
Lecture 14

Green’s functions

Typically, if we want to solve a quantum mechanical problem, we study the Schrödinger
equation

i~
∂

∂t
Ψ = HΨ, (1)

to find the wave-function ψ of a quantum-mechanical system. Once we know the wave
function, we have complete information about a quantum system, to the extent possible
in quantum mechanics.

However, we almost never attempt to solve the Schrödinger equation in quantum
field theory, so the primary mathematical object we work with changes completely. To
see how it comes about, let us recall that relativistic quantum field theory appeared
as an attempt to understand quantum physics of relativistic particles. A standard way
to explore properties of relativistic particles is to collide them and study results of such
collisions. To describe this process, we imagine that at time t = −∞ the two particles are
far apart and head towards each other; we describe this initial state with a ket-vector |i〉.
At t = +∞, the outcome of the collision is the final state |f〉. The probability amplitude
for this transition to happen is given by the matrix element

Sfi = 〈f |i〉. (2)

Typically, |i〉 and |f〉 are constructed out of creation and annihilation operators,
however these operators are not quite the same. Let us imagine that at t = −∞, we
describe particles with creation operators a†~p(−∞) and at t = ∞ with a†~p(+∞). To
define these operators precisely, we assume that we deal with a scalar theory described
by the Lagrangian

L =
1

2
(∂µϕ)2 − 1

2
m2ϕ2 − V (t, ϕ), (3)

where
V (t, ϕ) = V (ϕ)θ(T0, t). (4)

The function θ(T0, t) is constant on the interval −T0 < t < T0 but adiabatically vanishes
for smaller and larger values of t. Hence, there exists T � T0 such that for |t| > T our
theory is, effectively, a free theory. We can now define the Hilbert space of the theory at
t = ±∞ exactly. To this end, we write

ϕ(t > T, ~x) =

∫
d3~k

(2π)3
√

2ω~k

(
a~k(+∞)e−ikµx

µ
+ a†~k

(+∞)eikµx
µ
)
,

ϕ(t < −T, ~x) =

∫
d3~k

(2π)3
√

2ω~k

(
a~k(−∞)e−ikµx

µ
+ a†~k

(−∞)eikµx
µ
)
.

(5)
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The initial state |i〉 and the final state |f〉 are then constructed using operators

a†~k
(−∞) and a†~k

(+∞), respectively. For example, consider a typical scattering process
where two particles with momenta p1,2 produce n particles with momenta p3,4,...,n, i.e.

p1 + p2 → p3 + p4 + ...+ pn. (6)

We assume that pi 6= pj , for i 6= j and that p2i = m2 for all i’s. To describe this process,
we require a matrix element

Sfi = 〈f |i〉 =
√

2ω1 2ω2 ...2ωn〈0|ap3(∞)...apn(∞) a†p1(−∞)a†p2(−∞)|0〉. (7)

We would like to connect this matrix element to a quantity that depends on fields ϕ(t, x)
rather than creation and annihilation operators. To do so, we consider the following
integral, for p2 = m2,

I = i

∫
d4x eipµx

µ (
∂2 +m2

)
ϕ(x) = i

∫
d4x eipµx

µ
(
∂2t − ~∂2x +m2

)
ϕ(x). (8)

We assume that ϕ(x) vanishes if |~x| → ∞ and integrate by parts in Eq. (8). Then∫
d4x eipµx

µ~∂ · ~∂ϕ = −
∫

d4x eipµx
µ
(~p)2ϕ. (9)

Hence,

I = i

∫
d4x eipµx

µ (
∂2 +m2

)
ϕ(x) = i

∫
d4x eipµx

µ (
∂2t + ω2

~p

)
ϕ(x), (10)

where ω2
~p = ~p2 +m2 = p20.

To proceed further, we note that the following identity is valid, if p0 = ω~p

eipµx
µ (
∂2t + ω2

~p

)
ϕ(x) = −i∂t

[
eipµx

µ (
i∂t + ω~p

)
ϕ(x)

]
. (11)

To check it, we compute the right-hand side explicitly. We find

−i∂t
[
eipµx

µ (
i∂t + ω~p

)
ϕ(x)

]
= eipµx

µ (
∂2t − iω~p∂t

)
ϕ(x) + eipµx

µ
ω~p
(
i∂t + ω~p

)
ϕ(x)

= eipµx
µ (
∂2t + ω2

~p

)
ϕ.

(12)

We use Eq. (11) in Eq. (10) and find

I = i

∫
d4x(−i)∂t

[
eipµx

µ (
i∂t + ω~p

)
ϕ(x)

]
=

∫
d3x eipµx

µ (
i∂t + ω~p

)
ϕ(t, x) |t=+∞

t=−∞.

(13)
At t = ±∞, ϕ(t, ~x) is written using its asymptotic form, Eq. (5). We find

lim
t→±∞

eipµx
µ
(i∂t + ω~p)ϕ(t, ~x)

= lim
t→±∞

eipµx
µ

∫
d3~k

(2π)3
√

2k0

{
a~k(±∞)(k0 + ω~p)e

−ikµxµ + a†~k
(±∞)

(
ω~p − k0

)
eikµx

µ
}
.

(14)
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We use this equation in Eq. (13) and integrate over ~x. We find

I = I+ − I−,

I± =
1√
2k0

[
a~p(±∞)(k0 + ω~p)e

i(p0−k0)x0 + a†−~p(±∞)(ω~p − k0)ei(p0+k0)x0
]
k0=ω~p=p0

,

(15)

so that
I =

√
2ω~p

(
a~p(+∞)− a~p(−∞)

)
. (16)

Hence,

i

∫
d4x eipµx

µ (
∂2 +m2

)
ϕ(x) =

√
2ω~p

(
a~p(+∞)− a~p(−∞)

)
, (17)

and similarly,

−i
∫

d4x e−ipµx
µ (
∂2 +m2

)
ϕ(x) =

√
2ω~p

(
a†~p(+∞)− a†~p(−∞)

)
. (18)

We would like to use Eqs. (17,18) to construct the matrix element Sfi Eq. (7). For
example, we can use the following equation

−i
∫

d4x e−ip1,µx
µ (
∂2 +m2

)
ϕ(x) =

√
2ω~p1

(
a†~p1(+∞)− a†~p1(−∞)

)
, (19)

to express a†~p1(−∞) through an integral of ϕ. The problem is that upon doing that, we

will also obtain a†~p1(+∞) in the relation between a†~p1(−∞) and ϕ and this is not what

is needed in Eq. (7). A trick that is used to get rid of a†~p1(+∞) and a~p3,..,n(−∞) is to

employ properties of the vacuum state |0〉 since a~p|0〉 and 〈0|a†~p vanish. What we need to
do is to ensure that all “unwanted” creation (annihilation) operators appear to the left
(to the right) of all other operators in Eq. (7). To accomplish this, we rewrite Eq. (7) as

Sfi = 〈f |i〉 =
√

2ω1 2ω2 ...2ωn〈0|T
[
ap3(∞)...apn(∞) a†p1(−∞)a†p2(−∞)

]
|0〉, (20)

where the operator T is the time-ordering operator which is defined as follows

T [O1(t1)O2(t2)] = θ(t1 − t2)O1O2 + θ(t2 − t1)O2O1. (21)

The time ordering ensures that operators that depend on the largest time appear to the
left of all other operators and operators that depend on the smallest time appear to the
right of all other operators. Then, since a~p|0〉 = 0 and 〈0|a†~p = 0, we can replace all the

a and a† operators in the formula for Sfi with integrals over fields ϕ since additional

terms a†~p(+∞) and a~p(−∞) provide vanishing contributions because of the T -product
in Eq. (20). We find

Sfi = in
∫ n∏

i=1

dxi e
i

(
n∑
j=3

pjxj−p1x1−p2x2

)
n∏
i=1

(
∂2i +m2

)
〈0|Tϕ(x1)...ϕ(xn)|0〉. (22)
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The object that appeared in Eq. (22), 〈0|Tϕ(x1)...ϕ(xn)|0〉, is the time-ordered Green’s
function of n scalar fields ϕ(t1, x1), . . . , ϕ(tn, xn). We see from Eq. (22) that such Green’s
functions are used in calculations of scattering amplitudes which are important quan-
tities for understanding interactions of elementary particles. This discussion provides
some motivation to the study of Green’s functions in quantum field theory.

To get a better idea of what Green’s functions are, we will first study them in a
non-interacting theory. In such a theory, the relation between fields and creation and
annihilation operators is known exactly. The field operator reads

ϕ(t, ~x) =

∫
d3~k

(2π)3
√

2ω~k

(
a~ke
−i(ω~kt−~k~x) + a†~k

ei(ω~kt−
~k~x)
)
. (23)

The creation and annihilation operators satisfy the following equations 〈0|a†~k = 0 and

a~k|0〉 = 0.
Hence, the simplest Green’s function reads 〈0|ϕ(t, ~x)|0〉 = 0. The next-to-simplest

Green’s function is
〈0|Tϕ(t1, ~x1)ϕ(t2, ~x2)|0〉. (24)

To proceed further, we use the definition of the time-ordering operator T and write

〈0|Tϕ(t1, ~x1)ϕ(t2, ~x2)|0〉 = θ(t1−t2)〈0|ϕ(t1, ~x1)ϕ(t2, ~x2)|0〉+θ(t2−t1)〈0|ϕ(t2, ~x2)ϕ(t1, ~x1)|0〉.
(25)

To compute the remaining matrix elements, we use Eq. (23) and find

〈0|Tϕ(t1, ~x1)ϕ(t2, ~x2)|0〉 =

∫ 2∏
i=1

d3~ki

(2π)3
√

2ω~ki

[
θ(t1 − t2)e−ik1x1+ik2x2〈0|a~k1a

†
~k2
|0〉+ (1↔ 2)

]
.

(26)
Using

〈0|a~k1a
†
~k2
|0〉 = 〈0|[a~k1 , a

†
~k2

]|0〉 = (2π)3δ(3)(~k1 − ~k2), (27)

we easily find

〈0|Tϕ(t1, ~x1)ϕ(t2, ~x2)|0〉 =

∫
d3~k

(2π)3(2ω~k)

[
θ(t1 − t2)e−ik(x1−x2) + θ(t2 − t1)eik(x1−x2)

]
.

(28)
To simplify this expression, it is convenient to compute a Fourier transform of the Green’s
function. We define

DF (x1 − x2) = 〈0|Tϕ(t1, ~x1)ϕ(t2, ~x2)|0〉 (29)

and compute

DF (p) =

∫
d4xDF (x)eipµx

µ
. (30)
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To integrate over xµ, we use Eq. (28) where we replace t1 → x0, t2 → 0, ~x1 → ~x and
~x2 → 0. The integration over ~x is straightforward. We obtain

DF (p) =

∫
d3~k

(2π)32ω~k
dt d~x

[
θ(t)ei(p−k)x + θ(−t)ei(p+k)x

]
=

∫
d3~kdt

2ω~k

[
θ(t)ei(p0−ω~k)tδ(3)(~p− ~k) + θ(−t)ei(p0+ω~k)tδ(3)(~p+ ~k)

]
=

∫
dt

2ω~p

[
θ(t)ei(p0−ω~p)t + θ(−t)ei(p0+ω~p)t

]
,

(31)

where ω~p =
√
~p2 +m2. To proceed further, it is convenient to introduce a useful repre-

sentation for the θ-function

θ(t) = −
+∞∫
−∞

dξ

2πi

e−iξt

ξ + i0
, θ(−t) = −

+∞∫
−∞

dξ

2πi

eiξt

ξ + i0
=

+∞∫
−∞

dξ

2πi

e−iξt

ξ − i0
. (32)

We use this representation in Eq. (31), integrate over t and then over ξ and find

DF (p) =

∞∫
−∞

dξ

(2πi)

dt

2ω~p

[
− 1

ξ + i0
ei(p0−ω~p−ξ)t +

1

ξ − i0
ei(p0+ω~p−ξ)t

]

=

∞∫
−∞

dξ

2iω~p

[
− 1

ξ + i0
δ(p0 − ω~p − ξ) +

1

ξ − i0
δ(p0 + ω~p − ξ)

]

=
1

2iω~p

[
− 1

p0 − ω~p + i0
+

1

p0 + ω~p − i0

]
=

1

2iω~p

−2ω~p[
p20 − (ω~p − i0)2

]
(33)

Upon substituting ω~p =
√
p2 +m2 and using the fact that ω~p > 0, so that (ω~p − i0)2 ≈

ω2
~p − i0, we obtain the final result for the Green’s function of the two scalar fields in

momentum space

DF (p) =
i

p2 −m2 + i0
. (34)

Note the appearance of +i0 in the denominator; this infinitesimal complex number ap-
pears in this way because we compute the time-ordered Green’s function. We can use
Eq. (34) to write

〈0|Tϕ(x)ϕ(y)|0〉 =

∫
d4p

(2π)4
i

p2 −m2 + i0
e−ipµ(x

µ−yµ). (35)

Eq. (35) shows that the +i0 term provides a definite prescription of how a would-be
singularity at p2 = m2 should be treated in the process of integration over p in Eq. (35).
Without such a prescription, integral Eq. (35) is poorly defined.
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