
Lecture 12

The Standard Model of particle physics

We will discuss the current theory of subatomic world – the Standard Model of
particle physics. This theory was formulated in a series of papers by Sh. Glashow,
S. Weinberg and A. Salam. By the time the theory was proposed (late 1960s), it was
known that there exists an electron (discovered in 1897) and an electron neutrino (1956),
a muon (1936) and a muon neutrino (1962). The τ -lepton and the τ -neutrino were
unknown.

It was also understood that there is an electromagnetic interaction, facilitated by
massless photons, that can be described by a gauge theory known as Quantum Electro-
dynamics. It was also known that there are weak interactions that cause neutron decay
n → p + e + ν̄e and the muon decay µ → e + ν̄e + νµ. There was Fermi theory, which
stipulated that weak decays are described by the following Lagrangian

LF = −GF√
2

[p̄γµ(1− γ5)n] [ēγµ(1− γ5)ν] + h.c., (1)

and a similar one for the muon decay. The Lagrangian Eq. (1) displays maximal par-
ity violation in that only left-handed fermions (ψL ∼ (1 − γ5)ψ) participate in weak
interactions. Also, weak interactions were known to be short-range, at variance with
electromagnetic interactions.

These two points imply that if weak interactions are to be described by gauge fields,
these gauge fields have to couple differently to left- and right-handed fermions and,
moreover, these gauge fields have to be massive to make sure that weak interactions are
short-range.

The first point – a different role played by left and right fields in weak interactions –
has important consequences. Indeed, as we have seen in Lecture 10, a massive electron
requires a term Lm = mψ̄LψR + mψ̄RψL in the Lagrangian. If ψL and ψR transform
differently under gauge transformations, the mass term in the Lagrangian will not be
gauge-invariant. A possible way out is to re-use the idea of spontaneous symmetry
breaking and apply it to fermions. Indeed, we start by considering a theory with mass-
less fermions that couple to a scalar field, e.g. Lm → LY ∼ ψ̄LψRϕ + ψ̄RψLϕ

†. The
difference with the mass term is that now the field ϕ can also transform under gauge
transformations and it may be possible to adjust quantum numbers of ψL,R and ϕ in
such a way that LY is invariant under gauge transformations. If, however, the field ϕ
undergoes spontaneous symmetry breaking ϕ→ v, the Yukawa Lagrangian LY produces
a mass term for the fermion ψ, i.e. LY → ψ̄LψRm+ ψ̄RψLm. So, similar to how gauge
bosons get their masses in the process of spontaneous symmetry breaking, we can set
up a gauge invariant theory with massless fermions that, after spontaneous symmetry
breaking, turns into a theory with massive fermions. This is important since electrons
and muons are, in fact, massive.
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Let us now discuss how to couple fermions to gauge fields. We have seen in Lecture
10 that if we put a proton and a neutron into an SU(2) doublet, there are terms in
the Lagrangian that describe neutron-to-proton transitions. If we look at the Fermi La-
grangian Eq. (1), we see that such transitions are present there. In addition, there are
electron-to-(electron) neutrino transitions in the Fermi theory Eq. (1); we can accom-
modate them by putting the electron and the electron neutrino into an SU(2) doublet.
Since the Fermi Lagrangian only contains left-handed fields, we combine the left-handed
electron and the left-handed neutrino into an SU(2) (gauge) doublet

ΨL =

(
νL
eL

)
. (2)

Since electrons are massive, we require a right-handed field eR as well. This field does
not participate in weak interactions, i.e. it is not part of the Fermi theory in Eq. (1).
However, since QED is parity-conserving, photons do couple to left- and right-handed
fields with equal strength. For this reason, we assume that both left-handed and right-
handed fermions couple to an U(1) field, but we cannot associate this field with the
electromagnetic field right away (e.g. neutrinos do not couple to photons). We will
also assume that electron neutrinos are massless and for this reason the right-handed
neutrino field νR is not needed.

Therefore, we consider a theory based on the gauge group SU(2) × U(1). Both ΨL

and eR transform under U(1) but only ΨL transforms under SU(2). We will have to
break the symmetry, to give masses to (some) gauge bosons and to the electron. We will
do this with the help of a scalar complex doublet ϕ that transforms under both SU(2)
and U(1). We will continue with writing down the Lagrangian for such a theory. We
will call it LSM.

The first term in LSM, that is completely fixed once the gauge group is specified, is
the kinetic term for gauge fields. We write

Lgauge = LSU(2) + LU(1), (3)

where

LSU(2) = −1

4
W i
µνW

µν,i, LU(1) = −1

4
BµνB

µν , (4)

with
W i
µν = ∂µW

i
ν − ∂νW i

µ + gεikjW k
µW

j
ν . (5)

and
Bµν = ∂µBν − ∂νBµ. (6)

To move further, we need two covariant derivatives, one for the SU(2) group and the
other one for the U(1) group. We have

DSU(2)
µ = ∂µ − igτ iW i

µ, (7)
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where τ i = σi/2 and

DU(1)
µ = ∂µ − ig′

Y

2
Bµ, (8)

where Y defines a U(1) charge (a “hypercharge”) of a particular field in units of the
fundamental U(1) gauge coupling g′.

The Lagrangian Lgauge describes 3 + 1 massless gauge bosons. The theory has to
describe weak and electromagnetic interactions that require three massive (weak inter-
actions, charged and neutral currents) bosons and one massless gauge boson (electromag-
netism). As we know, this can be achieved by breaking the symmetry spontaneously. To
this end, we introduce the Higgs field that is a SU(2) doublet and has a U(1) hypercharge
Yh. We write

Lkin
Higgs = (Dµϕ)† (Dµϕ) , (9)

where

ϕ =

(
ϕ1 + iϕ2

ϕ3 + iϕ4

)
(10)

and where

Dµ = ∂µ − igτ iW i
µ − ig′Bµ

Yh
2
. (11)

The part of the Higgs Lagrangian that is responsible for breaking the symmetry is

LEWSB = −λ
4

(
ϕ†ϕ− v2

2

)2

. (12)

The EWSB Lagrangian requires that we choose the non-vanishing vacuum field. We
write

ϕ(x) =

(
0

v+h(x)√
2

)
(13)

We know that this is a complete parameterization of the doublet after the symmetry
breaking since the rest can be removed by a gauge transformation.

Let us compute the mass spectrum of gauge bosons in such a theory. The mass
spectrum follows from Lkin

Higgs upon substituting ϕ→ ϕvac there. We find

Lkin
vac → ϕTvac

[
igW i

µτ
i + ig′Bµ

Yh
2

] [
−igWµ,jτ j − ig′BµYh

2

]
ϕvac, (14)

where

ϕvac =

(
0
v√
2

)
(15)

We expand Eq. (14) and write

ϕTvac

[
g2W i

µW
j,µτ iτ j +

Y 2
h

4
g′

2
BµB

µ + gg′YhW
i
µB

µτ i
]
ϕvac. (16)
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Then, we compute

g2W i
µW

j,µ ϕTvacτ
iτ jϕvac =

g2

4
W i
µW

j,µϕTvacδij 1̂ϕvac =
g2v2

8
W i
µW

i,µ,

Y 2
h

4
g′

2
BµB

µϕTvacϕvac =
Y 2
h g
′2v2

8
BµB

µ,

gg′YhW
i
µB

µϕTvacτ
iϕvac = −gg

′Yhv
2

4
W i
µB

µδi3,

(17)

so that

Lkin
vac →

g2v2

8
W i
µW

i,µ +
Y 2
h g
′2v2

8
BµB

µ − gg′Yhv
2

4
W 3
µB

µ

=
v2g2

8

(
W 1
µW

1,µ +W 2
µW

2,µ
)

+
v2(g2 + Y 2

h g
′2)

8

 g√
g2 + Y 2

h g
′2
W 3
µ −

g′Yh√
g2 + Y 2

h g
′2
Bµ

2

.

(18)

It follows from Eq. (18) that the two fields W 1, W 2 acquire the mass

m1,2 =
gv

2
, (19)

whereas a combination of W 3 and B fields

Zµ = cos θ W (3)
µ − sin θ Bµ (20)

acquires the mass

mZ =
vg

2 cos θ
. (21)

In the above equations, we introduced the so-called weak mixing angle θ; the cosine
and sine of this angle is fixed in terms of the gauge coupling and the Higgs boson
hypercharge,

cos θ =
g√

g2 + Y 2
h g
′2
, sin θ =

g′Yh√
g2 + Y 2

h g
′2
. (22)

A combination of fields that is orthogonal to Eq. (20) reads

Aµ = sin θ W (3)
µ + cos θ Bµ. (23)

An important consequence of Eq. (18) is that the field Aµ remains massless. We would
like to associate it with the photon.

We continue with the discussion on leptons. We will only consider an electron and
an electron neutrino since muons and muon neutrinos are included into the SM in an
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identical way. As we already said, the left-handed fields are SU(2) doublets and the right-
handed electrons are SU(2) singlets. We consider massless neutrinos and, therefore, we
do not introduce the right-handed neutrino field. We write the Lagrangian

LF = Ψ̄LiD̂LΨL + ēRiD̂ReR, (24)

where

Dµ
L = ∂µ − igW i

µτ
i − ig′Bµ

YL
2
,

Dµ
R = ∂µ − ig′Bµ

YR
2
.

(25)

As we already discussed in Lecture 10, we cannot write the mass term for an electron
since it mixes left- and right-handed fields and these fields transform in a different way
under SU(2) and U(1) gauge groups. We will return to this question after we study how
gauge bosons interact with fermions.

To understand this, we neglect partial derivatives in Eq. (25) and consider only terms
of the type ψ̄Vµγ

µψ = ψ̄V̂ ψ, where Vµ is a gauge field. Then

Ψ̄LiD̂LΨL →
1

2

[
ν̄L(gŴ 3 + g′B̂YL)νL + ēL(−gŴ 3 + g′B̂YL)eL

+gν̄L(Ŵ 1 + iŴ 2)eL + gēL(Ŵ 1 − iŴ 2)νL

]
,

ēRiD̂ReR →
g′

2
YRēRB̂eR.

(26)

To understand how electrons and neutrinos interact with gauge fields, we express W 3
µ

and Bµ through mass eigenstates of gauge fields. To this end we write

W 3
µ = cos θZµ + sin θAµ,

Bµ = − sin θZµ + cos θAµ.
(27)

We use these equations to determine couplings of Zµ and Aµ to electrons and neutrinos.
Of particular importance to us is the coupling of the photon field Aµ to fermions. This
is so because we know how this coupling should look like. In particular, the photon
should not couple to neutrinos since they have no electric charge and it should couple to
both left- and right-handed electrons with equal force that is proportional to the electric
charge of the electron. These features provide important constraints for the theory.

We begin with neutrino’s couplings to photons. This coupling will come from the
ν̄L · · · νL term in Eq. (26) if we replace both W 3

µ and Bµ with Aµ following Eq. (27). We
find

1

2
ν̄L(gŴ 3 + g′B̂YL)νL →

1

2
(g sin θ + g′YL cos θ)ν̄LÂνL =

gg′ (YH + YL)√
g2 + g′2Y 2

L

ν̄LÂνL. (28)
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Hence, to ensure that photons do not couple to neutrinos, we need to choose hypercharges
of the Higgs boson and the left-handed lepton doublet to satisfy the following equation

YH + YL = 0. (29)

The second constraint is that photons couple to left and right-handed electrons with
equal strength (no parity-violation in QED). The electrons appear in Eq. (26) in two
places, as left- and right handed. Again, we replaceW 3 andB withA in a way compatible
with Eq. (27) and obtain

1

2
ēL(−gŴ 3 + g′B̂YL)eL +

g′

2
YRēRBeR

→ 1

2
(g′YL cos θ − g sin θ)ēLÂeL +

g′

2
YR cos θēRÂeR

=
gg′ (YL − YH)

2
√
g2 + g′2Y 2

L

ēLÂeL +
gg′YR

2
√
g2 + g′2Y 2

L

ēRÂeR.

(30)

To ensure that left- and right-handed fermions coupled to Aµ with the strength propor-
tional to the electric charge, the following equations have to be satisfied

YL − YH = YR,
gg′YR

2
√
g2 + g′2Y 2

L

= qe. (31)

The first equation is the requirement that there is no parity violation in the electron
coupling to photons; the second requirement is that photons couple to electrons with a
strength defined by an electron charge qe.

One can use the above considerations to write the couplings of electrons and neutrinos
to Z’s and A’s. However, we will not pursue this direction here; instead, we will discuss
how to make sure that the electron has the right mass. To this end, we need to write a
gauge-invariant coupling between left-handed and right-handed fermions and the Higgs
fields

LY = fe
[
Ψ̄LϕeR + h.c.

]
, (32)

where we assumed the Yukawa coupling fe to be real. The Yukawa Lagrangian in Eq. (32)
is obviously invariant under SU(2) transformations since both, the left-handed field and
the Higgs field are SU(2) doublets. However, if we perform the U(1) transformation
each field transforms in a way that involves individual hypercharges, i.e.

ϕ→ ei
YH
2
θ(x)ϕ, ΨL → ei

YL
2
θ(x)ΨL, eR → ei

YR
2
θ(x)eR. (33)

Hence, the Yukawa Lagrangian is invariant under U(1) transformations if the following
equation

YH + YR − YL = 0 (34)
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holds true. It is easy to check that Eqs. (29), Eq. (31) and Eq. (34) are all compatible
with each other provided that hypercharges are chosen to satisfy the following equations

YH = −YL, YR = 2YL. (35)

We then choose YL = 1 and obtain

YH = −1, YR = 2, YL = 1. (36)

It is then easy to see that the Yukawa Lagrangian Eq. (32) provides a mass to
electrons after the symmetry breaking. Indeed, upon replacing the Higgs field with its
vacuum expectation value we obtain

LY → fe
[
Ψ̄LϕvaceR + h.c.

]
=
fev√

2
[ēLeR + h.c.] = me [ēLeR + h.c.] , (37)

where me = fev/
√

2 is the electron mass. As we see, neutrino remains massless.
We note that our theory describes interactions of photons, Z-bosons, W±-bosons and

the Higgs boson between themselves and with electrons and neutrinos. Electrons are
massive and Higgs interactions with electrons are proportional to the Yukawa coupling
fe which is given by the ratio of the electron mass and the vacuum expectation value of
the Higgs field. To make our theory complete, we need to introduce the muon and the
muon neutrino and τ -lepton and τ -neutrino as well as quarks. The additional leptons are
put in by simply repeating what we did for the electron and the electron neutrino. The
situation with quarks is slightly more complicated since different quark generations can
“mix” with each other. This mixing is described by the so-called Cabibbo-Kobayashi-
Maskawa matrix and leads to the phenomenon of CP-violation.
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