
Lecture 3

Canonical quantization, particles

One of the things that we did in the previous lecture was the computation of the
energy stored in the scalar field

E =

∫
d3~x

[
1

2

(
∂ϕ

∂t

)2

+
1

2

(
~∇ϕ
)2

+
m2ϕ2

2
+ V (ϕ)

]
. (1)

We will identify this quantity with the Hamiltonian of the system.
The Hamiltonian should be a function of canonical momenta and canonical coordi-

nates. The canonical momentum is computed in a standard way

δL

δ∂tϕ(t, ~x)
= ∂tϕ(t, ~x) = π(t, ~x). (2)

We then obtain

E = H =

∫
d3~x

[
1

2
π2 +

1

2

(
~∇ϕ
)2

+
m2ϕ2

2
+ V (ϕ)

]
(3)

The quantization procedure amounts to the choice of the equal-time commutator of
operators ϕ and π

[π(t, ~x), ϕ(t, ~y)] = −iδ(3)(~x− ~y). (4)

Moreover,
[π(t, ~x), π(t, ~y)] = 0, [ϕ(t, ~x), ϕ(t, ~y)] = 0. (5)

We will now consider a free theory (V (ϕ) = 0) and derive equations that ϕ and π
satisfy. We will use the fact that the commutator of any operator with H gives a time
derivative of this operator. For example

i∂tπ(t, ~x) = [π(t, ~x), H]. (6)

It is important that the Hamiltonian is time-independent (energy is conserved). This
observation simplifies the computation of the commutator since we can take operators π
and ϕ in the integrand of H at any time. It is this possibility that allows us to use Eq.
(3) to compute the commutator of H with π and ϕ.

Indeed, we write

[π(t, ~x), H] =

∫
d3~y

[
1

2
[π(t, ~x), π(t, ~y)2] +

1

2
[π(t, ~x),

(
~∇ϕ(t, ~y)

)2
] +

m2

2
[π(t, ~x), ϕ(t, ~y)2]

]
.

(7)
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The first commutator vanishes since π(t, ~x) commutes with π(t, ~y). To compute the
second and the third terms, we use the following equations

1

2
[π(t, ~x),

(
~∇ϕ(t, ~y)

)2
] = ~∇yϕ(t, ~y) · [π(t, ~x), ~∇yϕ(t, ~y)]

= ~∇yϕ(t, ~y) · ~∇y[π(t, ~x), ϕ(t, ~y)] = −i~∇yϕ(t, ~y) · ~∇yδ(3)(~x− ~y).
(8)

and
1

2
[π(t, ~x), ϕ(t, ~y)2] = ϕ(t, ~y)[π(t, ~x), ϕ(t, ~y)] = −iϕ(t, ~y)δ(3)(~x− ~y). (9)

We substitute Eqs. (8, 9) into Eq. (7), integrate by parts once and obtain

∂tπ(t, ~x) =
[
~∇2 −m2

]
ϕ(t, ~x). (10)

Since π = ∂tϕ, we find[(
∂2

∂t2
− ~∇2

)
+m2

]
ϕ =

[
∂µ∂

µ +m2
]
ϕ = 0. (11)

This is the Klein-Gordon equation for the field operator ϕ.
Since the operator ϕ satisfies the Klein-Gordon equation, we can write

ϕ(t, ~x) =

∫
d3~k

(2π)3
√

2ωk

[
a~ke
−iωkt+i~k~x + a†~k

eiωkt−i~k~x
]
, (12)

where ωk =
√
~k2 +m2, and the a~k and a†~k

operators are referred to as “creation” and

“annihilation” operators, respectively.1 In writing Eq. (12) we have used the fact that the
field ϕ is real; the consequence of this for the quantum operator ϕ is that it is hermitian

ϕ†(t, ~x) = ϕ(t, ~x). (13)

The momentum operator π(t, ~x) is obtained by computing ∂tϕ. We find

π(t, ~x) = −i
∫

d3~k

(2π)3
√

2ωk
ωk

[
a~ke
−iωkt+i~k~x − a†~ke

iωkt−i~k~x
]
, (14)

The momentum operator π and the field operator ϕ must satisfy canonical equal-time
commutation relations, Eq. (4). To check that they do, we write[

a~k, a
†
~q

]
= f~k(2π)3δ(3)(~k − ~q), (15)

where the function f~k at this point is arbitrary. We also assume that [a~k, a~q] = 0 and

[a†~k
, a†~q] = 0.

1We will see what is being “created” or “annihilatated” by these operators shortly.
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To make expressions more compact, we introduce four-vectors xµ = (t, ~x), yµ = (t, ~y)
and kµ = (ωk,~k) and write

ωkt− ~k~x = kx, ωkt− ~k~y = ky. (16)

We then find

[π(t, ~x), ϕ(t, ~y)] = −i
∫

d3~k

(2π)3
√

2ωk

d3~q

(2π)3
√

2ωq
ωk

{
[a~k, a

†
~q]e
−ikx+iqy + [a~q, a

†
~k
]eikx−iqy

}
= −i

∫
d3~k

(2π)32
f~k

{
ei
~k(~x−~y) + e−i

~k(~x−~y)
}

= −iδ3)(~x− ~y),

(17)

where the last step requires f~k = 1. Hence,[
a~k, a

†
~q

]
= (2π)3δ(3)(~k − ~q). (18)

To understand the meaning of creation and annihilation operators, we need to express
the Hamiltonian H through them. We start with the term m2ϕ2. Then∫

d3~x ϕ2(t, ~x)

=

∫
d3~x

∫
d3~k1

(2π)3
√

2ω1

d3~k2
(2π)3

√
2ω2

{
a~k1e

−ik1x + a†~k1
eik1x

}{
a~k2e

−ik2x + a†~k2
eik2x

}
,

(19)

where kix = ωit− ~ki~x. We integrate over ~x and obtain∫
d3~x ϕ2(t, ~x) =

∫
d3~k1

(2π)3
√

2ω1

d3~k2
(2π)3

√
2ω2

[ a~k1a~k2e
−i(ω1+ω2)t(2π)3δ(3)(~k1 + ~k2)

+a†~k1
a†~k2

ei(ω1+ω2)t(2π)3δ(3)(~k1 + ~k2) + a†~k1
a~k2δ

(3)(~k1 − ~k2) + a~k1a
†
~k2

(2π)3δ(3)(~k1 − ~k2)
]
.

(20)

As you see, this operator is explicitly time-dependent. As we have argued earlier, the
Hamiltonian should be independent of time; therefore, we should expect important can-
cellation of the time-dependence of

∫
d3x ϕ2 and the time-dependences of other contri-

butions to H.
The next contribution is∫
d3~x (~∇ϕ)2(t, ~x) = −

∫
d3~k1

(2π)3
√

2ω1

d3~k2
(2π)3

√
2ω2

~k1 · ~k2 [ a~k1a~k2e
−i(ω1+ω2)t(2π)3δ(3)(~k1 + ~k2)

+a†~k1
a†~k2

ei(ω1+ω2)t(2π)3δ(3)(~k1 + ~k2)− a†~k1a~k2δ
(3)(~k1 − ~k2)− a~k1a

†
~k2

(2π)3δ(3)(~k1 − ~k2)
]
.

(21)
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A similar computation for
∫

d3~x π2 gives∫
d3x π2(t, ~x) = −

∫
d3~k1

(2π)3
√

2ω1

d3~k2
(2π)3

√
2ω2

ω1ω2 [ a~k1a~k2e
−i(ω1+ω2)t(2π)3δ(3)(~k1 + ~k2)

+a†~k1
a†~k2

ei(ω1+ω2)t(2π)3δ(3)(~k1 + ~k2)− a†~k1a~k2δ
(3)(~k1 − ~k2)− a~k1a

†
~k2

(2π)3δ(3)(~k1 − ~k2)
]
.

(22)

To obtain the Hamiltonian H, we add the relevant contributions together, integrate over
~k2 and, using that ω2

k −m2 − ~k2 = 0, find that all time-dependent contributions cancel.
The result becomes

H =

∫
d3~k1
(2π)3

ω1

2

[
a†~k1

a~k1 + a~k1a
†
~k1

]
=

∫
d3~k1
(2π)3

[
ω1a

†
~k1
a~k1 +

ω1

2
δ(3)(~0)

]
. (23)

In the last step we used the commutation relation Eq. (18) to re-order creation and
annihilation operators; δ(3)(~0) is δ(3)(~q − ~k), for ~q = ~k. To interpret δ(3)(~0), we write

(2π)3δ(3)(~0) = (2π)3δ(3)(~k1 − ~k2)|~k1=~k2 =

∫
d3~xei(

~k1−~k2)~x|~k1=~k2 =

∫
d3~x = V, (24)

where V is the volume of the region where the field ϕ is defined.
Hence, we write

H = V E0 +

∫
d3~k1
(2π)3

ω1a
†
~k1
a~k1 , (25)

where

E0 =

∫
d3~k1
(2π)3

ω1

2
. (26)

We would like to find eigenstates of the Hamiltonian H. To this end, we define
a quantum state with the minimal energy (the vacuum state) |0〉 as a state which is
annihilated by all annihilation operators2

a~k|0〉 = 0 , ∀~k . (27)

The energy of the vacuum state easily follows

H|0〉 = V E0|0〉. (28)

It is interesting to know how large is the energy of the vacuum state. An unexpected
answer to this question is that E0 is infinite since the integral over |~k| in Eq. (26) does
not converge. We will discuss this issue in the next lecture. For now just note that the
absolute value of the vacuum energy is not important for us; rather, we are interested in

2If this point is not clear to you, go back to your Quantum Mechanics lectures and check out the
discussion of a quantum oscillator based on creation and annihilation operators. Then generalize.
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how much energy is needed to excite the vacuum. Hence, we redefine the Hamiltonian
by subtracting the vacuum energy and define

H − E0V → H =

∫
d3~k1
(2π)3

ω1a
†
~k1
a~k1 . (29)

The excited states of the new Hamiltonian are constructed by acting with creation
operators a†~k

on the vacuum state

|~k1, ....~kN 〉 = a†~k1
...a†~kN

|0〉. (30)

It is easy to see that these quantum states are eigenstates of the Hamiltonian

H|~k1, ....~kN 〉 =

(
N∑
i=1

ωi

)
|~k1, ....~kN 〉. (31)

For example, a state a†~k1
|0〉 is an eigenstate of the Hamiltonian with the energy

ω1 =

√
~k21 +m2. If we interpret ~k1 as the three-momentum of the state |~k1〉, the above

formula shows that the relation between energy and momentum of this state is identical
to the relation between energy and momentum of a relativistic particle with the mass
m. We will show below that ~k1 is indeed the three-momentum of the state |~k1〉.

Before we discuss this, it is useful to say a few things about the normalization. If we
compute 〈~k1|~k2〉 and use 〈0|0〉=1, we easily find

〈~k1|~k2〉 = 〈0|a~k1a
†
~k2
|0〉 = 〈0|[a~k1 , a

†
~k2

]|0〉 = (2π)3δ(3)(~k1 − ~k2). (32)

Unfortunately, this normalization is not Lorentz invariant. We therefore redefine the
states

|~k〉 =
√

2ωka
†
~k
|0〉. (33)

The relativistic normalization now reads

〈~k1|~k2〉 = 2ωk1(2π)3δ(3)(~k1 − ~k2). (34)

From now on, we will always use states that are normalized in a Lorentz-invariant way.
Note that with this normalization the following result is valid

〈0|ϕ(t, ~x)|~k〉 = e−iωkt+i~k~x, (35)

which looks like a wave function of a relativistic particle with momentum ~k and energy
ωk.

To show that ~k is indeed the three-momentum of a particle described by the state
|~k〉, we require the operator of the three-momentum. To find it, we will discuss certain
properties of the action of a free field. The action reads

S =

∫
d4x L(∂µϕ,ϕ). (36)
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The important point is that the Lagrangian density does not explicitly depend on xµ.
We can use this property to find quantities that do not change during the time evolution
of the system – integrals of motion.

To this end, consider a general coordinate transformation

xµ = x̃µ + aµ(x̃). (37)

We assume that aµ is small. Then,

ϕ(x) = ϕ(x̃+ a(x̃)) ≈ ϕ(x̃) + aµ(x̃)∂̃µϕ(x̃). (38)

Now, writing
ϕ(x̃+ a(x̃)) = ϕ̃(x̃) = ϕ(x̃) + δϕ(x̃), (39)

we find
δϕ(x̃) = aµ(x̃)∂̃µϕ(x̃). (40)

To find the change in ∂µϕ, we need to be a bit more careful. We write

∂ϕ(x)

∂xµ
=

∂

∂xµ
ϕ(x̃+ aµ(x̃)) =

∂x̃ν

∂xµ
∂

∂x̃ν
ϕ(x̃+ aµ(x̃))

=
(
gνµ − ∂̃µaν

)
∂̃ν (ϕ+ δϕ) ≈ ∂̃µϕ− (∂̃µa

ν)∂̃νϕ+ ∂̃µδϕ,
(41)

where in the last step we neglected O(a2) contributions.
Finally, we need to calculate3

d4x = det

[
∂x

∂x̃

]
d4x̃ ≈ d4x̃

(
1 + ∂̃µa

µ
)
. (42)

Putting everything together, we find4

S =

∫
d4x̃

(
1 + ∂̃µa

µ
)
L
[
ϕ(x̃) + δϕ(x̃), ∂̃µϕ− (∂̃µa

ν)∂̃νϕ+ ∂̃µδϕ
]

=

∫
d4x

{
L(ϕ, ∂ϕ) + ∂µa

µL −
[
δL
δ∂µϕ

]
∂µa

ν∂νϕ+

[
δL
δ∂µϕ

]
∂µδϕ+

∂L
∂ϕ

δϕ

}
= S +

∫
d4x

{
∂µa

µL −
[
δL
δ∂µϕ

]
∂µa

ν∂νϕ− ∂µ
[
δL
δ∂µϕ

]
δϕ+

∂L
∂ϕ

δϕ

}
,

(43)

where in the last step we used integration-by-parts and neglected the integral of the
total derivative. The last two terms cancel for arbitrary δϕ thanks to the equations of
motion.

To simplify the first two terms, we use

∂µa
µL = ∂µ (aµL)− aµ∂µL,[
δL
δ∂µϕ

]
∂µa

ν∂νϕ = ∂µ

[
δL
δ∂µϕ

aν∂νϕ

]
− aν∂µ

[
δL
δ∂µϕ

∂νϕ

]
.

(44)

3We note that det(1 + εA) ≈ 1 + εTr[A], for small ε.
4We replace x̃ with x in the second step, for simplicity.
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Hence, neglecting total derivatives, we arrive at

0 =

∫
d4xaµ

{
∂µL − ∂ν

[
δL
δ∂νϕ

∂µϕ

]}
=

∫
d4xaµ∂ν

{
gνµL −

[
δL
δ∂νϕ

∂µϕ

]}
. (45)

Since aµ is arbitrary, it follows that

∂µT
µν = 0, (46)

where

Tµν =
δL
δ∂µϕ

∂νϕ− gµνL, (47)

is the energy-momentum tensor.
Conservation of the energy-momentum tensor Eq. (46) implies energy conservation.

Indeed, Eq. (46) reads
∂tT

00 = −∂iT i0. (48)

Now, integrating over the entire space and setting the integral of the total derivative to
zero (we imagine that there is no flux through an infinitely-remote surface), we find

∂t

∫
d3~x T 00 = 0. (49)

Hence,
∫

d3~xT 00 is indeed time-independent; comparing it with Eq. (1), we find H =∫
d3~xT 00. This is the total energy stored in the field.

We can follow the same lines of reasoning to show that

P i =

∫
d3~x T 0i = −

∫
d3~x π(t, ~x)~∇ϕ(t, ~x). (50)

is also time-independent. To this end, we start with ∂µT
µi = 0 and integrated over d3x.

Since the integral of the total derivative vanishes, we find

∂t

∫
d3xT 0i = ∂tP

i = 0. (51)

The quantity P i is the three-momentum operator,
To write P i through creation and annihilation operators, we follow what we have

done for the Hamiltonian. We find

~P =

∫
d3~k

(2π)3
~k a†~k

a~k. (52)

Hence, for |~k〉 =
√

2ωka
†
~k
|0〉, we obtain

~P |~k〉 = ~k|~k〉. (53)
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It follows, that the state |~k〉 is an eigenstate of the momentum operator ~P and the
Hamiltonian H; the relation between eigenvalues of ~P and H corresponds to the rela-
tion between energy and momentum of a free relativistic particle with the mass m. We
conclude that a quantum theory with the Lagrangian

L =
1

2
∂µϕ∂

µϕ− m2

2
ϕ2 (54)

describes free relativistic particles with the mass m.
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