$
\begin{equation*}
\delta \varphi(\tilde{x})=a^{\mu}(\tilde{x}) \tilde{\partial}_{\mu} \varphi(\tilde{x}) . \tag{40}
\end{equation*}
$$

To find the change in $\partial_{\mu} \varphi$, we need to be a bit more careful. We write

$$
\begin{align*}
& \frac{\partial \varphi(x)}{\partial x^{\mu}}=\frac{\partial}{\partial x^{\mu}} \varphi\left(\tilde{x}+a^{\mu}(\tilde{x})\right)=\frac{\partial \tilde{x}^{\nu}}{\partial x^{\mu}} \frac{\partial}{\partial \tilde{x}^{\nu}} \varphi\left(\tilde{x}+a^{\mu}(\tilde{x})\right)  \tag{41}\\
& =\left(g_{\mu}^{\nu}-\tilde{\partial}_{\mu} a^{\nu}\right) \tilde{\partial}_{\nu}(\varphi+\delta \varphi) \approx \tilde{\partial}_{\mu} \varphi-\left(\tilde{\partial}_{\mu} a^{\nu}\right) \tilde{\partial}_{\nu} \varphi+\tilde{\partial}_{\mu} \delta \varphi,
\end{align*}
$$

where in the last step we neglected $\mathcal{O}\left(a^{2}\right)$ contributions.
Finally, we need to calculate ${ }^{3}$

$$
\begin{equation*}
\mathrm{d}^{4} x=\operatorname{det}\left[\frac{\partial x}{\partial \tilde{x}}\right] \mathrm{d}^{4} \tilde{x} \approx \mathrm{~d}^{4} \tilde{x}\left(1+\tilde{\partial}_{\mu} a^{\mu}\right) . \tag{42}
\end{equation*}
$$

Putting everything together, we find ${ }^{4}$

$$
\begin{align*}
S & =\int \mathrm{d}^{4} \tilde{x}\left(1+\tilde{\partial}_{\mu} a^{\mu}\right) \mathcal{L}\left[\varphi(\tilde{x})+\delta \varphi(\tilde{x}), \tilde{\partial}_{\mu} \varphi-\left(\tilde{\partial}_{\mu} a^{\nu}\right) \tilde{\partial}_{\nu} \varphi+\tilde{\partial}_{\mu} \delta \varphi\right] \\
& =\int \mathrm{d}^{4} x\left\{\mathcal{L}(\varphi, \partial \varphi)+\partial_{\mu} a^{\mu} \mathcal{L}-\left[\frac{\delta \mathcal{L}}{\delta \partial_{\mu} \varphi}\right] \partial_{\mu} a^{\nu} \partial_{\nu} \varphi+\left[\frac{\delta \mathcal{L}}{\delta \partial_{\mu} \varphi}\right] \partial^{\mu} \delta \varphi+\frac{\partial \mathcal{L}}{\partial \varphi} \delta \varphi\right\}  \tag{43}\\
& =S+\int \mathrm{d}^{4} x\left\{\partial_{\mu} a^{\mu} \mathcal{L}-\left[\frac{\delta \mathcal{L}}{\delta \partial_{\mu} \varphi}\right] \partial_{\mu} a^{\nu} \partial_{\nu} \varphi-\partial^{\mu}\left[\frac{\delta \mathcal{L}}{\delta \partial_{\mu} \varphi}\right] \delta \varphi+\frac{\partial \mathcal{L}}{\partial \varphi} \delta \varphi\right\},
\end{align*}
$$

where in the last step we used integration-by-parts and neglected the integral of the total derivative. The last two terms cancel for arbitrary $\delta \varphi$ thanks to the equations of motion.

To simplify the first two terms, we use

$$
\begin{align*}
& \partial_{\mu} a^{\mu} \mathcal{L}=\partial_{\mu}\left(a^{\mu} \mathcal{L}\right)-a^{\mu} \partial_{\mu} \mathcal{L}, \\
& {\left[\frac{\delta \mathcal{L}}{\delta \partial_{\mu} \varphi}\right] \partial_{\mu} a^{\nu} \partial_{\nu} \varphi=\partial_{\mu}\left[\frac{\delta \mathcal{L}}{\delta \partial_{\mu} \varphi} a^{\nu} \partial_{\nu} \varphi\right]-a^{\nu} \partial_{\mu}\left[\frac{\delta \mathcal{L}}{\delta \partial_{\mu} \varphi} \partial_{\nu} \varphi\right] .} \tag{44}
\end{align*}
$$

[^2]Hence, neglecting total derivatives, we arrive at

$$
\begin{equation*}
0=\int d^{4} x a^{\mu}\left\{\partial_{\mu} \mathcal{L}-\partial_{\nu}\left[\frac{\delta \mathcal{L}}{\delta \partial_{\nu} \varphi} \partial_{\mu} \varphi\right]\right\}=\int d^{4} x a^{\mu} \partial_{\nu}\left\{g_{\mu}^{\nu} \mathcal{L}-\left[\frac{\delta \mathcal{L}}{\delta \partial_{\nu} \varphi} \partial_{\mu} \varphi\right]\right\} \tag{45}
\end{equation*}
$$

Since $a^{\mu}$ is arbitrary, it follows that

$$
\begin{equation*}
\partial_{\mu} T^{\mu \nu}=0 \tag{46}
\end{equation*}
$$

where

$$
\begin{equation*}
T^{\mu \nu}=\frac{\delta \mathcal{L}}{\delta \partial_{\mu} \varphi} \partial^{\nu} \varphi-g^{\mu \nu} \mathcal{L} \tag{47}
\end{equation*}
$$

is the energy-momentum tensor.
Conservation of the energy-momentum tensor Eq. (46) implies energy conservation. Indeed, Eq. (46) reads

$$
\begin{equation*}
\partial_{t} T^{00}=-\partial_{i} T^{i 0} \tag{48}
\end{equation*}
$$

Now, integrating over the entire space and setting the integral of the total derivative to zero (we imagine that there is no flux through an infinitely-remote surface), we find

$$
\begin{equation*}
\partial_{t} \int \mathrm{~d}^{3} \vec{x} T^{00}=0 \tag{49}
\end{equation*}
$$

Hence, $\int \mathrm{d}^{3} \vec{x} T^{00}$ is indeed time-independent; comparing it with Eq. (1), we find $H=$ $\int \mathrm{d}^{3} \vec{x} T^{00}$. This is the total energy stored in the field.

We can follow the same lines of reasoning to show that

$$
\begin{equation*}
P^{i}=\int \mathrm{d}^{3} \vec{x} T^{0 i}=-\int \mathrm{d}^{3} \vec{x} \pi(t, \vec{x}) \vec{\nabla} \varphi(t, \vec{x}) \tag{50}
\end{equation*}
$$

is also time-independent. To this end, we start with $\partial_{\mu} T^{\mu i}=0$ and integrated over $\mathrm{d}^{3} x$. Since the integral of the total derivative vanishes, we find

$$
\begin{equation*}
\partial_{t} \int \mathrm{~d}^{3} x T^{0 i}=\partial_{t} P^{i}=0 \tag{51}
\end{equation*}
$$

The quantity $P^{i}$ is the three-momentum operator,
To write $P^{i}$ through creation and annihilation operators, we follow what we have done for the Hamiltonian. We find

$$
\begin{equation*}
\vec{P}=\int \frac{\mathrm{d}^{3} \vec{k}}{(2 \pi)^{3}} \vec{k} a_{\vec{k}}^{\dagger} a_{\vec{k}} \tag{52}
\end{equation*}
$$

Hence, for $|\vec{k}\rangle=\sqrt{2 \omega_{k}} a_{\vec{k}}^{\dagger}|0\rangle$, we obtain

$$
\begin{equation*}
\vec{P}|\vec{k}\rangle=\vec{k}|\vec{k}\rangle \tag{53}
\end{equation*}
$$

It follows, that the state $|\vec{k}\rangle$ is an eigenstate of the momentum operator $\vec{P}$ and the Hamiltonian $H$; the relation between eigenvalues of $\vec{P}$ and $H$ corresponds to the relation between energy and momentum of a free relativistic particle with the mass $m$. We conclude that a quantum theory with the Lagrangian

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi-\frac{m^{2}}{2} \varphi^{2} \tag{54}
\end{equation*}
$$

describes free relativistic particles with the mass $m$.


[^0]:    ${ }^{1}$ We will see what is being "created" or "annihilatated" by these operators shortly.

[^1]:    ${ }^{2}$ If this point is not clear to you, go back to your Quantum Mechanics lectures and check out the discussion of a quantum oscillator based on creation and annihilation operators. Then generalize.

[^2]:    ${ }^{3}$ We note that $\operatorname{det}(1+\epsilon A) \approx 1+\epsilon \operatorname{Tr}[A]$, for small $\epsilon$.
    ${ }^{4}$ We replace $\tilde{x}$ with $x$ in the second step, for simplicity.

