Institut für Theoretische Teilchenphysik

## Einführung in die Flavourphysik WiSe 2017/18



Prof. U. Nierste, Dr. Monika Blanke

Dr. I. Nišandžić

Sheet 9

## Problem 14: Scheme dependence in QCD $\beta$ -function

The relationship between bare QCD coupling  $g^{(0)}$  and trenormalized coupling  $\bar{g}$  in  $\overline{\rm MS}$ -scheme is given by

 $g^{(0)} = \bar{Z}\bar{g}\mu^{\varepsilon} \frac{e^{\varepsilon\gamma_{\rm E}}}{(4\pi)^{\varepsilon/2}} \quad ,$ 

where  $\mu$  is renormalization scale and  $\bar{Z}$  is the renormalization constant. Consider, in addition, another mass-independent scheme S with renormalized coupling  $\hat{g}$  and renormalization constant  $\hat{Z}$ :

 $g^{(0)} = \hat{Z}\hat{g}\mu^{\varepsilon} \frac{e^{\varepsilon \gamma_{\rm E}}}{(4\pi)^{\varepsilon/2}} \quad .$ 

The two schemes differ by a finite renormalization:

$$\bar{Z} = z(\bar{g})\hat{Z}$$
 mit  $z(\bar{g}) = 1 + z_0\bar{g}^2 + z_1\bar{g}^4 + z_2\bar{g}^6 + \dots$ .

- a) Express  $\hat{g}$  in terms of  $\bar{g}$ .
- b) The coupling in MS-scheme fulfils renormalization group equation

$$\mu \frac{d\bar{g}(\mu)}{d\mu} = \bar{\beta}(\bar{g}(\mu)) = -\bar{\beta}_0 \bar{g}^3 - \bar{\beta}_1 \bar{g}^5 - \bar{\beta}_2 \bar{g}^7 - \dots$$

Analogous equation in scheme S is

$$\mu \frac{d\hat{g}(\mu)}{d\mu} = \hat{\beta}(\hat{g}(\mu)) = -\hat{\beta}_0 \hat{g}^3 - \hat{\beta}_1 \hat{g}^5 - \hat{\beta}_2 \hat{g}^7 - \dots$$

Express  $\bar{\beta}(\bar{g})$  in terms of  $\hat{\beta}$ , z and  $\bar{g}$ . Show that  $\hat{\beta}_0 = \bar{\beta}_0$  and  $\hat{\beta}_1 = \bar{\beta}_1$  and express  $\hat{\beta}_2$  in terms of  $\bar{\beta}_2$ .