
Lecture 10

The Dirac Lagrangian

So far in these lectures we talked about (elementary) bosons. However, almost all
matter around us is made out of elementary fermions, i.e. particles with spin 1/2. As
you know from the course in Quantum Mechanics, fermions with spin 1/2 are described
by the Dirac equation. It reads (

i∂̂ −m
)
ψ = 0, (1)

where ∂̂ = ∂µγ
µ. The four 4× 4 matrices γµ are known as Dirac matrices. The function

ψ is a four-component complex vector that we call a “spinor”.
Dirac matrices satisfy the following equation

γµγν + γνγµ = 2gµν , (2)

so that (γ0)2 = 1, (γi)2 = −1, i = 1, 2, 3.
There are different (equivalent) ways to represent Dirac matrices, that are connected

to each other by unitary transformations. If the Dirac representation is chosen, they read

γ0 =

(
I 0
0 −I

)
, γi =

(
0 σi

−σi 0

)
, (3)

where σi, i = 1, 2, 3 are Pauli matrices.
In Quantum Mechanics, we interpreted ψ as a fermion (electron) wave function. We

would like to promote it to a “field” and write a Lagrangian that produces the Dirac
equation. We write the action as

SD =

∫
d4x ψ̄

[
i∂̂ −m

]
ψ. (4)

The field ψ̄ is the Dirac-conjugate spinor. It reads

ψ̄ = ψ†γ0. (5)

Since ψ is a complex field, it and its complex (or Dirac) conjugate field can be considered
independent. Hence, to find the extremum of SD, we need to vary ψ̄ and ψ separately.
We find

δSD =

∫
d4xδψ̄

[
i∂̂ −m

]
ψ +

∫
d4xψ̄

[
i∂̂ −m

]
δψ

=

∫
d4xδψ̄

[
i∂̂ −m

]
ψ +

∫
d4xψ̄

[
−i
←−
∂̂ −m

]
δψ,

(6)

where the arrow in the last term indicates that the derivative acts on ψ̄.
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Requiring that δSD = 0, for arbitrary δψ and δψ̄, we obtain two equations[
i∂̂ −m

]
ψ = 0, ψ̄

[
−i
←−
∂̂ −m

]
= 0. (7)

To check that they are consistent, we take the first one and perform hermitian conjuga-
tion. We find

0 =
([
i∂̂ −m

]
ψ
)†

= ψ†
[
−i
←−
∂µγ†µ −m

]
(8)

To simplify this further, we note that hermitian-conjugated Dirac matrices satisfy the
following equations

γ†0 = γ0, γ†i = −γi. (9)

It follows
γ†µ = γ0γµγ0, (10)

that can be checked using their explicit form in Eq. (3). Using this equation and the fact
that γ20 = 1, we write

0 = ψ†
[
−i
←−
∂µγ†µ −m

]
= ψ†

[
−i
←−
∂µγ0γµγ0 −mγ0γ0

]
= ψ†γ0

[
−i
←−
∂µγµ −m

]
γ0. (11)

The equation for ψ̄ obviously follows.
Another interesting point is that the presence of the Dirac-conjugate spinor in the

Dirac action is essential for this action being real. We find

S∗D = S†D =

∫
d4x ψ†

[
−i
←−
∂µγ†µ −m

]
γ†0ψ =

∫
d4x ψ†

[
i∂µγ†µ −m

]
γ†0ψ

=

∫
d4x ψ†γ0γ0

[
i∂µγ†µ −m

]
γ0ψ =

∫
d4x ψ̄ [i∂µγµ −m]ψ = SD.

(12)

Hence, the use of the Dirac conjugate spinor in the action makes the action real. SD is
also a Lorentz-scalar; this can be shown by studying how ψ and ψ̄ change under Lorentz
transformations.

We would like to understand how to couple the fermion fields to other fields that we
discussed in the previous lectures. We will start with a simple remark that, typically, ψ
is a complex field. Therefore, we can express the action in terms of another field ψ′ that
differs from ψ by a phase

ψ = eiαψ′. (13)

The Dirac action is obviously invariant under this transformation

SD[ψ̄, ψ] = SD[ψ̄′, ψ′]. (14)

We have seen that there is a conserved current that can be associated with such symmetry
transformations. We write

Jµ =
δLD
δ∂µψ

∆ψ + ∆ψ̄
δLD
δ∂µψ̄

=
δLD
δ∂µψ

∆ψ = ψ̄iγµ∆ψ → ψ̄iγµψ, (15)
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where we have used (c.f. Eq. (13)) ∆ψ = ψ and δLD/δ∂µψ̄ = 0. Hence,

Jµ = ψ̄γµψ (16)

and
∂µJ

µ = 0. (17)

We have seen that one can force the theory to be invariant under the local version of
phase transformations in Eq. (13) by introducing a gauge field. In this particular case,
we write

∂µ → Dµ = ∂µ − igAµ, (18)

and, similar to the case of a scalar complex field, we consider the transformations of ψ
and Aµ

ψ → eiα(x)ψ, Aµ → Aµ +
∂µα

g
, (19)

that do not change the action. Hence,

SD[ψ̄, ψ,Aµ] =

∫
d4x ψ̄

[
iD̂ −m

]
ψ. (20)

The equation of motion is
[iD̂ −m]ψ = 0, (21)

which looks identical to the Dirac equation in the external electromagnetic field.
It is clear that it should be possible to extend the above discussion to the non-abelian

gauge fields. Of course, we will need to have more than a single Dirac field to make this
happen. So, let us consider a concrete example. It was realized early on that protons
and neutrons are very similar in that they have very similar masses and that it makes
very little difference for strong interaction processes if a proton or a neutron participates
in a given reaction. This similarity became known as the “isospin symmetry”. We can
formalize it by combining the (four-component) spinors for the proton (ψp) and the
neutron (ψn) into a “double-spinor” (Ψ) as follows

Ψ =

(
ψp
ψn

)
. (22)

We can write an action for the spinor Ψ as

S =

∫
d4xΨ̄

(
i∂̂ −m 0

0 i∂̂ −m

)
Ψ =

∫
d4xΨ̄

(
i∂̂ −m

)
Ψ, (23)

where in the last step we simplified the notation in that we decided not to show a 2× 2
identity matrix anymore.

It is clear that the action Eq. (23) is invariant under the following transformation

Ψ = UΨ′, (24)
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where U is any 2×2 unitary matrix. This is quite obvious since, from the point of view of
“flavor indices”, the action S depends on Ψ†Ψ that does not change if the transformation
Eq. (24) is applied.

The consequences of Eq. (24) are interesting. For example, taking

U =

(
0 i
i 0

)
, (25)

we find
ψ′p = iψn, ψ′n = iψp, (26)

i.e. what used to be a proton became a neutron (up to a phase) and what used to be a
neutron became a proton (up to a phase). The symmetry obviously doesn’t care about
us giving names to these “identical” particles.

We may be unhappy with having to choose a “proton” and a “neutron” globally and
may require that the true action S should be made invariant under local choices, i.e. an
x-dependent transformation as in Eq. (24) should not change the action. This is done in
exactly the same way as before in that we promote derivatives to covariant derivatives.
We write

∂̂ → D̂ = ∂̂ − igÂ, (27)

where

Â = γµ
3∑

a=1

A(a)
µ τa, (28)

and τa are the three generators of the SU(2) Lie algebra. The action reads

S =

∫
d4xΨ̄

{(
i∂̂ −m 0

0 i∂̂ −m

)
+ g

3∑
a=1

A(a)
µ γµτ (a)

}
Ψ. (29)

The last term describes interactions of gauge fields with fermions. It is instructive to
write it explicitely. We find

3∑
a=1

A(a)
µ γµτ (a) =

1

2

(
A

(3)
µ γµ (A

(1)
µ − iA(2)

µ )γµ

(A
(1)
µ + iA

(2)
µ )γµ −A(3)

µ γµ

)
, (30)

so that

gΨ̄

3∑
a=1

A(a)
µ γµτ (a)Ψ =

g

2

[
A(3)
µ

(
ψ̄pγ

µψp − ψ̄nγµψn
)]

+
g

2

[
(A(1)

µ − iA(2)
µ )ψ̄pγ

µψn + (A(1)
µ + iA(2)

µ )ψ̄nγ
µψp

]
.

(31)

We see that if the proton and the neutron are considered to be part of the same multiplet,

gauge interactions cause transitions between them. For example, if we denote (A
(1)
µ +

iA
(2)
µ )/
√

2 = A†µ and consider A†µ to be a new field, we see that Eq. (31) contains terms
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A†µψ̄nγ
µψp that describe a process where a proton becomes a neutron by emitting a

gauge boson A†µ.
We will use this observation to construct the fermion sector of the Standard Model.
For the next step, we need to discuss some properties of very energetic fermions.

There is an interesting way to split the Dirac equation into two coupled equations. It
requires us to introduce yet another Dirac matrix γ5,

γ5 = iγ0γ1γ2γ3, (32)

and, as a simple calculation shows, it reads

γ5 =

(
0 I
I 0

)
. (33)

This matrix has the following properties

γ25 = 1, γ5γµ + γµγ5 = 0. (34)

We can use these properties to introduce two projection operators

PL =
1− γ5

2
, PR =

1 + γ5
2

. (35)

We call them projection operators because they have the following properties

PL + PR = 1, P 2
L = PL, P 2

R = PR, PLPR = PRPL = 0. (36)

We use these operators to write

ψ = PLψ + PRψ = ψL + ψR. (37)

Now, going back to the Dirac equation, we write(
i∂̂ −m

)
ψ = 0 ⇒

(
i∂̂ −m

)
ψL +

(
i∂̂ −m

)
ψR = 0. (38)

Now, multiply the last equation with PR from the left, use

PLγµ = γµPR, (39)

combine is with Eq. (36) and find

i∂̂ψL = mψR, (40)

A similar computation gives
i∂̂ψR = mψL. (41)

It is interesting that equations for ψR and ψL decouple in the massless (m → 0) limit.
Also, since ∂µψ ∼ pµψ ∼ Eψ, the admixture of ψR into ψL and the admixture of ψL
into ψR is proportional to m/E and is suppressed for ultra-relativistic fermions.
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It is straightforward to check that the action can be written in the following way

SD =

∫
d4x

[
ψ̄Li∂̂ψL + ψ̄Ri∂̂ψR −mψ̄LψR −mψ̄RψL

]
. (42)

We see again that if we set m→ 0, the ψL and ψR fields decouple. Conversely, the mass
term mixes left and right fields; this point will be essential for the construction of the
Standard Model Lagrangian.

The left- and right-handed Dirac fields are fully described by one two-component
spinor. Indeed, if

ψ =

(
φ
χ

)
, (43)

where φ and χ are two-component spinors, then

ψL =

(
φ− χ
−(φ− χ)

)
, ψR =

(
φ+ χ

(φ+ χ)

)
, (44)

Hence, to specify ψL,R one needs to specify one two-component spinor and not two
two-component spinors as in the case of the original Dirac fermion ψ.

To better understand the meaning of ψL and ψR, it is instructive to perform a parity
transformation

xµ = (x0, ~x)→ x′
µ

= (x0,−~x). (45)

We make this change in the Dirac equation and obtain[
i

(
γ0

∂

∂x0
− ~γ ∂

∂~x′

)
−m

]
ψ(x′0,−~x′) = 0. (46)

Multiply this equation with the matrix γ0 from the left and move it all the way to the
function ψ. Since γ0 anti-commutes with ~γ, we find[

i

(
γ0

∂

∂x0
+ ~γ

∂

∂~x′

)
−m

]
γ0ψ(x′0,−~x′) =

[
i∂′µγ

µ −m
]
γ0ψ(x′0,−~x′) = 0. (47)

It follows from the last equation that

γ0ψ(x) = ψ′(x′), (48)

where ψ′(x′) is the solution of the ’parity-transformed’ Dirac equation. If we write ψ =
ψL + ψR, we find

ψ′L(x) = γ0ψR(x), ψ′R(x) = γ0ψL(x). (49)

This means, that under parity transformation, ψR becomes ψL and vice versa.
The electromagnetic interactions conserve parity. This means that left and right

components of the spinor field ψL and ψR have identical interactions with the electro-
magnetic field. It was believed that parity conservation was the feature of all interaction
until 1950’s when maximal parity violation was observed in weak interactions. We will
explore this observation to construct the Standard Model of particle physics.
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