
Lecture 11

Spin-statistics connection

When identical particles are discussed in Quantum Mechanics courses, we state that
wave functions of bosons should be symmetric while wave functions of fermions should
be anti-symmetric. This has important observable implications both in quantum physics
itself and in e.g. statistical physics. Why this requirement should be true remains a bit
of a miracle. This isn’t surprising since it really takes quantum field theory to explain
the connection between spin and statistics; in quantum field theory, there is a theorem
that states that consistent relativistic quantum field theory is only possible if bosonic
fields are quantized with commutators and fermionic fields with anti-commutators. The
properties of wave functions then follow automatically.

We will try to illustrate the spin-statistics connection by quantizing the fermion field
in the wrong way, which is the only natural thing to do if we do not know any better.
So lets try. The Dirac action is

SD =

∫
d4x ψ̄

(
i∂̂ −m

)
ψ. (1)

The canonical momentum is

π =
δSD
δ∂tψ

= ψ̄iγ0 = iψ†. (2)

We can now quantize the Dirac theory by imposing the canonical quantization condition
on the canonical momentum and the field

[πa(t, ~x), ψb(t, ~y)] = −iδabδ(3)(~x− ~y) → [ψ†a(t, ~x), ψb(t, ~y)] = −δabδ(3)(~x− ~y), (3)

where a, b are the spinor indices. We assume that ψ commutes with ψ and ψ† commutes
with ψ† at equal times.

Similar to what we have done for the scalar field, we derive the Hamiltonian of the
theory using the standard relation between the Lagrangian and the Hamiltonian

H =

∫
d3~x (π∂tψ − L) =

∫
d3~xψ†(t, ~x)γ0

(
−i~γ~∇+m

)
ψ(t, ~x). (4)

To determine the equation of motion for ψ, we write

i∂tψ = [ψ,H]. (5)

We use Eq. (3) to compute the commutator and obtain(
i∂̂ −m

)
ψ = 0, (6)

which is the Dirac equation that the operator ψ should satisfy.
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Similar to the scalar case, we then write the operator ψ as a linear combination of
the solutions of the Dirac equation

ψ(t, ~x) =
∑
λ=1,2

∫
d3~k

(2π)3
√

2ωk

[
uλ(~k)a~k,λe

−iωkt+i~k~x + vλ(~k)b~k,λe
iωkt−i~k~x

]
. (7)

The sum over λ is the sum over the possible polarizations of a fermion. Since ψ is
a complex field, we require different creation and annihilation operators for positive-
and negative-energy solutions. The spinors u and v are solutions of the following Dirac
equations

(k̂ −m)uλ(~k) = 0, (k̂ +m)vλ(~k) = 0. (8)

From Eq. (7) it is straightforward to obtain ψ†(t, ~x). We find

ψ†(t, ~x) =
∑
λ=1,2

∫
d3~k

(2π)3
√

2ωk

[
u†λ(~k)a†~k,λ

eiωkt−i~k~x + v†λ(~k)b†~k,λ
e−iωkt+i~k~x

]
. (9)

We now need to check that the commutation relations in Eq. (3) can be fulfilled if
we impose regular commutation relations

[a~k1,λ1 , a
†
~k2,λ2

] = δλ1λ2(2π)3δ(3)(~k1−~k2), [b~k1,λ1 , b
†
~k2,λ2

] = δλ1λ2(2π)3δ(3)(~k1−~k2). (10)

on creation and annihilation operators. All the other commutators are assumed to vanish.
We find

[ψa(t, ~x), ψ†b(t, ~y)] =
∑
λ1,λ2

∫ ∫
d3~k1

(2π)3
√

2ωk1

d3~k2
(2π)3

√
2ωk2

×

[
[a~k1,λ1 , a

†
~k2,λ2

]ua,λ1(~k1)u
†
b,λ2

(~k2)e
−ik1x+ik2y

+ [b~k1,λ1 , b
†
~k2,λ2

]va,λ1(~k1)v
†
b,λ2

(~k2)e
ik1x−ik2y

]
,

(11)

where we introduced k1x = ωk1t−~k1~x and k2y = ωk2t−~k2~y. We now use the commutation
relations Eq. (10) and find

[ψa(t, ~x), ψ†b(t, ~y)] =
∑
λ1

∫
d3~k1

(2π)32ωk1

[
ua,λ1(~k1)u

†
b,λ1

(~k1)e
i~k1(~x−~y)

+ va,λ1(~k1)v
†
b,λ1

(~k1)e
−i~k1(~x−~y)

]
.

(12)

To proceed further, we require the following sums∑
λ

ua,λ(~k1)u
†
b,λ(~k1) =

[
(ωkγ0 − ~k~γ +m)γ0

]
ab∑

λ

va,λ(~k1)v
†
b,λ(~k1) =

[
(ωkγ0 − ~k~γ −m)γ0

]
ab
,

(13)
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that can be checked using explicit solutions of the Dirac equation. We substitute Eq. (13)
into Eq. (12) and change ~k1 → −~k1 in the second term on the right hand side. We then
find

[ψa(t, ~x), ψ†b(t, ~y)] = δ(3)(~x− ~y)δab, (14)

which is indeed the canonical commutation relation Eq. (3).
Having satisfied the commutation relations for canonical variables, we can construct

the Hamiltonian and determine the Hilbert space. The Hamiltonian operator is given in
Eq. (4). It is straightforward to express it in terms of creation and annihilation operators.
We find

H =
∑
λ

∫
d3~k

(2π)3
ωk

[
a†
λ,~k
a
λ,~k
− b†

λ,~k
b
λ,~k

]
. (15)

We see that our theory is pathological in that there is no ground state; in fact, by creating
more and more b-quanta, we produce states with more and more negative energy. Note
that renaming b → b† in Eq. (7) would not have worked either since in this case the
canonical commutation relations would not be satisfied.

The resolution of this problem can be obtained if we quantize the theory by imposing
conditions on the anti-commutator of the field ψ and its conjugate

{ψ†(t, ~x), ψ(t, ~y)} = −δabδ(3)(~x− ~y). (16)

This leads to the anti-commutation of creation and annihilation operators

{a~k1,λ1 , a
†
~k2,λ2
} = δλ1λ2(2π)3δ(3)(~k1 − ~k2), {b~k1,λ1 , b

†
~k2,λ2
} = δλ1λ2(2π)3δ(3)(~k1 − ~k2),

(17)
as well as {a, b} = {b, a} = 0 etc. These conditions ensure that the wave function of a
state with several fermions is automatically anti-symmetric. For example,

|~k1,~k2〉 =
√

2ωk1
√

2ωk2a
†
~k1
a†~k2
|0〉 = −

√
2ωk1

√
2ωk2a

†
~k2
a†~k1
|0〉 = −|~k2,~k1〉. (18)
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