
Lecture 15

Green’s functions and the path integral. Forces.

We have seen in Lecture 2 that a probability amplitude that describes a transition from a
vacuum state to a vacuum state over very large time T is given by the following formula

〈0|e−iHT |0〉 =

∫
Dϕ eiS , (1)

where

S =

∫
d4x

[
1

2
(∂µϕ)2 − m2

2
ϕ2 − V (ϕ)

]
, (2)

and the integration goes over all possible field configurations. In general, the matrix
element on the left hand side of Eq. (1) is not very interesting because the vacuum state
is an eigenstate of the Hamiltonian H. This implies that e−iHT |0〉 = |0〉 (since we define
the energy of the vacuum to be zero) so that 〈0|e−iHT |0〉 = 1.

We can make the path integral more interesting if we modify the action by introducing
an external source J(t, ~x) that couples to the quantum field ϕ

S → S[ϕ, J ] =

∫
d4x

[
1

2
(∂µϕ)2 − m2

2
ϕ2 − V (ϕ) + Jϕ

]
. (3)

We define a functional Z[J ] as follows

Z[J ] =

∫
Dϕ eiS[ϕ,J ]. (4)

We know from the discussion above that Z[0] = 1; we can make this explicit by writing

Z[J ] =

∫
Dϕ eiS[ϕ,J ]∫
Dϕ eiS[ϕ,0]

. (5)

We have discussed a similar quantity in Lecture 1 in the context of quantum mecha-
nics. Here we will discuss it once again in connection with quantum field theory. We will
start with a free theory, V (ϕ) = 0, where the path integral can be explicitly computed.
We start by re-writing the kinetic term in the action by integrating by parts

1

2

∫
d4x (∂µϕ)2 = −1

2

∫
d4x ϕ ∂µ∂

µϕ. (6)

The functional Z[J ] becomes

Z[J ] =

∫
Dϕ ei

∫
d4x [− 1

2
ϕ(∂2+m2)ϕ+Jϕ]∫

Dϕ ei
∫

d4x [− 1
2
ϕ(∂2+m2)ϕ]

. (7)
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To compute the integral, we change the integration variable ϕ→ ϕ̄ in the numerator as
follows ϕ = ϕ̄+ χ. Then, Dϕ = Dϕ̄ and

−1

2
ϕ(∂2 +m2)ϕ+ Jϕ = −1

2
ϕ̄(∂2 +m2)ϕ̄

+ ϕ̄J − 1

2
ϕ̄(∂2 +m2)χ− 1

2
χ(∂2 +m2)ϕ̄

+ Jχ− 1

2
χ(∂2 +m2)χ.

(8)

We can remove the entire second line in the above equation by choosing χ in an appro-
priate way. To this end, we integrate the last term in the second line of Eq.(8) by parts
twice and find

ϕ̄J − 1

2
ϕ̄(∂2 +m2)χ− 1

2
χ(∂2 +m2)ϕ̄→ ϕ̄

(
J − (∂2 +m2)χ

)
. (9)

By choosing

χ =
[
∂2 +m2

]−1
J, (10)

we ensure that ϕ̄J − 1
2 ϕ̄(∂2 +m2)χ− 1

2χ(∂2 +m2)ϕ̄ vanishes. Note that the right hand
side of Eq.(10) is actually an integral

χ(x) =

∫
d4y D(x, y)J(y), (11)

where D(x, y) is symmetric and defined as(
∂2
x +m2

)
D(x, y) = δ(4)(x− y). (12)

We use Eq.(10) to simplify Z[J ]

Z[J ] =

∫
Dϕ̄ ei

∫
d4x [− 1

2
ϕ̄(∂2+m2)ϕ̄]∫

Dϕ ei
∫

d4x [− 1
2
ϕ(∂2+m2)ϕ]

eiW [J ] = eiW [J ], (13)

where

W [J ] =

∫
d4x

(
Jχ− 1

2
χ(∂2 +m2)χ

)
=

1

2

∫
d4xd4y J(x)D(x, y) J(y). (14)

We can now compute the functional derivatives of Z[J ] with respect to J . We find

δZ[J ]

iδJ(x)
=

[∫
d4x1D(x, x1)J(x1)

]
Z[J ], (15)

and

δ2Z[J ]

iδJ(x) iδJ(y)
= −iD(x, y) Z[J ]+

[∫
d4x1D(x, x1)J(x1)

] [∫
d4y1D(y, y1)J(y1)

]
Z[J ].

(16)
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Taking J → 0 in both equations and using Z[0] = 1, we find

δZ[J ]

iδJ(x)
|J=0 = 0,

δ2Z[J ]

iδJ(x) iδJ(y)
|J=0 = −iD(x, y). (17)

On the other hand, taking derivatives with respect to J in Eq.(5) and setting J = 0, we
find e.g.

δ2Z[J ]

iδJ(x) iδJ(y)
|J=0 =

∫
Dϕ ϕ(x)ϕ(y)eiS[ϕ,0]∫

DϕeiS[ϕ,0]
= 〈0|Tϕ(x)ϕ(y)|0〉, (18)

where the last step follows from the discussion in Lecture 1. We have seen in the previous
lecture that for a free theory that we discuss now

〈0|Tϕ(x)ϕ(y)|0〉 = DF (x− y) =

∫
d4p

(2π)4

i

p2 −m2 + i0
ei(x−y)p. (19)

We therefore identify
D(x, y) = iDF (x− y). (20)

In fact, the following equation is valid in an interacting theory

δnZ[J ]

iδJ(x1) iδJ(x2)... iδJ(xN )
= 〈0|Tϕ(x1)ϕ(x2)....ϕ(xN )|0〉. (21)

Note that the exact form of Z[J ] in a free theory Eq.(13) implies that all Green’s functions
in a free theory are given by products of Feynman propagators DF (xi − xj).

One interesting thing that we can discuss using path integral formalism is the connec-
tion between “particles” and “forces”. We sometimes call particles “force carriers” and
we will see now how this comes about. To this end, we use Eq.(20) to write Z[J ] in a
free theory as

Z[J ] = e−1/2
∫

d4x d4y J(x)DF (x−y)J(y). (22)

Let us take J(x) = J1(x) + J2(x), where J1,2(x) = δ(3)(~x − ~x1,2). This means that we
took two time-independent, similar sources, located at two different spatial points. If we
substitute J = J1 + J2 into JDFJ in Eq.(22), we will find four terms: two of the form
J1DFJ1 and J2DFJ2 and two of the form J1DFJ2 and J2DFJ1. We are interested in the
latter two since they describe the influence of one point-like source on another one. We
need

− 1

2

∫
d4y d4z J1(y)DF (y − z)J2(z) = −1

2

∫
dy0dz0DF (y0 − z0, ~x1 − ~x2)

= − i
2

∫
dy0dz0

d4k

(2π)4

eik0(y0−z0)−i~k(~x1−~x2)

k2 −m2 + i0

= − i
2

∫
dy0

d4k

(2π)4

2πδ(k0) eik0y0 e−i
~k(~x1−~x2)

k2 −m2 + i0
=
i

2
T

∫
d3~k

(2π)3

e−i
~k(~x1−~x2).

~k2 +m2
,

(23)
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where in the last step we replaced
∫

dy0 = T . Hence, we find

Z[J ] = e
iT

∫
d3~k
(2π)3

e−i
~k(~x1−~x2).
~k2+m2 . (24)

Since, on the other hand,

Z[J ] = 〈0|e−iHT |0〉J = e−iEvacT , (25)

we identify

Evac = −
∫

d3~k

(2π)3

e−i
~k(~x1−~x2).

~k2 +m2
, (26)

with the change in the vacuum energy due to the interaction between the two sources.
This energy can be easily evaluated; it reads (Yukawa potential).

Evac(~x1 − ~x2) = − 1

4π|~x1 − ~x2|
e−m|~x1−~x2|. (27)

The vacuum energy decreases if the distance between the two sources decreases; hence,
the interaction is attractive. We have seen in the previous lecture that the Feynman
propagator, that played an essential role in the derivation of this result (c.f. Eq. (23)),
can be associated with creation and annihilation of particles through field quantization.
Hence, we say that exchanges of virtual scalar particles between like objects lead to an
attractive force between sources.

As the next step, we discuss what happens in a gauge theory. We write

S[A, J ] =

∫
d4x

[
−1

4
FµνF

µν +
m2

2
AµA

µ + JµA
µ

]
, (28)

with Fµν = ∂µAν − ∂νAµ. We have added the mass to the vector field; although such a
term breaks gauge-invariance, we will imagine that this term comes e.g. from spontaneous
symmetry breaking. We will also require that the current Jµ is conserved, ∂µJ

µ = 0. We
begin by rewriting the kinetic term by integrating by parts. We find

−1

4
FµνF

µν = −1

2
(∂µAν) Fµν →

1

2
Aν
(
∂2gνµ − ∂ν∂µ

)
Aµ. (29)

Hence, S[A, J ] becomes

S[A, J ] =

∫
d4x

[
1

2
Aν
(
∂2gνµ − ∂ν∂µ

)
Aµ +

m2

2
AµA

µ + JµA
µ

]
. (30)

Similar to the scalar field case, we need a functional Z[J ] that reads

Z[J ] ∼
∫ 3∏

µ=0

DAµ eiS[A,J ]. (31)
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To compute Z[J ] for the vector field, we shift Aµ → Āµ + χµ and require that linear
terms in Aµ vanish. This is achieved if we choose χµ such that the following equation is
satisfied [

(∂2 +m2)gµν − ∂µ∂ν
]
χν + Jµ = 0. (32)

To solve this equation, we re-write it in momentum space. We find[
(−p2 +m2)gµν + pµpν

]
χν(p) = −Jµ(p). (33)

To determine χν , we write an Ansatz

χµ(p) = (Agµν +Bpµpν) Jν(p), (34)

where A and B are the two coefficients to be determined. We substitute χ from Eq.(34)
into Eq.(33) and find

A(−p2 +m2)gµν + pµpν
(
A+Bm2

)
= −gµν . (35)

The two independent tensor structures have to match simultaneously; we find

A =
1

p2 −m2
, B = − A

m2
. (36)

Hence,

χµ(p) =
1

p2 −m2

[
gµν −

pµpν
m2

]
Jν(p). (37)

The current conservation ∂µJ
µ = 0 implies pµJ

µ(p) = 0. Hence, the above equation can
be simplified

χµ(p) =
1

p2 −m2
Jµ(p). (38)

The pole at p2 = m2 is regularized by m2 → m2 − i0, so that the analytic structure of
the propagator in Eq.(38) is identical to the scalar field case.

A simple computation (HW) that follows what has been done in the scalar field case,
gives

Z[J ] = e
1
2

∫
d4xd4yJµ(x)DF (x−y)Jµ(y). (39)

We note that, compared to the scalar case, the sign in the exponent has changed. The-
refore, if we take J0 = δ(3)(~x− ~x1) + δ(3)(~x− ~x2) and J1,2,3 = 0, the interaction energy
between two sources will have an additional minus sign relative to Eq.(27). Hence, the
interaction between two identical “charge” densities facilitated by vector particles is
repulsive.

An interesting case to discuss is gravity, where the interaction between two equal
“charges” is actually attractive. Since we do not want to get into a discussion of quantum
gravity, we will try to construct empirical arguments. To this end, we go back to the case
of a vector particle exchange and write Eq.(37) by introducing an appropriate Green’s
function

χµ(p) = i Dµν
F (p)Jν(p), Dµν

F (p) =
i

p2 −m2 + i0

[
−gµν +

pµpν

m2

]
. (40)
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We would like to understand the numerator of this Green’s function

Gµν(p) = −gµν +
pµpν

m2
. (41)

To achieve this, we take the four-momentum p to be on the mass-shell, i.e. p2 = m2.
Such momentum is a possible four-momentum for real, physical particles with the cor-
rect relation between energy E and three-momentum ~p, E~p =

√
~p2 +m2. We begin by

considering a particle at rest, i.e. p = (m,~0). The (spin-one) vector particle at rest has
three polarization states which we write, for simplicity, as

εµ1 = (0, 1, 0, 0), εµ2 = (0, 0, 1, 0), εµ3 = (0, 0, 0, 1). (42)

It is easy to see that
3∑

a=1

εµaε
ν
a =


0, µ 6= ν
0, µ = ν = 0
1, µ = ν = i.

(43)

We can write this tensor as

3∑
a=1

εµaε
ν
a = −gµν +

pµpν

m2
, for pµ = (m,~0). (44)

In fact, it is easy to show that this relation holds for an arbitrary vector p, not only the
ones that describe particles at rest, provided of course that p2 = m2 (HW). We conclude
that the function Gµν(p), the residue of the Green’s function Dµν

F (p) at p2 = m2, can be
reconstructed from the sum over physical polarizations of a spin-one particle, as shown
in Eq.(44) and then extended to all values of p.

We now try to construct the Green’s function that describes the exchange of spin-2
particles. This will show us how gravity works since excitations of gravitational fields
– the gravitons - are spin-two particles. A massive spin-two particle is characterized by
(2J+1) = (2 ·2+1) = 5 independent polarization states. To construct them, we consider

a rank-two tensor ε
(a)
µν (p). A generic rank-two tensor has 16 independent components. To

project a rank-two tensor on the spin-two part, we require that this tensor is symmetric,
transverse and traceless

εµν = ενµ, ε(a)
µν (p) pµ = 0, εµνg

µν = 0. (45)

This reduces the number of independent components to 16→ 10− 4− 1 = 5 thanks to
symmetry, transversality and tracelessness, respectively. The numerator of the Feynman
propagator for spin-two particle is

Wµν,λρ(p) =
5∑

a=1

ε(a)
µν (p)ε

(a)
λρ (p). (46)
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Thanks to its definition and the properties of the polarization “tensors”, tensor Wµν,λρ

is symmetric with respect to the permutations of (µ, ν) and (λ, ρ), symmetric in µ↔ ν,
symmetric in λ↔ ρ, transversal

pµWµν,λρ(p) = 0, pλWµν,λρ(p) = 0, (47)

and traceless
gµνWµν,λρ = 0, gλρWµν,λρ = 0. (48)

We will use the tensor Gµν = −gµν + pµpν/m
2 to write an Ansatz for Wµν,λρ since

it automatically satisfies the transversality conditions. The Ansatz reads

Wµν,λρ = x1GµνGλρ + x2 (GµλGνρ +GµρGνλ) . (49)

The tracelessness condition needs to be imposed by contracting Wµν,λρ with gµν or gλρ.
We find that

gµνWµν,λρ = 0 if x1 = −2

3
x2. (50)

Hence,

Wµν,λρ = x2

(
GµλGνρ +GµρGνλ −

2

3
GµνGλρ

)
. (51)

It remains to fix x2. To do so, we note that polarization tensors are normalized to one.
Since

Wµν,λρ(p) =

5∑
a=1

ε(a)
µν (p)ε

(a)
λρ (p), (52)

we require
gµλgνρ Wµν,λρ(p) = 5. (53)

This implies x2 = 1/2. Putting everything together, we deduce the Green’s function for
the spin-two particle exchange

DF
µν,λρ(p) =

i

2

GµλGνρ +GµρGνλ − 2
3GµνGλρ

p2 −m2 + i0
. (54)

We are now in a position to determine the change in the vacuum energy due to
interactions caused by exchanges of spin-two particle between two sources. Recall that
spin-0 and spin-1 exchanges give

Z[J ] = e−1/2
∫

d4xd4yJ(x)DF (x−y)J(y),

Z[J ] = e−1/2
∫

d4xd4yJµ(x)DµνF (x−y)Jν(y),
(55)

where Dµν
F (x − y) = DF (x − y) (−gµν + ..) and −gµν + ... =

∑
εµεν . Hence, we can

imagine that virtual gravitons lead to the following result for generating functional

Z[J ] = e−1/2
∫

d4xd4yJµν(x)Dµν,λρF (x−y)Jλρ(y), (56)
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Since the currents Jµν will be taken to be conserved, we can discard all terms with the
four-momentum p in Eq.(54) and replace Gµν with the metric tensor. Moreover, we only
need a component with µ = ν = ρ = λ = 0, since we will be interested in interactions of
two energy densities described by the J00 components of the currents. Then

DF
µν,λρ(p)→

1

2

(
1 + 1− 2

3

)
DF (p) =

1

3
DF (p). (57)

It follows that, for spin-two exchanges, the sign of Evac is the same as in the case of
spin-zero exchanges. Hence, the exchange of spin-two particles (gravity), leads to an
attractive force.
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