
Lecture 1

Path integral in Quantum Mechanics

The standard formulation of Quantum Mechanics involves the Hamilton operator H
that, for a system with one degree of freedom, reads

H =
p2

2m
+ V (q). (1)

The variables p and q are momentum and position operators that satisfy the following
quantization condition

[p, q] = −i~. (2)

Together with the Schrödinger equation

i~
∂

∂t
|Ψ〉 = H|Ψ〉, (3)

and the interpretation of the function Ψ(q) = 〈q|Ψ〉 as a probability amplitude, the
above equations provide the foundation for quantum mechanics.

On the contrary, when we introduce classical mechanics, we usually start with the
Lagrangian formalism where the dynamics of a mechanical system follows from the
minimum of an action

S =

∫
dtL(q, q̇, t). (4)

The function L(q, q̇, t) is the Lagrange function. The Hamilton formalism appears also in
classical mechanics but it is clearly not as prominent as in Quantum Mechanics, where
it appears to be the only game in town. A natural question is – what is the place, if any,
of the Lagrange formalism in Quantum Mechanics?

To answer this question, we consider a quantum mechanical system described by the
Hamiltonian in Eq.(1). We assume that at a time t = ti our system is in a state with a
definite coordinate x = xi; we would like to find the probability amplitude that at t = tf
our system is in a state with a definite coordinate x = xf . These states are formally
defined as eigenstates of the q-operator

q|xi,f 〉 = xi,f |xi,f 〉, (5)

We compute the probability amplitude by solving the Schrödinger equation Eq.(3)

|Ψ(t)〉 = e−iH(t−ti)/~|Ψ(ti)〉, (6)

identifying |Ψ(ti)〉 with |xi〉 and projecting |Ψ(tf )〉 on |xf 〉. The desired probability
amplitude then reads

U(xf , xi; tf , ti) = 〈xf |e−iH(tf−ti)/~|xi〉. (7)
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Our goal is to rewrite the expression Eq.(7) in a particular way. To this end, we split
the time interval [tf , ti] into N + 1 segments where N will be eventually considered to
be large, N →∞. The length of a single segment is

δt =
(tf − ti)
N + 1

. (8)

We then write the time evolution operator as a product of N+1 time evolution operators,
one for each segment

e−iH(tf−ti)/~ = e−iHδt/~e−iHδt/~.....e−iHδt/~
N+1 times

. (9)

As the next step, we insert complete sets of states at intermediate times. We use the
completeness relation for eigenstates of the q-operator

1 =

∫
dxk|xk〉〈xk|, (10)

to do so. Eigenstates of the position operator are normalized as

〈x|y〉 = δ(x− y). (11)

We obtain

U(xf , xi; tf , ti) = 〈xf |e−iHδt/~e−iHδt/~.....e−iHδt/~|xi〉

=

∫ N∏
k=1

dxk〈xf |e−iHδt/~|xN 〉〈xN |e−iHδt/~|xN−1〉.....〈x1|e−iHδt/~|xi〉.
(12)

We see that the primary object to explore is the matrix element

〈xa|e−iHδt/~|xb〉, (13)

where δt will, eventually, be made arbitrarily small by increasing N . Since δt is small,
we replace the exponential with its expansion through first order in δt. We write

e−iHδt/~ ≈ 1− iHδt
~
. (14)

Since

〈xa|1|xb〉 = δ(xa − xb), 〈xa|V (q)|xb〉 =
V (xa + xb)

2
δ(xa − xb), (15)

the only non-trivial matrix element is 〈xa|p2/(2m)|xb〉. To compute it, we make use of
the complete set of momentum eigenstates and write

〈xa|
p2

2m
|xb〉 =

∫
dpa
2π~

dpb
2π~
〈xa|pa〉〈pa|

p2

2m
|pb〉〈pb|xb〉

=

∫
dpa
2π~

dpb
2π~
〈xa|pa〉

p2a
2m

2π~δ(pa − pb)〈pb|xb〉 =

∫
dpa
2π~

p2a
2m

eipa(xa−xb)/~,

(16)
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In deriving this result, we have used

1 =

∫
dpa
2π~
|pa〉〈pa|, 〈pa|pb〉 = 2π~δ(pa − pb), 〈xa|pa〉 = eipaxa/~, (17)

and 〈pa|xa〉 = 〈xa|pa〉∗. We will further use

δ(xa − xb) =

∫
dpa
2π~

eipa(xa−xb)/~, (18)

to write the matrix element of e.g. the potential energy V (q) and of the kinetic energy
in a similar way.

We exponentiate back the matrix elements of Hδt/~ operator and write

〈xa|e−iHδt/~|xb〉 =

∫
dpa
2π~

e
ipa(xa−xb)/~− iδt~

(
p2a
2m

+V ((xa+xb)/2)

)
. (19)

We now put this result back into a formula for the time evolution operator U(xf , xi; tf , ti),
Eq.(12). We find

U(xf , xi; tf , ti) =

∫ N∏
k=1

dxk

N+1∏
k=1

dpk
2π~

N+1∏
k=1

[
e
ipk(xk−xk−1)

~ e
− iδt~

(
p2k
2m

+V ((xk+xk−1)/2)

)]

=

∫ N∏
k=1

dxk

N+1∏
k=1

dpk
2π~

e

N+1∑
k=1

[
ipk(xk−xk−1)

~ − iδt~

(
p2k
2m

+V ((xk+xk−1)/2)

)]
,

(20)

where we identified x0 with xi and xN+1 with xf .
All integrals over momenta pk in Eq.(20) are Gaussian and it is straightforward to

compute them. We find ∫
dpk
2π~

e
ipkξk

~ − iδt~
p2k
2m =

√
m

2πiδt~
ei
mξ2k
2δt~ , (21)

where ξk = xk − xk−1. We use this result in the formula for U , Eq.(20), and arrive at

U(xf , xi; tf , ti) =
[ m

2πiδt~

]n+1
2

∫ N∏
k=1

dxk e
iÔ, (22)

where

O =
N+1∑
k=1

[
im(xk − xk−1)2

2δt~
− iδt

~
V

(
xk + xk−1

2

)]

=
i

~

N+1∑
k=1

δt

[
m

2

(
xk − xk−1

δt

)2

− V
(
xk + xk−1

2

)]
=
i

~

tf∫
ti

dτL(ẋ(τ), x(τ)).

(23)
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where in the last step we replaced the sum over k with an integral over time τ and
recognized that the summand in next-to-last equation is the Lagrange function. The
integral over τ is supposed to be taken over trajectories that start at x = xi at t = ti,
end at x = xf at t = tf and go through points x1, x2, ..., xN at τ = ti + δt, ti + 2δt etc.
Hence,

U(xf , xi, tf , ti) =
[ m

2πiδt~

]N+1
2

∫ N∏
k=1

dxk e

i
~

tf∫
ti

dτL(ẋ(τ),x(τ))

=
[ m

2πiδt~

]N+1
2

∫ N∏
k=1

dxk e
i
~S[tf ,ti,x(τ)],

(24)

where in the last step we replaced the integral of the Lagrange function by the action S.
Note that the integration over xk implies that we obtain the time evolution operator in
quantum mechanics by adding contributions of all possible trajectories with fixed initial
and final points with weights proportional to the exponential of the classical action.

We now formally take the limit N →∞ and write

lim
N→∞

[ m

2πiδt~

]N+1
2

N∏
k=1

dxk = [Dx(t)] (25)

and obtain our final expression for the time evolution operator in quantum mechanics

U(xf , xi, tf , ti) =

∫
[Dx(t)] e

i
~S[tf ,ti,x(τ)]|x(tf )=xf ,x(ti)=xi , (26)

Eq.(26) is called the “path integral”. To reiterate the meaning of this result, we note
that we integrate over all trajectories that connect points x = xf and x = xi but
are, otherwise, arbitrary. Eq.(26) does what we wanted to accomplish since it provides
us with the formulation of quantum mechanics where Lagrange functions and actions
play a prominent role. Note also that in contrast to classical mechanics, where “true”
trajectories follow from the action minima δS = 0, i.e. the least action principle, in
quantum mechanics the time evolution is determined by all directories, classical or not,

each with the weight e
i
~S .

This result Eq.(26) also explains why classical trajectories are special. Indeed, classi-
cal mechanics corresponds to the ~→ 0 limit; in that case δS/~→∞ and the integrand
in Eq.(26) oscillates very rapidly and averages to zero. The largest contributions to the
integral come from trajectories where the phase is stationary (methods of steepest de-
scent etc. in complex analysis). Such trajectories are exactly the ones that minimize the
action S.

Often, we need to know a transition amplitude from the state |i〉 to the state |f〉
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which are different from eigenstates of the position operator. Then we write

〈f |e−iH(tf−ti)/~|i〉 =

∫
dxfdxi〈f |xf 〉〈xi|i〉〈xf |e

−iH(tf−ti)
~ |xi〉

=

∫
dxfdxiΨ(xf )∗Ψ(xi)U(xf , xi; tf , ti).

=

∫
dxfdxiΨ(xf )∗Ψ(xi)

∫
[Dx(t)] e

i
~S[tf ,ti,x(τ)]|x(tf )=xf ,x(ti)=xi .

(27)

We can also write the last formula as

〈f |e−iH(tf−ti)/~|i〉 =

∫
[Dx(t)] Ψ(xf )∗Ψ(xi) e

i
~S[tf ,ti,x(τ)], (28)

where now the integration over initial and final points of the path is also included in the
measure.

The two wave functions Ψ(xf ) and Ψ(xi) are somewhat annoying although they are
needed if we are interested in the matrix element of the time evolution operator. However,
as we move to quantum field theory we will be interested in a transition from the ground
state of the theory to the ground state of the theory that occurs over infinitely long time,
i.e. |i〉 → |0〉, |f〉 → |0〉, ti → −∞ and tf → +∞. In this case, we can write

〈xf |e−iH(tf−ti)/~|xi〉 = 〈xf |e−iHtf eiHti/~|xi〉 = 〈xf , tf |xi, ti〉, (29)

where
|xi, ti〉 = eiHti/~|xi〉, 〈xf , tf | = 〈xf |e−iHtf/~. (30)

We insert a full set of states of the Hamiltonian H

|xi, ti〉 = eiHti/~|xi〉 =
∑
n

eiHti/~|n〉〈n|xi〉 =
∑
n

eiEnti/~|n〉Ψ∗n(xi). (31)

We now consider a special limit of this formula, i.e. we take H → H(1− iε), where ε > 0
is infinitesimal and ti → −∞. It is easy to see that in this case

lim
ti→−∞,H→H(1−iε)

|xi, ti〉 = Ψ∗0(xi)e
iH(1−iε)ti/~|0〉, (32)

where we have assumed that E0 = 0 and En 6=0 > 0. As the result, thanks to non-
vanishing ε, contributions of all states other than the vacuum one, are suppressed. A
similar argument gives

lim
tf→∞,H→H(1−iε)

〈xf , tf | = 〈0|e−iH(1−iε)tf/~Ψ0(xf ). (33)

Then,

lim
tf,i→±∞,H→H(1−iε)

〈xf |e−iH(tf−ti)/~|xi〉 = lim
tf,i→±∞,H→H(1−iε)

U(xf , xi, tf , ti)

= Ψ0(xf )Ψ∗0(xi)〈0|e−iH(1−iε)(tf−ti)/~|0〉.
(34)

5



The time evolution operator U(xf , xi, tf , ti) is computed through an integral over paths
that start at x = xi and end at x = xf . Suppose we integrate over xf , xi also considering
limits as shown in the above equation. Then

N〈0|e−iH(1−iε)(tf−ti)/~|0〉 = lim
tf,i→±∞

∫
[Dx(t)] e

i
~S[tf ,ti,x(τ)], (35)

where

N =

∣∣∣∣∫ dxΨ0(x)

∣∣∣∣2 (36)

Absorbing the normalization factor N into the measure and omitting iε, we finally write

lim
tf,i→±∞

〈0|e−iH(1−iε)(tf−ti)/~|0〉 = lim
tf,i→±∞

∫
[Dx(t)] e

i
~S[tf ,ti,x(τ)]. (37)

Since vacuum states on the l.h.s. of this equation are eigenstates of the Hamiltonian H,
the above equation is not very interesting since it tells us that the path integral on the
r.h.s., with all normalizations included, should evaluate to 1. However, this form is still
interesting since it allows us to study correlation functions.

Indeed, let us generalize the previous discussion to the following matrix element

〈xf , tf |q(t1)|xi, ti〉. (38)

Here q(t1) is the position operator in Heisenberg representation; it is given by

q(t1) = eiHt1/~qe−iHt1/~. (39)

We use this representation in Eq.(38), insert a completeness relation in two strategic
places and find

〈xf , tf |q(t1)|xi, ti〉 = 〈xf |e−iH(tf−t1)/~qe−iH(t1−ti)/~|xi〉

=

∫
dx1 x1〈xf |e−iH(tf−t1)/~|x1〉〈x1|e−iH(t1−ti)/~|xi〉

(40)

It is easy to realize now that the product of two matrix elements of the time evolution
operators can be written as a path integral with an additional factor in the integrand
i.e.

〈xf , tf |q(t1)|xi, ti〉 =

∫
[Dx(t)] x(t1) e

iS/~|x(tf )=xf ,x(ti)=xi . (41)

To generalize this further, we can consider an integral∫
[Dx(t)] x(t1) x(t2) e

iS/~|x(tf )=xf ,x(ti)=xi . (42)

To write this in the form of a matrix element of time-dependent position operators, we
need to know what time is larger, t1 or t2.

1 To keep all the options open, we introduce
the time-ordering operator T and write

Tq(t1)q(t2) = θ(t1 − t2) q(t1)q(t2) + θ(t2 − t1) q(t2)q(t1). (43)

1The order of operators is important since q(t1) and q(t2) do not commute in general.
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Then, it is straightforward to see following the discussion of the matrix element in Eq.(38)
that

〈xf , tf |Tq(t1)q(t2)|xi, ti〉 =

∫
[Dx(t)] x(t1) x(t2) e

iS/~|x(tf )=xf ,x(ti)=xi . (44)

It is now clear that we can get the matrix elements of the product of position opera-
tors with respect to vacuum states in the tf − ti → ∞ limit by using the trick that we
described above (c.f. Eqs.(32,33) etc.). We then find

〈0|Tq(t1)....q(tn)|0〉 =

∫
[Dx(t)] x(t1) x(t2)....x(tn) eiS/~. (45)

There is another interesting way to write a representation for all such Green’s func-
tions. Consider the following functional

Z[j] = 〈0|0〉j =

∫
[Dx(t)] ei(S+

∫
dτj(τ)x(τ))/~, (46)

defined for an arbitrary function j(t). Physically, it describes the response of our system
to an external force j(t) in the linear approximation. Apart from physics, Z[j] provides
us with a tool to compute all the correlation functions. Indeed, taking the functional
derivative of Z[j] w.r.t. j(t1), we obtain

~δZ[j]

iδj(t1)
=

∫
[Dx(t)] x(t1) e

i(S+
∫
dτj(τ)x(τ))/~. (47)

Taking the derivative n times, we find

~nδnZ[j]

iδj(t1)iδj(t2)...iδj(tn)

∣∣∣∣
j=0

=

∫
[Dx(t)] x(t1) x(t2)....x(tn) eiS/~ = 〈0|Tq(t1)....q(tn)|0〉.

(48)
Hence, Z[j] is a generating functional for vacuum expectation values of time-ordered
products of position operators taken at different times.
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