

Moderne Theoretische Physik II

Vorlesung: Prof. Dr. K. Melnikov – Übung: Dr. M. Jaquier, Dr. R. Rietkerk

Übungsblatt 6 – Teil A

Ausgabe: 21.12.18 - Abgabe: 19.01.19 bis 11:00 Uhr - Besprechung: 23.01.19

Aufgabe 1: Plötzliche Störung

3 Punkte

Der Hamilton-Operator eines eindimensionalen harmonischen Oszillators in einem konstanten äusseren elektrischen Feld lautet:

$$H = \frac{p^2}{2m} + \frac{m\omega^2}{2}x^2 + eFx = H_0 + V(x),$$

wobei V(x) = eFx ist. Die Eigenzustände von H_0 sind über die bekannten Aufund Absteigeoperatoren a und a^{\dagger} gegeben.

(a) Betrachten Sie die Operatoren

$$A = a + \frac{g}{\hbar\omega}$$
 , $A^{\dagger} = a^{\dagger} + \frac{g}{\hbar\omega}$

mit $g = eF\sqrt{\frac{\hbar}{2m\omega}}$. Schreiben Sie H in Abhängigkeit von A und A^{\dagger} . Zeigen Sie, dass A und A^{\dagger} die gleichen Kommutationsrelationen wie a und a^{\dagger} erfüllen und geben Sie mithilfe dieser Operatoren eine Basis von Eigenzuständen von H an.

- (b) Das äussere elektrische Feld werde nun plötzlich ausgeschaltet, so dass der Hamilton-Operator durch H_0 gegeben ist. Betrachten Sie einen Eigenzustand $|n\rangle$ von H und geben Sie in niedrigster Ordnung die Wahrscheinlichkeiten für Übergänge von $|n\rangle$ zu den Eigenzuständen von H_0 .
- (c) Was erwarten Sie, wenn das elektrische Feld stattdessen adiabatisch heruntergefahren wird?

Aufgabe 2: Änderung der Feinstrukturkonstante

2 Punkte

Experimente mit Atomuhren haben eine obere Schranke für eine mögliche zeitliche Änderung der Feinstrukturkonstante α zu

$$\frac{\dot{\alpha}}{\alpha} = (-1.6 \pm 2.3) \times 10^{-17}$$

pro Jahr ergeben ¹. Gehen Sie von einer Zeitabhängigkeit von der Form $\alpha(t) = at + b$

¹T. Rosenband; et al. (2008). "Frequency Ratio of Al+ and Hg+ Single-Ion Optical Clocks; Metrology at the 17th Decimal Place". Science, 319 (5871): 1808–12. Siehe auch R. Srianand; et al. (2004). "Limits on the Time Variation of the Electromagnetic Fine-Structure Constant in the Low Energy Limit from Absorption Lines in the Spectra of Distant Quasars". Physical Review Letters. 92 (12): 121302. arXiv:astro-ph/0402177 und Yasunori, F. (2004). "Oklo Constraint on the Time-Variability of the Fine-Structure Constant". Astrophysics, Clocks and Fundamental Constants. Lecture Notes in Physics. Springer Berlin. pp. 167–185.

aus und bestimmen Sie die Wahrscheinlichkeit dafür, dass ein Wasserstoffatom aufgrund dieser Abhängigkeit vom 1S- im 2S-Zustand übergeht, in erster Ordnung in adiabatischer Störungstheorie. Wie viele Atome müssen betrachtet werden, um einen solchen Übergang mit nicht vernachlässigbarer Wahrscheinlichkeit innerhalb eines Jahres zu beobachten?