
Lecture 16

Green’s functions and Feynman diagrams

We have seen in the last lecture that we can understand interesting physics by ana-
lyzing free field theory coupled to external sources. However, ultimately, we would like to
understand how to deal with interacting field theories. In this lecture we briefly discuss
how this can be done.

Recall that Green’s functions of a quantum field theory defined by the action

S[ϕ] =

∫
d4x

(
1

2
∂µϕ∂

µϕ− m2

2
ϕ2 − V (ϕ)

)
(1)

can be computed using the generating functional

Z[J ] =

∫
Dϕ eiS[ϕ,J ]∫
Dϕ eiS[ϕ,0] . (2)

In Eq. (2),

S[ϕ, J ] = S[ϕ] +

∫
d4x J(x)ϕ(x). (3)

The Green’s functions are computed by taking functional derivatives of Z[J ]

〈0|Tϕ(x1)ϕ(x2)...ϕ(xN )|0〉 =
1

Z[0]

δNZ[J ]

iδJ(x1) iδJ(x2) ...iδJ(xN )

∣∣∣∣
J=0

. (4)

To get an idea of how Green’s functions look like, we start with a free field theory
where V (ϕ) = 0. Then,

Z[J ] = e−
1
2

∫
d4xd4yJ(x)DF (x−y)J(y). (5)

We compute Green’s functions by taking derivatives of Z[J ] in Eq. (5). Upon taking
two derivatives, we find

δ2Z[J ]

iδJ(x3) iδJ(x4)
= DF (x3−x4)Z[J ]−

∫
d4y3DF (x3−y3)J(y3)

∫
d4y4DF (x4−y4)J(y4) Z[J ].

(6)
If we set J = 0 in Eq. (6), we obtain the two-point function.

δ2Z[J ]

iδJ(x3) iδJ(x4)

∣∣∣∣
J=0

= 〈0|Tϕ(x3)ϕ(x4)|0〉 = DF (x3 − x4). (7)

We can represent a two-point function by a straight line that connects the two points
x3 and x4, see Fig. (1); this is an example of a Feynman diagram in position space
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x4x3
DF (x3 − x4) =

Figure 1: Feynman diagram that describes a two-point function in a free theory.

If we differentiate Eq. (6) two more times and set J = 0 afterwards, we find the
four-point function. It reads

δ4Z[J ]

iδJ(x1) iδJ(x2) iδJ(x3) iδJ(x4)

∣∣∣∣
J=0

=

= DF (x1 − x2)DF (x3 − x4) +DF (x3 − x1)DF (x4 − x2) +DF (x3 − x2)DF (x4 − x1)

=
∑
pairs

DF (xi1 − xi2)DF (xi3 − xi4).

(8)

This formula suggests that a four-point function in a free theory can be obtained
by drawing four points x1, x2, x3, x4 and then connecting them, pairwise, in all possible
ways and taking a sum over all permutations. The picture obtained in this way (c.f.
Fig. (2)) is the Feynman diagram for a four-point function in a free theory.

x1 x1 x1x2 x2 x2

x3 x3 x3x4 x4 x4

+ +〈0|Tϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)|0〉 =

Figure 2: A Feynman diagram for a four-point function in a free theory.

An obvious generalization of Eq. (8) provides an N -point Green’s function

δNZ[J ]

iδJ(x1) iδJ(x2) ... iδJ(xN )

∣∣∣∣
J=0

=
∑
pairs

DF (xi1 − xi2)DF (xi3 − xi4)...DF (xiN−1 − xiN ).

(9)
Suppose, we would like to calculate Green’s functions in an interacting theory. The

problem is that in this case the generating functional Z[J ] is not known exactly. However,
it is possible to compute it in perturbation theory. To do that, we introduce an auxiliary

2



functional Z̃[j] and write

Z̃[J ] =

∫
Dϕ e

i
∫
d4x

[
1
2
(∂µϕ)

2−m
2ϕ2

2
−V (ϕ)+Jϕ

]

=

∞∑
n=0

∫
Dϕ (−i)n

n!

n∏
i=1

∫
d4yiV (ϕ(yi)) e

i
∫
d4x

[
1
2
(∂µϕ)

2−m
2ϕ2

2
+Jϕ

]

=

∞∑
n=0

∫
Dϕ (−i)n

n!

n∏
i=1

∫
d4yiV

(
δ

iδJ(yi)

)
e
i
∫
d4x

[
1
2
(∂µϕ)

2−m
2ϕ2

2
+Jϕ

]

= e
−i
∫
d4yV

(
δ

iδJ(y)

) ∫
Dϕ e

i
∫
d4x

[
1
2
(∂µϕ)

2−m
2ϕ2

2
+Jϕ

]

= Ñ0 e
−i
∫
d4yV

(
δ

iδJ(y)

)
Z̃0[J ],

(10)

where Ñ0 is a normalization constant in a free theory that we can set to one without
further ado. Also,

Z̃0[J ] = e−
1
2

∫
d4xd4yJ(x)DF (x−y)J(y). (11)

The formula that we just derived is extremely general. To understand how it works,
we consider a theory with potential energy

V (ϕ) =
λ

4!
ϕ4. (12)

We assume that λ is small and expand Z̃[J ] in powers of λ. Working to first order, we
find

Z̃[J ] = Z̃0[J ]− iλ

4!

∫
d4x

[
δ

iδJ(x)

]4
Z̃0[J ] +O(λ2). (13)

To proceed further, we need to compute four derivatives of Z0[J ] w.r.t. J(x). We find

δZ̃0[J ]

δJ(x)
= −

∫
d4y DF (x− y)J(y) Z̃0[J ],

δ2Z̃0[J ]

δJ(x)2
= −DF (0)Z̃0[J ] +

[∫
d4y DF (x− y)J(y)

]2
Z̃0[J ],

δ3Z̃0[J ]

δJ(x)3
= 3DF (0)

[∫
d4y DF (x− y)J(y)

]
Z̃0[J ]−

[∫
d4y DF (x− y)J(y)

]3
Z̃0[J ],

δ4Z̃0[J ]

δJ(x)4
= 3D2

F (0)Z̃0[J ]− 6DF (0)

[∫
d4y DF (x− y)J(y)

]2
Z̃0[J ]

+

[∫
d4y DF (x− y)J(y)

]4
Z̃0[J ],

(14)
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Suppose that we are interested in the computation of a two-point function through
first order in the coupling constant λ. We need to compute

δ2Z[J ]

iδJ(x1)iδJ(x2)

∣∣∣∣
J=0

, (15)

and we do that using Eq. (13) and Eq. (14). We find

δ2Z̃[J ]

iδJ(x1)iδJ(x2)

∣∣∣∣∣
J=0

= DF (x1 − x2)

− iλ

4!

∫
d4x

[
3DF (0)DF (0) DF (x1 − x2) + 12DF (0)DF (x1 − x)DF (x− x2)

]
= DF (x1 − x2)

(
1− iλ

8

∫
d4x D2

F (0)

)
− iλ

2
DF (0)

∫
d4xDF (x1 − x)DF (x− x2).

(16)

To find Z[J ], we also need Z̃[0], to compute the normalization constant. We obtain it
from Eqs. (13,14). It reads

Z̃[0] = 1− 3iλ

4!

∫
d4x DF (0)DF (0). (17)

Since Z[J ] = Z̃[J ]/Z̃[0], we combine Eqs. (16,17), expand to first order in λ and find
our final result for the two-point function in an interacting theory

δ2Z[J ]

iδJ(x1)iδJ(x2)

∣∣∣∣
J=0

= 〈0|Tϕ(x1)ϕ(x2)|0〉

= DF (x1 − x2)−
iλ

2
DF (0)

∫
d4x DF (x1 − x)DF (x− x2).

(18)

We can develop a pictorial representation of Eq. (18) using what we already did
earlier in a free field theory. In a free field theory a two-point function is represented by
a line that connects the two points x1 and x2. This is the first term in the right hand
side of Eq. (18). The second term in the r.h.s. of Eq. (18) tells us that, in an interacting
field theory, a particle may interact with vacuum fluctuations on its way from x1 to x2.
The interaction can happen at any point x (hence, integration over x in Eq. (18) ) and,
at the point x, the interaction introduces a fluctuation that is described by a particle
propagating from the point x to the same point x (hence, DF (0)). The interaction in
our theory is V ∼ ϕ4 and, hence, necessarily involves four particles (or fields). For this
reasons four fields have to meet at the “interaction point” x.

The Feynman diagram that is obtained by following these rules to describe Eq. (18)
is shown below, c.f. Eq. (19). Note that there we show separately the expansion of the
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numerator and denominator of Z[J ] defined in Eq. (2).

〈0|Tϕ(x1)ϕ(x2)|0〉 =

 x1 x2 − iλ

8

x2x1

x − iλ

2 x1 x x2


/1− iλ

8
x


= x1 x2 − iλ

2 x1 x x2
(19)
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