INSTITUT FÜR THEORETISCHE TEILCHENPHYSIK

Einführung in die Flavourphysik WiSe 2017/18

PROF. U. NIERSTE, DR. M. BLANKE DR. I. NISANDZIC

Problem 18: The β -function for α_s

The value of the strong coupling α_s depends on the renormalization scale μ . The dependence is determined through differential equation

$$\frac{d\alpha_s(\mu)}{d(\ln \mu)} = \beta(\alpha_s(\mu)) = -\frac{\beta_0}{2\pi}\alpha_s(\mu)^2 - \frac{\beta_1}{4\pi^2}\alpha_s(\mu)^3 - \dots$$

The coefficients β_0 , β_1 etc. can be calculated:

$$\beta_0 = 11 - \frac{2}{3}n_f$$
, $\beta_1 = 51 - \frac{19}{3}n_f$,

where n_f is the number of flavors.

- a) Assume that the α_s is known at the scale $\mu = Q$. Calculate $\alpha_s(\mu)$ for $\mu \neq Q$ to first order (i.e. neglect the term with β_1).
- b) Show that one can write $\alpha_s(\mu)$ as

$$\alpha_s(\mu) = \frac{4\pi}{\beta_0 \ln(\mu^2/\Lambda^2)}$$

Express the Λ through $\alpha_s(Q)$. How does Λ depend on n_f ? What happens for $\mu \approx \Lambda$?

c) Now take into account the term with β_1 . Show that, to a leading order in $\ln(\mu^2/\Lambda^2)^{-1}$ the following holds:

$$\alpha_s(\mu) = \frac{4\pi}{\beta_0 \ln(\mu^2/\Lambda^2)} \left(1 - \frac{2\beta_1 \ln(\ln(\mu^2/\Lambda^2))}{\beta_0^2 \ln(\mu^2/\Lambda^2)} \right) + \mathcal{O}(1/\ln^3(\mu^2/\Lambda^2))$$

with

$$\Lambda = Q e^{-2\pi/\beta_0 \alpha_s(Q)} \left(\frac{4\pi + 2\beta_1 \alpha_s(Q)/\beta_0}{\beta_0 \alpha_s(Q)}\right)^{\beta_1/\beta_0^2}$$

Sheet 12